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Keratinocyte replicative senescence has an important role in time-dependent changes of the epidermis, a
tissue with high turnover. Senescence encompasses growth arrest during which cells remain metaboli-
cally active but acquire a typical enlarged, vacuolar and flattened morphology. It is also accompanied
by the expression of endogenous senescence-associated-p-galactosidase and specific gene expression

KeyWQTdSI profiles. MicroRNAs levels have been shown to be modulated during keratinocytes senescence, playing
ls(emtmocytes key roles in inhibiting proliferation and in the acquisition of senescent markers. Here, we identify miR-
enescence

Proliferation 191 as an anti-proliferative and replicative senescence-associated miRNA in primary human keratino-
MicroRNA-191 cytes. Its overexpression is sufficient per se to induce senescence, as evaluated by induction of several
CDK6 senescence-associated markers. We show that SATB1 and CDK6 3'UTRs are two miR-191 direct targets
SATB1 involved in this pathway. Cdk6 and Satb1 protein levels decrease during keratinocytes replicative senes-

cence and their silencing by siRNA is able to induce a G1 block in cell cycle, accompanied by an increase in

senescence-associated markers.

© 2012 Elsevier Inc. Open access under CC BY-NC-ND license.

1. Introduction

The epidermis is a tissue with a high turnover in which the cor-
rect regulation of keratinocyte proliferation and differentiation
passages, occurring in its upper layers, is crucial [1,2]. For continu-
ously dividing cells, like those of the epithelia, replicative senes-
cence is considered as a consequence of the accumulation of
cellular damage, such as telomere shortening and DNA mutations,
that inevitably happens during the process of cell division [3-7].
These events are particularly relevant in adult stem cells that,
dividing throughout the life, undergo both chronological and repli-
cative aging [8]. As the incidence of mutations and damage in-
creases with age, the probability that a cell will start senescence,

Abbreviations: microRNA, miRNA; HEKn, human epidermal keratinocytes neo-
natal; SA-B-gal, senescence-associated beta-galactosidase; HAT, Histone Acetyl
Transferase.
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apoptosis, or malignant transformation pathways also increases
[9].

Therefore, cellular senescence is also a process aimed to prevent
cellular transformation and to arrest the progression of malignant
phenomena resulting from age-related genomic instability, there-
by protecting the organism from cancer [10]. Senescent cells are
blocked in their growth, but remain metabolically active and ac-
quire a typical morphology: they become enlarged, vacuolar, flat-
tened and express endogenously the senescence-associated-p-
galactosidase (SA-B-galactosidase) enzyme [11,12]. Normal cells
enter in a state of replicative senescence stopping the progression
from the G1 to the S phase of the cell cycle and remaining quies-
cent [13]. All the changes described are the consequence of new
gene expression profiles [14-16]. Recent studies have shown a dif-
fuse chromatin remodeling in senescent versus proliferating cells
and in general during adult stem cells aging [17,18]. These epige-
netic alterations implicate both histones modifications (acetyla-
tion/deacetylation, methylation/demethylation) [19,20] and DNA
methylation senescence-associated changes [21,22].

MicroRNAs (miRNAs) are conserved small non-coding RNAs
(19-22nt) that recognize the 3’-untranslated (3'UTR) region of tar-
get messenger RNAs (mRNAs) inhibiting their translation and/or
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inducing their degradation [23]. miRNAs have been described to
act both as classical oncogenes and as tumor suppressors in differ-
ent malignancies, because of their tight modulation of key players
of cell cycle progression and apoptotic pathways [24]. miRNAs
have been shown also to be involved in skin development and
pathologies regulating keratinocytes stemness, proliferation, dif-
ferentiation and death [25,26], as demonstrated by the generation
of mice strains with conditional ablations of Dicer or DGCR8. The
absence of these key components of miRNAs biosynthesis com-
plexes is sufficient to induce severe developmental and structural
defects in mouse skin [25,27]. miRNA expression regulation during
senescence and aging represents an emerging field in miRNA stud-
ies and the list of miRNAs and corresponding target mRNAs in-
volved in these pathways is rapidly increasing [28-30]. Recently,
in a model of in vitro replicative senescence of normal human epi-
dermal keratinocytes neonatal (HEKn), we identified also a
ANp63a-miRNAs regulatory loop that represents a “stemness mas-
ter gene”-mediated strategy to promote proliferation and to coun-
teract senescence [30]. A new role in senescence-associated
transcriptional gene repression was also proposed for endogenous
AGO-2/miRNAs complexes that, interacting with RB1/E2F target
promoters and recruiting co-repressor factors, trigger heterochro-
matin formation [31].

Here, we investigated the role of miR-191 in HEKn. By micro-
array profiling of miRNAs levels modulated during HEKn senes-
cence, we selected miR-191 as one of the most upregulated
miRNAs [30]. We provide evidence that miR-191 overexpression
is sufficient to induce senescence in HEKn cells and that the direct
targets, involved in this process, are the Special AT-rich Binding
protein 1 (SATB1) and the Cyclin Dependent Kinase 6 (CDK6)
mRNAs.

2. Materials and methods
2.1. Cell culture and transfection

Primary Human Epidermal Keratinocytes neonatal (HEKn, Cas-
cade, Invitrogen, Carlsbad, California, USA) were cultured in Epilife
medium with HKGS growth supplements (Cascade). Cells were
constantly kept sub-confluent in order to avoid triggering of differ-
entiation. At each passage cells were collected to extract RNA and
protein and an aliquot was submitted to senescence associated-f-
galactosidase staining. Cells were induced to differentiate by add-
ing 1.2 mM CaCl, to the culture medium. For microRNA overex-
pression, human primary keratinocytes were transfected with
human pre-miRNAs or a scrambled sequence as a negative control
(Ambion, Texas, USA). For CDK6 and SATBI1 silencing, HEKn were
transfected with Hs-CDK6-siRNA GeneSolution and Hs-SATB1-siR-
NA GeneSolution (Qiagen, Hilden, Germany). AllStars negative con-
trol siRNA (Qiagen) was used as negative control. All transfections
were performed using the Lipofectamine RNAimax transfection re-
agent (Invitrogen) according to manufacturer protocols. HEK 293E
cells were grown in D-MEM with 10% FBS, 100 U penicillin, 100 pg/
ml streptomycin (GIBCO, Invitrogen) and transfected using Lipo-
fectamine 2000 according to manufacturer protocols (Invitrogen).

2.2. RNA extraction and Real Time PCR analysis

Total RNA from cells was isolated using the mirVana mirRNA
Isolation Kit (Ambion, Applied Biosystems) following the manufac-
turer’s protocol. TagqMan MicroRNA assays were used for miRNA
quantification by Real Time RT-qPCR; RNA was reverse transcribed
using the TagMan MicroRNA Reverse Transcription kit; Real Time
g-PCR was performed with the TagMan universal master mix and

U18 was used as housekeeping gene for normalization (Applied
Biosystems).

For determination of mRNA expression levels, total RNA was re-
verse transcribed with GoScript™ Reverse Transcription System
(Promega, Madison, WI, USA) according to manufacturer’s proto-
cols. Real Time PCR was then performed with CDK6 or SATB1 spe-
cific primers by using the Platinum SYBR Green qPCR SuperMix
UDG (Invitrogen). The sequences of the primers used in this study
were as follow: hCDK6F 5'-CGTGGTCAGGTTGTTTGATGTG-3/,
hCDK6R  5-ACTCGGTGTGAATGAAGAAAGTCC-3’, hSATB1F 5'-
GCCTTGGGAATCCTCCAGAGTT TC-3/, hSATB1R 5'-AGTTTGCCGTGG
TGCTTGAGATAG-3'. B-Actin was used as a housekeeping gene for
normalization. The expression of each gene and miRNA was de-
fined from the threshold cycle (Ct), and relative expression levels
were calculated by using the 2724 method after normalization
with reference to expression of housekeeping genes.

2.3. Senescence-associated p-galactosidase staining

1.5 x 10° cells were seeded into six-well culture plates the day
before transfection. Fourty eight hours after transfection, HEKn
cells were washed with PBS and fixed with 0.2% glutaraldehyde/
2% formaldehyde/2 mM MgCl, in PBS and then incubated with B-
galactosidase staining solution (2 mM MgCl,, 5 mM potassium fer-
ricyanide, 5 mM potassium ferrocyanide, 1 mg/ml X-gal, pH 6.0)
for 24 h at 37 °C. The reaction was stopped by replacing the stain-
ing solution with 70% glycerol.

2.4. Cell proliferation and cell cycle analysis

Incorporation of bromodeoxyuridine (BrdU) during DNA syn-
thesis was evaluated with the Click-iT™ EdU flow cytometry assay
kit, following the manufacturer’s protocol (Molecular Probes, Eu-
gene, OR, USA). Cell cycle was analysed using a FACS Calibur flow
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Fig. 1. MiR-191 expression is upregulated during HEKn cells replicative senescence.
(A) MiR-191 was identified by microarray screening in proliferating (P1) versus
senescent (P4) HEKn cells [30]. (B) Real Time RT-qPCR was employed to analyze the
expression levels of miR-191 in HEKn cells at a growing number of passages in
culture (P1-P4). Values reported are the average+SD of three independent
experiments. (C) Western Blot of HEKn cells protein extracts collected as described
in (B). Proliferation (ANp63a), senescence (p16) and differentiation (K10) markers
are shown. B-actin was used as a loading control. (D) Real Time RT-qPCR was
employed to analyze the expression levels of miR-191 in HEKn cells at day 0 (DO)
and 9 (D9) after induction of differentiation by calcium addiction to culture
medium. Values reported are the average + SD of three independent experiments.
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cytometer (BD Biosciences, San Jose, CA, USA). Fifteen thousand
events were evaluated using the Cell Quest (BD) software.

2.5. Luciferase assay and constructs

The 3'-UTRs of miR-191 target mRNAs were amplified by PCR
from human genomic DNA using the following primer pairs:
hSATB1-3'UTR-F  5-GGCCTCTAGAGATAAAAGTA TTTGTTTCGTT
CAAC-3'; hSATB1-3'UTR-R 5'-GGCCTCTAGAGTGTAGTTACAGTCAA
TAACCACTC-3'; hCDK6-3'UTR-F 5-GGCCTCTAGATGCTCATGGCACC
CATTAGA-3'; hCDK6-3'UTR-R 5-GGCCTCTAGACTATACCATACC
TGAGGCCA-3'. PCR fragments were restricted and ligated to a com-
patible Xbal-linearized pGL3Control vector (Promega). Cells were
transfected with 100 ng of pGL3 vectors, 12 pmol of pre-miR or a
scrambled sequence (Ambion), and 10ng of Renilla luciferase
PRL-CMV vector (Promega). Luciferase assays were then performed
as described before [32].

2.6. Western Blotting

Total cell extracts were resolved on SDS polyacrylamide gels
and blotted onto a Hybond P PVDF membrane (G&E Healthcare,
UK). The following antibodies were used: anti-p63 (Ab4, Neomar-
kers, Fremont, California, USA; dilution 1:500), anti-B actin (Sigma,
St Louis, Minnesota, USA; dilution 1:5000), anti-p16 (Santa Cruz
Biotechnology, California, USA; dilution 1:1000), anti-PML (Santa
Cruz Biotechnology; dilution 1:400) anti-K10 (Covance, Princeton,
NJ, USA; dilution 1:1000), anti-SATB1 (Sigma, dilution 1:400), anti-
CDK®6 (Santa Cruz Biotechnology, dilution 1:1000).

2.7. Bioinformatics

Analysis of microRNA target sites were performed using the
TargetScan 5.1 software available at <http://www.targetscan.org.>.
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miR-191

3. Results

3.1. MiR-191 expression is upregulated in senescencent human
epidermal keratinocytes

To investigate miRNAs levels modulated during replicative
senescence, we used the microarray approach described in a previ-
ous study [30], comparing miRNA expression profiles of proliferat-
ing HEKn at passage 1 (P1) to senescent HEKn at passage 4 (P4).
Among the most consistently upregulated miRNAs at P4 we se-
lected miR-191 (fold change 2.7 + 0.05, Fig. 1A) and validated the
array result by Real Time RT-qPCR (Fig. 1B). As a control, a Western
Blot analysis was also perfomed on protein extracts from HEKn
cells collected at the same passages (P1-P4). As expected, ANp63a,
important in maintaining the proliferative potential of the epithe-
lial cells, decreases upon serial passages, while p16 expression in-
creases (Fig 1C). We also excluded the possibility that the HEKn
cells after serial passages in culture underwent differentiation by
verifying that the cytokeratin 10 (K10), an early marker of kerati-
nocyte differentiation, was and remained undetectable from P1
to P4 (Fig. 1C). To confirm that miR-191 was an anti-proliferative
miRNA directly involved in the senescence process and not a
pro-differentiation miRNA, we checked also its expression in HEKn
cells differentiated in vitro by CaCl, addition showing that its
expression levels did not increase in these specific conditions
(Fig. 1D).

3.2. MiR-191 overexpression is sufficient per se to induce senescence in
proliferating HEKn cells

To understand miR-191 role’s in keratinocyte senescence we set
up its overexpression and depletion in proliferating HEKn cells per-
forming transfections with pre-miR-191, anti-miR-191 or scram-
bled control sequences. Forty-eight hours after transfection, we
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Fig. 2. MiR-191 overexpression is sufficient to decrease HEKn proliferation and induce senescence. (A) 48 h after transfection of HEKn cells with either a scrambled control
(Ctr), miR-191 or antimiR-191, cells were subjected to a 4 h BrdU-pulse, collected, PI stained and analyzed by flow cytometry. BrdU positive cells are indicated as S phase
fluorescent populations and are assessed by PI staining of DNA content of 2n or 4n (fixed to values of 200 and 400 in the plots). (B) BrdU positive cells percentage (BrdU%) of
each sample in A) is reported in the histogram. Values represent the average + SD of three independent transfections. (C) SA-p-galactosidase staining of HEKn cells 48 h after
transfection with either a scrambled control (Ctr), miR-191 or antimiR-191. (D) Relative SA-B-galactosidase positive cells quantified by blue cell counting/field (as fold over
control). Values reported are average + SD of three independent stains. *p-Value < 0.01 by Student’s ¢ test.
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Fig. 3. SATB1 and CDK6 expression is downregulated in senescent HEKn cells and their 3'UTRs are direct miR-191 targets. (A,B) Predicted miR-191 target sites on human
SATB1 and CDK6 3'UTRs were identified by TargetScan 5.1 software. The putative miRNA target sequences are conserved between the 3’-UTRs of human (Hs), mouse (Mm),
rat (Rn) and dog (Cf) mRNAs. (C) Real time RT-qPCR was employed to analyze the expression levels of SATB1 and CDK6 in HEKn cells at a growing number of passages in
culture (P1-P4). Values reported are the average + SD of three independent experiments. (D) Western Blot of HEKn cells protein extracts collected at increasing passage
number in culture (P1-P4). Satb1 and Cdk6 protein levels are shown and B-actin was used as loading control. (E) Insertion of SATB-1 or CDK6 3'UTR target sequences in a
luciferase reporter vector leads to diminished luciferase activity in presence of miR-191 in HEK293 cells 24 h after co-transfection. Histograms show the values resulting as
the average +SD from three independent co-transfections. (F) Western Blot analysis of protein extracts of HEKn transfected with miR-191 versus a scrambled control
sequence (Ctr). miR-191 overexpression decreases Satb1 and Cdké6 protein levels; B-actin was used as a loading control.

observed a decrease in the percent of BrdU incorporating cells in
presence of miR-191 overexpression (12% versus 27% of scrambled
control) indicating a cell cycle G1-arrest, while anti-miR-191 trans-
fection had no effects on proliferation (29%; Fig. 2A, B). Under iden-
tical conditions, we also found an increase of more than 3-folds in
the number of cells positive for SA-B-galactosidase staining as
shown by the images and blue-cell quantification (Fig. 2C, D).
These results demonstrated that miR-191 overexpression is suffi-
cient per se to induce keratinocytes senescence.

3.3. SATB1 and CDKG6 expression is downregulated in senescent HEKn
cells and their 3'UTRs are direct miR-191 targets

To elucidate miR-191 role’s in senescence pathways, we
performed an analysis of its putative molecular targets. From an
in silico prediction, by TargetScan 5.1 software, we selected
SATB1-3'UTR and CDK6-3'UTR as putative miR-191 targets. These
3'UTRs harbor at least one miR-191 target site that is highly con-
served among vertebrates as shown by the sequence alignments
in Fig. 2A, B. At the mRNA level, we found a significant decrease
(about 60%) of SATB1 mRNA by real-time RT-qPCR, while CDK6
expression did not change, between P1 and P4 keratinocytes. How-
ever, at the protein level, it was possible to confirm a downregula-
tion of both miR-191 putative targets (Fig. 3C). The observed

inverse correlation between miR-191 expression and its putative
targets strengthened the hypothesis of their direct regulation.

CDKG6 is a member of the cyclin-dependent protein kinase fam-
ily and a main regulator of cell cycle progression. In particular, this
kinase is the catalytic subunit of the complex that regulates G1
phase progression and G1/S transition during cell cycle. CDK6, as
well as CDK4, has been shown to phosphorylate, and thus regulate
the activity of Rb. This cell cycle check point is frequently deregu-
lated in different malignancies [33-36].

The Specialized Adenine and Thymine-rich Binding protein 1
(SATB1) functions as a genome organizer that regulates higher-or-
der chromatin remodeling in order to establish particular spatial
organization of genes within the nuclei [37]. SATB1 recruits tran-
scription factors and chromatin remodeling complexes to specific
genomic regions establishing an epigenetic modification status
that sometimes has a key role in tissue specific gene expression
[38-40]. In this way, SATB1 is able to coordinate the regulation
of a high percentage of genes (more than 10% of the total) and it
is presumable that it may be crucial for the changes in gene expres-
sion patterns that happen in human cancers [41].

To confirm that the selected mRNAs are direct miR-191 targets,
we cloned part of SATB1 and CDK6-3'UTRs sequences upstream of
luciferase cDNA, to use them in luc-reporter assays. Transfecting
SATB1-3'UTR and CDK6-3'UTR reporter constructs in presence of
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human keratinocyte replicative senescence.

pre-miR-191 or a scrambled control sequence, we obtained a sig-
nificant downregulation of more than 60% and about 25%, respec-
tively, in relative luciferase activity (Fig. 3D). Overexpression of
miR-191 by transfection in proliferating HEKn led to a significant
decrease in SATB1 and CDK6 protein levels (Fig. 3F), thus demon-
strating that miR-191 is able to repress the selected targets endog-
enously expressed in keratinocytes.

3.4. SATB1 and CDKG silencing by siRNA triggers senescence in HEKn
cells

To establish that miR-191’s ability to trigger senescence is
mainly mediated by the down regulation of these two targets,
we performed their silencing by transfection using specific siRNAs
or scrambled control sequences. Forty-eight hours after transfec-
tion we managed to reduce both SATB1 and CDK6 expression at
the protein level as shown in the Western Blots (Fig. 4A). In the
same conditions, we observed a significant reduction in the per-
centage of BrdU incorporation of SATB1-silenced HEKn cells
(18%) compared to scramble transfected cells (26%) and a total
block in the G1 cell cycle phase of CDK6-silenced cells (1%) as
clearly visible in Fig. 4B. The decreased proliferation was followed

by a marked staining for SA-B-galactosidase (Fig. 4C) as indicated
by a 3-fold increase in blue cells counts (Fig. 4D). These data, to-
gether with the induction of the senescence markers p16 and
PML (Fig. 4A), indicated that SATB1 and CDK6-silenced HEKn cells
undergo senescence. The effects of silencing miR-191’s targets in
HEKn were coherent with the consequences of miR-191 overex-
pression in the same model (Fig. 2), but the results of the specific
CDKG6 silencing in proliferating HEKn seemed to be more effective
both in cell cycle block and in increase SA-B-galactosidase staining
(Fig. 4B-D). This difference was probably due to an incomplete
silencing of CDK6 upon miR-191 transfection in comparison to
CDK® silencing by siRNA (compare Figs. 3F and 4A).

4. Discussion

Our data indicate that miR-191 levels are upregulated during
keratinocyte replicative senescence and that miR-191 overexpres-
sion in proliferating HEKn is sufficient per se to trigger growth inhi-
bition and to induce SA-B-galactosidase activity. We demonstrated
that SATB1 and CDK6 mRNAs are directly regulated by this miRNA
and that their silencing, by siRNA, leads HEKn to senescence. These
findings suggest that miR-191 acts at least in two different ways:
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inhibiting proliferation and altering gene expression by organizing
chromatin remodeling. In particular, by targeting CDK6, miR-191
blocks G1-S phase transition leading to a cell cycle arrest and to
a quiescent state that results in starting the senescence processes.
Additionally, the downregulation of the ‘“genome organizer”
SATB1, suggests that miR-191 upregulation establishes senes-
cence-associated epigenetic modifications followed by new gene
expression profile also leading to senescence. On the other hand,
the observation that SATB1 is linked with increased lifespan and
contrasted age-related pathologies in mice, through the recruit-
ment of HAT activity complexes [42], demonstrated the general
involvement of SATB1 in counteracting the senescence and/or
aging pathways. Recently, SATB1 has been characterized as a
new p63 target gene demonstrating an important role of SATB1
as a part of the p63-dependent epidermal developmental program
through a skin-specific chromatin organization and a proper epi-
dermal stem cell gene expression pattern [40]. Beside its role in
epidermal morphogenesis, p63-deficiency causes cellular senes-
cence in proliferating keratinocytes [43,44,30] and leads to acceler-
ated aging in p63 heterozygous mice in vivo [45,46]. Further
studies have shown that the ANp63a isoform counteracts kerati-
nocyte replicative senescence by inhibiting at least four senes-
cence-associated miRNAs [30]. In this context, our data indicate
that the senescence-associated miR-191, through SATB1 silencing
opposed to p63 function adding a new regulatory step to p63-med-
iated function in keratinocytes (Fig. 4E). In summary, we have
studied replicative senescence of human keratinocytes and our re-
sults indicate that CDK6 and SATB1 are two novel miR-191 targets
strongly linked to keratinocytes proliferation thus opening up new
horizons for future studies regarding their involvement in skin
aging and pathologies.
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