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In this paper we present a family of measures aimed at determining the amount of inconsis-

tency in probabilistic knowledge bases. Our approach to measuring inconsistency is graded

in the sense that we considerminimal adjustments in the degrees of certainty (i.e., probabil-

ities in this paper) of the statements necessary to make the knowledge base consistent. The

computation of the family of measures we present here, in as much as it yields an adjust-

ment in the probability of each statement that restores consistency, provides the modeler

with possible repairs of the knowledge base. The case example that motivates our work and

on which we test our approach is the knowledge base of CADIAG-2, a well-known medical

expert system.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In the last few years the amount of literature dealing with aspects of inconsistency in knowledge bases has grown

considerably andhas become central in the field of databases and knowledge-based systems. In this paperwe focus primarily

on twoaspects of inconsistency inprobabilistic knowledgebases: the evaluationof inconsistencyandpossible repair strategies

in the presence of inconsistency.

The evaluationof inconsistency in adatabasehelpsusunderstand it better. In particular, ameasureof inconsistency allows

us to determine how reliable the information contained in a database is and how this information could be used (for example,

for inferential purposes) and even modified or adjusted to meet consistency. In this paper we present a family of measures

aimed at quantifying the amount of inconsistency in probabilistic knowledge bases. Each measure in the family that we

present here quantifies the amount of inconsistency by determining how far the knowledge base is from consistency based

on a notion of distance given by a particular p-norm (which we call p-distance). This approach to quantifying inconsistency

connects to possible repairs of the knowledge base in the sense that the computation of thesemeasures yields an adjustment

in the probability assignments that makes the knowledge base consistent.

Our approach to dealingwith inconsistency is thus graded in the sense thatwe take into account the amount of adjustment

of the degrees of certainty (i.e., probabilities) in the knowledge base. Alternative, non-graded approaches to measuring

inconsistency in databases (not particularly defined for probabilistic databases) there are several. Among the most popular

we have those based on the number and composition of theminimal inconsistent subsets contained in the database (see [9]

or [10]). In connection with these approaches to evaluating inconsistency we have repair strategies based on the removal of

statements that occur in minimal inconsistent subsets of the database (see for example [6,11] or [16] for repair strategies of

this nature). Graded approaches to quantify inconsistency in probabilistic knowledge bases we know only [17] and, as will

be made clear later, is essentially different to ours.
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Our case example throughout the paper will be a coded version of a fragment of the knowledge base of CADIAG-2

(Computer Assisted DIAGnosis), a well-known rule-based expert system aimed at providing support in diagnostic decision

making in the field of internal medicine. In fact, the work presented in this paper is mostly motivated by CADIAG-2.

As will be explained later in more detail the knowledge base of CADIAG-2 can be regarded, at least for consistency-

checking and evaluation purposes, as probabilistic. An assumption that we believe to be implicit in CADIAG-2 and in most

(if not all) probabilistic databases is the fact that the probabilities of the conditioning events in probabilistic conditional

statements be strictly greater than zero. By assuming such fact we are excluding the possibility that a probability function

satisfy 1 a conditional statement unless it assigns a probability strictly greater than zero to its conditioning event. In a large

number of papers that deal with topics related to probabilistic satisfiability such an assumption is not taken (for example,

in [17]).

Our paper is structured as follows: in Section 2 we introduce most of the notation we will be using throughout the

paper and some preliminary definitions. In Section 3 we briefly describe the relevant features of the binary fragment of

the knowledge base of CADIAG-2 that we will be using as our case example. Section 4 introduces and studies the family of

measures of inconsistency announced above. In Section 5we dealwith some aspects of the computation of the inconsistency

measures presented in Section 4 for the general case and, in Section 6, we focus on our case example and we measure the

amount of inconsistency of the binary fragment of CADIAG-2’s knowledge base by means of our inconsistency measures.

2. Preliminary definitions and notation

Throughout this paper wewill be workingwith a finite propositional language L = {p1, . . . , pl}, for some l ∈ N, andwill

denote by SL its closure under boolean connectives:conjunction (∧), disjunction (∨) and negation (¬). Within the context

of CADIAG-2 our language L will represent the set of medical entities occurring in the inference rules of the system. Such

medical entities fall into two general types: symptoms, findings, signs and test results (to which we will commonly refer

as symptoms) that form the subset S ⊂ L on the one hand and therapies and diseases (to which we will commonly refer as

diseases) that form the subset D ⊂ L on the other.

We will use the symbols ⊥ and � for classical contradiction and classical tautology, respectively.

Definition 1. Let ω : SL −→ [0, 1]. We say that ω is a probability function on L if the following two conditions hold, for all

θ, φ ∈ SL:

• If |	 θ then ω(θ) = 1.
• If |	 ¬(θ ∧ φ) then ω(θ ∨ φ) = ω(θ)+ ω(φ). 2

We can restrict probability functions to the set [0, 1] ∩ Q. Such probability functions will be called rational.

A probability distribution ω on L can be characterized by the values it assigns to the expressions of the form

±p1 ∧ · · · ∧ ±pl,

which we call states or worlds, where +p and −p stand for p and ¬p, respectively. We denote the set of states in L by W ,

which we assume to be ordered in some way, and define Wφ as follows, for φ ∈ SL:

Wφ = {α ∈ W | α |	 φ}.
Based on this characterization we can identify probability functions on L with 2l-coordinate vectors in D2l , with

D2l =
⎧⎨
⎩(x1, . . . , x2l) | xi ≥ 0,

∑
i

xi = 1

⎫⎬
⎭ ,

where the coordinate xi stands for the probability assigned to the state αi ∈ W .

Sentences in SL can also be identified (up to semantical equivalence) with 2l-coordinate vectors. For φ ∈ SL we can set

the 2l-coordinate vector �rφ as follows: for each i ∈ {1, . . . , 2l} and αi ∈ W , riφ = 1 if αi ∈ Wφ and riφ = 0 otherwise.

Let us set K = {φ|θ | φ, θ ∈ SL}, the set of conditional statements in SL.

We define probability on conditional statements in SL from the notion of unconditional probability in the conventional

way. For ω a probability function on L and φ|θ ∈ K,

ω(φ|θ) = ω(φ ∧ θ)
ω(θ)

.

1 Precise definitions of all these concepts will be given later.
2 Here (and throughout) |	 is classical entailment.
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We will denote the collection of closed intervals contained in [0, 1] by I. Intervals of the form [η, η] ∈ I (i.e., real point

values in the interval [0, 1]) will normally be denoted by η itself.

For the next definition let us considerΔ ⊆ K.

Definition 2. An assignment v onΔ is a map fromΔ to I.

The assignment v will be said to be point valued if v(φ|θ) ∈ [0, 1] for all φ|θ ∈ Δ.

We denote the set of assignments onΔ by VΔ and set

PK = {[Δ, v] | Δ ⊆ K, Δ �= ∅, v ∈ VΔ}.
We will sometimes write [Δ, v] ∈ PK in extended form; i.e., as

{v(φ|θ) = Ω | φ|θ ∈ Δ},
withΩ ∈ I or, more in keeping with the notation later employed for the rules of CADIAG-2, as

{〈φ|θ,Ω〉 | φ|θ ∈ Δ, v(φ|θ) = Ω}.
Let [Δ, v] ∈ PK andΔ′ ⊂ Δ. We denote by v|Δ′ the restriction of v onΔ′.
Consider now [Δ1, v1], [Δ2, v2] ∈ PK and assume that, ifφ|θ ∈ Δ1∩Δ2, v1(φ|θ) = v2(φ|θ).Wedefine the assignment

v = v1 + v2 onΔ1 ∪Δ2 as follows: v(φ|θ) = v1(φ|θ) for all φ|θ ∈ Δ1 and v(φ|θ) = v2(φ|θ) for all φ|θ ∈ Δ2.

Definition 3. We say that the probability function ω on L satisfies [Δ, v] ∈ PK (denoted |	ω [Δ, v]) if, for all φ|θ ∈ Δ, we

have that ω(θ) > 0 and ω(φ|θ) ∈ v(φ|θ).
In that sense we say that [Δ, v] is (probabilistically) satisfiable or consistent 3 if there exists a probability function ω on L

that satisfies [Δ, v].
Definition 4. We say that [Δ, v] is a minimal unsatisfiable set (or minimal inconsistent set) if [Δ, v] is not satisfiable and, for

allΔ′ ⊂ Δ, [Δ′, v|Δ′ ] is satisfiable.
In order to prove some results in this paper it will be useful to regard our language L as a collection of unary predicates or

sets in a first-order language and SL the closure of predicates in L under boolean combinations. For the next (and last) two

definitions of this section we will regard L as a set of unary predicates.

Definition 5. An interpretation I of L is a pair (DI, νI), where DI is a finite non-empty set and νI is a map from L×DI to {0, 1}.
A valuation νI can be extended to elements in SL × DI in its conventional way.

Given an interpretation I of L, we will refer to the elements in DI by latin characters a, b, c, . . .
For what follows let I be an interpretation of L and [Δ, v] ∈ PK.

Definition 6. I is a (probabilistic) model of [Δ, v] if, for all φ|θ ∈ Δ, we have that

∑
a∈DI νI(φ ∧ θ, a)∑

a∈DI νI(θ, a)
∈ v(φ|θ).

3. The knowledge base of CADIAG-2

The medical expert system CADIAG-2 consists of two main components: the inference engine and the knowledge base.

The inference engine is based on methods of approximate reasoning in fuzzy set theory, in the sense of [18]. Formalizations

and analyses of it can be found in, for example, [7] or [15]. The knowledge base of the system consists of a set of IF-THEN

rules intended to represent relationships between distinct medical entities. The vast majority of them are binary (i.e., they

relate singlemedical entities) and only such rules are considered in our paper. The one that follows is an example of a binary

rule of CADIAG-2 (taken from [3]):

3 We use both words interchangeably throughout the article.
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IF suspicion of liver metastases by liver palpation

THEN pancreatic cancer

with degree of confirmation 0.3

The degree of confirmation refers, intuitively, to the degree to which the antecedent (i.e., ’suspicion of liver metastases by

liver palpation’ in the example above) confirms the consequent (i.e., ’pancreatic cancer’ above). It is claimed in part of the

literature on CADIAG-2, like for example in [1], that such degrees of confirmation can be understood as probabilities and the

rules themselves as probabilistic conditional statements. In most of the literature on CADIAG-2 though, like for example in

[2] or [3], an alternative, non-probabilistic interpretation for the degrees of confirmation is suggested. However, it is proved

in [12] that the binary fragment of CADIAG-2’s knowledge base is satisfiable in terms of the suggested non-probabilistic

interpretation if and only if it is probabilistically satisfiable. Thus, at least for consistency-checking and evaluation purposes,

one can regard CADIAG-2’s binary knowledge base as probabilistic no matter which of these two possible interpretations is

to be chosen.

We will represent binary rules in CADIAG-2 by pairs of the form 〈q|p, η〉, with q|p ∈ K, p, q ∈ L and the degree of

confirmation η ∈ [0, 1]. We will denote the set consisting of such rules byΦCB ∈ PK.

We can classify rules in ΦCB into three different types: rules in which both antecedent (or, in probabilistic terms, con-

ditioning event) and consequent (or conditioned event) are medical entities in S (symptom–symptom), rules in which both

antecedent and consequent are medical entities in D (disease–disease) and those in which the antecedent is a medical entity

in S and the consequent an entity in D (symptom–disease). 4 The degree of confirmation in a rule of the first two types is a

value in the set {0, 1} and it is in this sense that we say that rules of these types are classical.

Table 1 shows in numbers the composition ofΦCB.

Table 1

Composition ofΦCB .

Number of symptoms 1761

Number of diseases 341

Number of symptom–symptom rules 720

Number of disease–disease rules 218

Number of symptom–disease rules 17573

4. Measuring inconsistency: p-distance

Our approach to measuring inconsistency for knowledge bases of the form [Δ, v] ∈ PK is based on the quantification

of the minimal adjustment that one needs to make on v in order for [Δ, v] to be satisfiable. Such an approach is similar

in nature to that defined in [17]. The main difference between both approaches rests on the notion of satisfiability for

probabilistic conditional statements: null probability for the conditioning event in a probabilistic statement is allowed in

[17] and makes the statement satisfiable by default. Our approach becomes much more complex in comparison to [17] due

mostly to our definition of satisfiability, which we believe is more natural and intuitive, and to a more general notion of

minimal adjustments.

In order to quantify the minimal adjustment we will rely on the so-called p-normwhich, for a vector �x ∈ Rm, is given by

‖�x‖p =
⎛
⎝ m∑

i=1

|xi|p
⎞
⎠

1
p

,

for p ≥ 1 (not necessarily an integer). The most common p-norms are certainly those of order 1 and 2 (i.e., 1-norm and

2-norm). We also have

‖�x‖∞ = lim
p→∞

⎛
⎝ m∑

i=1

|xi|p
⎞
⎠

1
p

= max
i

|xi|

among themost common norms, which wewill refer to as the∞-norm and regard as a p-normwith p = ∞. In this context

we will abuse notation slightly and will write [1,∞] for the range of possible values for p.

Let ε ∈ ∗R be a non-zero infinitesimal in the set of hyperreal numbers. 5 We will be working with the set

A =
{
t, t + ε,

1

ε

∣∣∣∣ t ∈ R

}
.

4 CADIAG-2’s knowledge base formally contains values for conditional relations with a medical entity in D as the antecedent and a medical entity in S as the

consequent. However, such rules are not used by CADIAG-2’s inference mechanism and are not taken into account for our examples in this paper.
5 That is to say, ε is such that 0 < ε < 1

n
for all n ∈ N.
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The reason why we consider ε ∈ ∗R, although it should not come at a surprise given the notion of satisfiability we are

working with, will be made clear below. As is common, we will denote the standard (i.e., real) part of a finite number a ∈ A
by st(a) (for more on hyperreal numbers and, in general, nonstandard analysis see for example [8]).

We mention at this point that we are not interested in infinitesimal precision and thus we do not consider algebraic

operations involving infinitesimals. The consideration of ε as an infinitesimal magnitude suffices for our purposes.

For what follows let [Δ, v] ∈ PK and Γ ⊂ Δ, with

Δ′ = Δ− Γ = {φ1|θ1, . . . , φk|θk},
for some k ∈ N, and v(φi|θi)= [η

i
, ηi] for all i∈ {1, . . . , k}. Γ is intended to represent the set of conditional statements in

Δ that are regarded as correctly evaluated by v and that should (arguably) not be considered when assessing the p-distance

of [Δ, v].
We define [Δ, v�x] to be the set

{v�x(φi|θi) = [η
i
− xi, ηi + xi+k] | i ∈ {1, . . . , k}} ∪ {v�x(φ|θ) = v(φ|θ) | φ|θ ∈ Γ },

where xi, xi+k are positive real values satisfying the constraint

0 ≤ η
i
− xi ≤ ηi + xi+k ≤ 1,

for all i ∈ {1, . . . , k}.
For the next definitions let [Δ, v] ∈ PK and consider [Δ, v�x] and Γ ⊂ Δ as above, with �x ∈ R2k and p ∈ [1,∞].

Definition 7. We define the real set F
p
Γ ([Δ, v]) as follows:

F
p
Γ ([Δ, v]) = {‖�x‖p | [Δ, v�x] is satisfiable}.

Notice that F
p
Γ ([Δ, v]) is bounded below for all p ∈ [1,∞] and thus, if it is not empty, its infimum exists (i.e.,

inf(F
p
Γ ([Δ, v])) exists). Notice also that inf(F

p
Γ ([Δ, v])) corresponds to the p-norm distance between the cartesian product

Πφ|θ∈Δv(φ|θ)
and the set given by the point-valued assignments u onΔ for which [Δ, u] is satisfiable.
Definition 8. We define the p-distance (to consistency) of [Δ, v] with respect to the set Γ – denoted DC

p
Γ ([Δ, v]) – as follows:

• F
p
Γ ([Δ, v]) �= ∅ and min(F

p
Γ ([Δ, v])) = inf(F

p
Γ ([Δ, v])) then

DC
p
Γ ([Δ, v]) = inf(F

p
Γ ([Δ, v])).

• If F
p
Γ ([Δ, v]) �= ∅ andmin(F

p
Γ ([Δ, v])) does not exist then

DC
p
Γ ([Δ, v]) = inf(F

p
Γ ([Δ, v]))+ ε.

• If F
p
Γ ([Δ, v]) = ∅ then we set

DC
p
Γ ([Δ, v]) = 1

ε
.

That DC
p
Γ ([Δ, v]) is well defined is clear. If [Γ , v|Γ ] is unsatisfiable or there exists a statement of the form φ|⊥ in Δ

then we have that F
p
Γ ([Δ, v]) = ∅ and thus that DC

p
Γ ([Δ, v]) = 1

ε
. If [Γ , v|Γ ] is satisfiable and define � to be the set of

probability distributions on L that satisfy [Γ , v|Γ ] we have that each ω ∈ � with ω(θi) > 0 for all i ∈ {1, . . . , k} satisfies
[Δ, v�x] for some real values xi, with i ∈ {1, . . . , 2k}, and thus, if any such probability distribution existed, F

p
Γ ([Δ, v])would

not be empty. On the other hand, if there were no such probability distributions then F
p
Γ ([Δ, v])would be empty, in which

case we would have DC
p
Γ ([Δ, v]) = 1

ε
.

Wewill write DCp([Δ, v]) instead of DC
p

∅([Δ, v])whenever there is no set Γ ⊂ Δwith respect to which we are defining

the p-distance of [Δ, v].
For our next definition let us consider again [Δ, v] ∈ PK, with [Δ, v�x] and Γ ⊂ Δ as above.

Definition 9. We define the set RΓ ([Δ, v]) of repairs of [Δ, v] with respect to Γ as follows:

RΓ ([Δ, v]) = {�x ∈ R2k | [Δ, v�x] is satisfiable}.
For the next definition let �x ∈ R2k be a repair in RΓ ([Δ, v]), for k ∈ N.
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Definition 10. We say that �x is p-optimal if ‖�x‖p = DC
p
Γ ([Δ, v]).

4.1. Properties of DCp

Throughout all this subsection let [Δ, v] ∈ PK, with Γ ⊂ Δ and

Δ− Γ = {φ1|θ1, . . . , φk|θk},
for some k ∈ N.

First of all notice that it is not generally true thatDC
p
Γ ([Δ, v]) ∈ R. This is, as claimed earlier, a consequence of our notion

of satisfiability and, more particularly, the requirement that a conditioning event in a conditional statement be assigned

probability strictly greater than zero. To show this more clearly with an example, consider the subset [Δ, v] given by the

following set of rules inΦCB:

{〈D36|S157, 0.3〉, 〈D81|S157, 0.15〉, 〈D81|D36, 1〉}.
It is clear that [Δ, v] is unsatisfiable. Let us consider the sequence of probability functions {ωn}n∈N on {D36,D81, S157}

characterized by the following assignments:

• ωn(S157) = 1
n
,

• ωn(D36) = 0.3
n

+
(
1 − 1

n

)
,

• ωn(D81) = 0.15
n

+
(
1 − 1

n

)
,

• ωn(S157 ∧ D36) = 0.3
n
,

• ωn(S157 ∧ D81) = 0.15
n
,

• ωn(D36 ∧ D81) = 0.15
n

+
(
1 − 1

n

)
.

Let limn→∞ ωn = ω. It can be easily shown that such assignments fully determineωn andω as probability functions on

the language {D36,D81, S157}, for all n ∈ N.

We have that, for all n ∈ N, ωn(D36|S157) = 0.3, ωn(D81|S157) = 0.15 and ωn(D81|D36) = n−0.85
n−0.7

. It is clear that for

any δ > 0 we can find N ∈ N such that, for all n > N, we have that ωn(D81|D36) > 1 − δ. It is also clear that ω does not

satisfy [Δ, v] (in fact, [Δ, v] is unsatisfiable). Thus we have that DCp([Δ, v]) = ε for all p ∈ [1,∞].
For the next result let us consider [Δ1, v1], [Δ2, v2] ∈ PK be such that v1(φ|θ) = v2(φ|θ), for all φ|θ ∈ Δ1 ∩Δ2, and

Γ1 ⊂ Δ1, Γ2 ⊂ Δ2.

Proposition 11. For all p ∈ [1,∞] we have that

DC
p
Γ1
([Δ1, v1]) ≤ DC

p
Γ1∪Γ2

([Δ1 ∪Δ2, v1 + v2]).
Proof. It follows directly from the definition of DCp. �

For the next proposition let us assume that F
p
Γ ([Δ, v]) �= ∅.

Lemma 12. st(DC
p
Γ ([Δ, v])) is continuous and decreasing on p, for p ∈ [1,∞).

Proof. The result follows from the well-known fact that, for general �x ∈ Rm andm ∈ N, ‖�x‖p is continuous and decreasing

on p. �

For the next results let p1, p2 ∈ [1,∞].
Proposition 13. If p1 < p2 then DC

p1
Γ ([Δ, v]) ≥ DC

p2
Γ ([Δ, v]).

Proof. Let us assume that p1 < p2. If DC
p2
Γ ([Δ, v]) ∈ R then the result follows from Lemma 12. Let us assume then that

DC
p2
Γ ([Δ, v]) = t + ε /∈ R and that DC

p1
Γ ([Δ, v]) = t, for some t ∈ R. Let �x ∈ RΓ ([Δ, v]) be a p1-optimal repair of

[Δ, v] (i.e., ‖�x‖p1 = t) but notice that, since ‖�x‖p is decreasing on the order p, we have that ‖�x‖p1 ≥ ‖�x‖p2 and thus

DC
p1
Γ ([Δ, v]) ≥ DC

p2
Γ ([Δ, v]). �

Proposition 14. DC
p
Γ ([Δ, v]) = 0 if and only if [Δ, v] is satisfiable.

Proof. This result follows directly from the definition of DCp. �
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Proposition 15. Let p ∈ [1,∞). If F
p
Γ ([Δ, v]) �= ∅ then DC

p
Γ ([Δ, v]) is at most k

1
p .

Proof. Consider [Δ, v] = {v(q1|q1) = 0, . . . , v(qk|qk) = 0}, for q1, . . . , qk ∈ L, and Γ = ∅. First of all notice that qi|qi,
qj|qj , for any i, j ∈ {1, . . . , k} with i �= j, are not equivalent in the sense that we can define a probability function ω on L

such that ω(qi|qi) = 1 but that assigns no probability to qj|qj by setting ω(qj) = 0. It is clear that, for all p ∈ [1,∞), we

will have that DC
p
Γ ([Δ, v]) = k

1
p . It is also clear that this is the biggest p-distance for a probabilistic database in PK given

the premises. �

Corollary 16. If F∞
Γ ([Δ, v]) �= ∅ then DC∞

Γ ([Δ, v]) is at most 1.

Next we want to prove that DCp1 and DCp2 (for p1 �= p2) are essentially distinct, by which we mean that the difference

between DCp1 and DCp2 does not reduce only to the (possible) difference in magnitude of the values they assign to a certain

knowledge base in PK but also to the ordering they induce on PK.

Proposition 17. DCp1 and DCp2 induce distinct orderings on PK.

Proof. Let us assume that p1 < p2 and that p1, p2 ∈ [1,∞). Let us consider the set [Δ1, v1] = {v(q|q) = 0}, for q ∈ L. We

will have that DCp1([Δ1, v1]) = DCp2([Δ1, v1]) = 1. Consider now the set

[Δ2, v2] = {v(q1|q1) = 1 − λ, v(q2|q2) = 1 − λ},
for q1, q2 ∈ L.Wewill have thatDCp1([Δ2, v2]) = λ2

1
p1 and thatDCp2([Δ2, v2]) = λ2

1
p2 . First notice that, for allλ ∈ (0, 1],

it is the case that

λ2
1
p1 > λ2

1
p2 .

Notice also that, since p1 ∈ [1,∞), there needs to exist λ ∈ [0, 1] such that

λ2
1
p1 > 1 > λ2

1
p2

and thus such that

DCp1([Δ1, v1]) < DCp1([Δ2, v2])
and

DCp2([Δ1, v1]) > DCp2([Δ2, v2]). �

In simple words, what Proposition 17 tells us is that, for any two probabilistic knowledge bases [Δ1, v1], [Δ2, v2] ∈ PK,

we can have that [Δ1, v1] is more inconsistent than [Δ2, v2] according to DCp1 , for some p1 ∈ [1,∞], but that [Δ1, v1] is
less inconsistent than [Δ2, v2] according to DCp2 , with p1 �= p2.

4.2. Normalized p-distance

In this subsection we introduce the notion of normalized p-distance. In order to do so let us consider [Δ, v] ∈ PK, with

Γ ⊂ Δ and

Δ− Γ = {φ1|θ1, . . . , φk|θk},
for some k ∈ N.

Definition 18. Let p ∈ [1,∞). The normalized p-distance (to consistency) of [Δ, v] with respect to Γ –denoted

DC
p
Γ ([Δ, v])–is defined from DC

p
Γ ([Δ, v]) as follows:

• If DC
p
Γ ([Δ, v]) is finite (i.e., if DCp

Γ ([Δ, v]) �= 1
ε
) then we set

DC
p
Γ ([Δ, v]) = st(DC

p
Γ ([Δ, v]))
k

1
p

+ DC
p
Γ ([Δ, v])− st(DC

p
Γ ([Δ, v])).

• If DC
p
Γ ([Δ, v]) = 1

ε
then we set DC

p
Γ ([Δ, v]) = DC

p
Γ ([Δ, v]).
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The normalized ∞-distance of [Δ, v] coincides with its ∞-distance:

DC
∞
Γ ([Δ, v]) = DC∞

Γ ([Δ, v]).
The normalized p-distance gives us the ratio between the value DC

p
Γ ([Δ, v]) and the maximum value that DC

p
Γ ([Δ, v])

could attain given its cardinality and configuration (i.e., k
1
p , see Proposition 15). Thus, clearly, DC

p
Γ ([Δ, v]) is at most 1. The

normalized p-distance brings into play the size of the knowledge base and gives a better ground to compare the amount of

inconsistency of distinct knowledge bases.

For the next results let us assume that F
p
Γ ([Δ, v]) �= ∅.

Lemma 19. st(DC
p
Γ ([Δ, v])) is continuous and increasing on p, for p ∈ [1,∞).

Proof. The result follows from the fact that, for general �x ∈ Rm andm ∈ N,
‖�x‖p

k
1
p

is continuous and increasing on p. �

For the next proposition let p1, p2 ∈ [1,∞].
Proposition 20. If p1 < p2 then DC

p1
Γ ([Δ, v]) ≤ DC

p2
Γ ([Δ, v]).

Proof. Let us assume that p1 < p2. If DC
p1
Γ ([Δ, v]) ∈ R then the result follows from Lemma 19. Let us assume then that

DC
p1
Γ ([Δ, v]) = t + ε /∈ R and that DC

p2
Γ ([Δ, v]) = t, for some t ∈ R. Let �x ∈ RΓ ([Δ, v]) be a p2-optimal repair of [Δ, v]

(i.e., ‖�x‖p2 = t) but notice that, since
‖�x‖p

k
1
p

is increasing on p, we have that

‖�x‖p1

k
1
p1

≤ ‖�x‖p2

k
1
p2

and thus DC
p1
Γ ([Δ, v]) ≤ DC

p2
Γ ([Δ, v]). �

Most results proved aboutDCp in the previous subsection also hold forDC
p
. In particular, for p1, p2 ∈ [1,∞] and p1 �= p2,

we will also have that DC
p1 and DC

p2 induce distinct orderings on PK and thus that DC
p1 and DC

p2 are essentially distinct

measures in the sense indicated above.

4.3. Examples and some remarks

In this subsectionwe consider some examples (the first one extracted fromΦCB) in order to illustrate somedifferences

in DCp and the p-optimal repairs for distinct values of p. The values we will focus on are the most common when dealing

with p-norms (i.e., 1, 2 and ∞).

Let us consider for our first example the set [Δ, v] ⊂ ΦCB given by the rules

〈D10|S668, 0.8〉, 〈D25|S668, 0.1〉, 〈D70|S668, 0.8〉,
〈D25|D10, 1〉, 〈D25|D70, 1〉

inΦCB, with S668 ∈ S and D10,D25,D70 ∈ D. Let us assume that the rules 〈D25|D10, 1〉 and 〈D25|D70, 1〉 are believed to

be accurate by the modeler and thus set

Γ = {D25|D10,D25|D70}.
We will have that DC1

Γ ([Δ, v]) = 0.7, DC2
Γ ([Δ, v]) � 0.576 and also that DC∞

Γ ([Δ, v]) = 0.35. The normalized

distances will be DC
1
Γ ([Δ, v]) � 0.23, DC

2
Γ ([Δ, v]) � 0.33 and DC

∞
Γ ([Δ, v]) = 0.35.

There is a unique 1-optimal repair in RΓ ([Δ, v]) and it yields a unique modification in the assignment of the conditional

statement D25|S668 by a magnitude of 0.7 (i.e., such optimal repair would consist of the replacement of 〈D25|S668, 0.1〉
for 〈D25|S668, [0.1, 0.8]〉). Notice that, in such repair, the whole weight of the adjustment rests on a single statement in

ΦCB and that, in the lack of knowledge of how reliable or accurate the assignment v is on the distinct statements inΔ− Γ

and in the lack of any other rationality criterion that allows us to discriminate among possible repairs, might not be the

most reasonable repair strategy. Instead, the unique ∞-optimal repair in RΓ ([Δ, v]) offers in that sense a more balanced

approach by inducing an adjustment of magnitude 0.35 in the assignment on each one of the statements in Δ − Γ . The

unique 2-optimal repair inRΓ ([Δ, v]) involves an adjustment ofmagnitude 7
15

in the assignment on the statementD25|S668
and an adjustment of magnitude 7

30
on both D10|S668 and D70|S668. This simple example favours the view that, in the lack

6 ’�’ stands here and throughout for ’approximately’. Like in this case, we sometimes round decimal numbers to two significant figures in order to make

comparisons more easily visualised.
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of knowledge about the reliability of the statements in our knowledge base and in the lack of any other applicable rationality

criterion, large values of p seem to bemore adequatewhen it comes to considering p-optimal repairs for our knowledge base.

For our second example consider

[Δ, v]k = {v(q1|q1) = 1, . . . , v(qk−1|qk−1) = 1, v(qk|qk) = 0},
with q1, . . . , qk ∈ L distinct propositional variables, for k ∈ N. Here we will have that

DC1([Δ, v]k) = DC2([Δ, v]k) = DC∞([Δ, v]k) = 1

and that DC
1
([Δ, v]k) = 1

k
, DC

2
([Δ, v]k) = 1√

k
and DC

∞
([Δ, v]k) = 1. DC

∞
assigns to [Δ, v]k the highest possible

amount of inconsistency in a knowledge base regardless of the cardinality of [Δ, v]k . Examples like this one in which the

repair to restore consistency rests on a small number of statements or on a severe adjustment in a small number of them

brings DC
p
, for big values of p, to assign high amounts of inconsistency regardless of the cardinality of the knowledge base.

Although arguable, it seems reasonable to consider [Δ, v]k1 more inconsistent than [Δ, v]k2 whenever k1 < k2 based on the

simple fact that the former is bigger. On that assumption and in the view of examples like these in which the adjustment of

possible optimal repairs of the knowledge base concentrates on a small number of statements it seems more reasonable to

measure the p-distance to consistency by considering small values of p.

5. Computation of DCp and R

In this section we deal with some issues regarding the computation of DCp (and thus R) for a general knowledge base

[Δ, v] ∈ PK. In particular, we show the connection between its computation and the solution to certain constrained

optimization problems.

Let us consider [Δ, v], withΔ′ = Δ− Γ , Γ ⊂ Δ,

[Γ , v|Γ ] = {v(ψ1|χ1) = [λ1, λ1], . . . , v(ψj|χj) = [λj, λj]}
and

[Δ′, v|Δ′ ] = {v(φ1|θ1) = [η
1
, η1], . . . , v(φk|θk) = [η

k
, ηk]},

for some j ∈ {0} ∪ N and k ∈ N.

Consider the following constrained optimization problem with optimization variable the vector �x ∈ R2k:

minimize ‖�x‖p (1)

subject to the following constraints:

• (η
i
− xi)�rθi · �y ≤ �rθi∧φi · �y ≤ (ηi + xi+k)�rθi · �y for each i ∈ {1, . . . , k},

• λi�rχi
· �y ≤ �rψi∧χi

· �y ≤ λi�rχi
· �y for each i ∈ {1, . . . , j},

• ∑2l

i=1 yi = 1,

• yi ≥ 0 for each i ∈ {1, . . . , 2l},
• �rθ · �y ≥ δ for each φ|θ ∈ Δ for fixed δ ∈ (0, 1],
• xi ≥ 0 for each i ∈ {1, . . . , 2k},
• 0 ≤ η

i
− xi ≤ ηi + xi+k ≤ 1 for each i ∈ {1, . . . , k}.

Thevalueattainedby theoptimizationvariable�x in (1) represents apossible repair of [Δ, v] (i.e., anelement inRΓ ([Δ, v]))
and the vector �y a probability function on L. The value δ is introduced as a lower bound probability threshold for the

conditioning events in the statements inΔ.

We define the constrained optimization problem (2) from (1) by replacing the constraint

�rθ · �y ≥ δ for each φ|θ ∈ Δ for fixed δ ∈ (0, 1],
for the following strict inequality:

�rθ · �y > 0 for each φ|θ ∈ Δ.
Let us denote the constrained optimization problems (1) and (2) by Cp,δΓ ([Δ, v]) and CpΓ ([Δ, v]) respectively. We define

SCp,δΓ ([Δ, v]), the solution to (1), as follows:

SCp,δΓ ([Δ, v]) = inf�y∈D
2l

{‖�x‖p | (�x, �y) ∈ R2k+2l is feasible}.
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By (�x, �y) being feasible we mean that (�x, �y) satisfies the constraints in (1). The collection of all such vectors is called the

feasible set of (1) –see, for example, [5] for more on these concepts and, in general, on the terminology and basic definitions

for constrained optimization problems–. Notice that SCp,δΓ ([Δ, v])may not exist.

We define SCpΓ ([Δ, v]), with respect to the feasible set of (2), in an analogous way.

It is clear from the definition of F
p
Γ ([Δ, v]) that, if FpΓ ([Δ, v]) �= ∅,

SCpΓ ([Δ, v]) = inf F
p
Γ ([Δ, v])

and that an optimal point (�x, �y) ∈ R2k+2l may not exist (i.e., a point (�x, �y) at which SCpΓ ([Δ, v]), provided it exists, is

attained). As is clear, �x in an optimal point (�x, �y) yields a p-optimal repair.

From now we will focus on Cp,δΓ ([Δ, v]) and its computation.

For what follows let us set C = {θ ∈ SL | φ|θ ∈ Δ} and defineΠ[Γ ,v|Γ ] to be the set of probability functions on L that

satisfy [Γ , v|Γ ] (if Γ = ∅ thenΠ[Γ ,v|Γ ] or justΠ coincides with the set of probability functions on L).

Definition 21. We say that C is η-consistent with respect to [Γ , v|Γ ] if there exists a probability function ω ∈ Π[Γ ,v|Γ ] such
that ω(θ) ≥ η for all θ ∈ C.

Definition 22. We say that C is maximally η-consistent with respect to [Γ , v|Γ ] if these two conditions hold:

• For all λ < η we have that C is λ-consistent with respect to [Γ , v|Γ ].
• For all μ > η we have that C is not μ-consistent with respect to [Γ , v|Γ ].
These two definitions are generalizations of the notions of η-consistency and maximal η-consistency introduced in [13]

as measures of consistency of classical propositional knowledge bases.

We will denote the maximal η-consistency of C with respect to our set [Γ , v|Γ ] by mc[Γ ,v|Γ ](C) –if Γ = ∅ then we will

just write mc(C)– and will use the abbreviation ω(C) ≥ η to express the fact that ω(θ) ≥ η for all θ ∈ C. IfΠ[Γ ,v|Γ ] = ∅
then mc[Γ ,v|Γ ] is not defined.

Let us assume now that C is maximally η-consistent with respect to [Γ , v|Γ ]. Notice that it is not generally the case that

there exists a probability function ω ∈ Π[Γ ,v|Γ ] such that ω(C) ≥ η. To see this consider the example where [Γ , v|Γ ] =
{〈p|q, 1

2
〉} and C = {¬q}, for p, q ∈ L. It is clear thatmc[Γ ,v|Γ ](C) = 1 and that there is no probability functionω ∈ Π[Γ ,v|Γ ]

such that ω(C) = 1. However, if Γ = ∅ then it is proved in [13] that mc(C) is a rational number and attained by some

probability function ω on L.

Consider the following constrained optimization problem with optimization variable t ∈ R:

maximize t

subject to the following constraints:

• �rφ · �y ≥ t for each φ ∈ C,

• ∑2l

i=1 yi = 1,

• yi ≥ 0 for each i ∈ {1, . . . , 2l},
• λi�rχi

· �y ≤ �rψi∧χi
· �y ≤ λi�rχi

· �y for each i ∈ {1, . . . , j},
• �rχ · �y > 0 for eachψ |χ ∈ Γ .
Notice that if Γ = ∅ then the problem above is a linear program.

The solution to this problem, if it exists, yields mc[Γ ,v|Γ ](C):

mc[Γ ,v|Γ ](C) = sup
�y∈D

2l

{t | (t, �y) ∈ Rt+2l is feasible}.

Proposition 23. Cp,δΓ ([Δ, v]) has an optimal point for all δ ∈ (0,mc[Γ ,v|Γ ](C)), provided that mc[Γ ,v|Γ ](C) > 0.

Proof. First of all notice that, since mc[Γ ,v|Γ ](C) > 0, the feasible set of Cp,δΓ ([Δ, v]) will not be empty. The existence of

SCp,δΓ ([Δ, v]) follows from the fact that the feasible set is a closed set. �

Notice that the vector �x in an optimal point (�x, �y) ∈ R2k+2l of Cp,δΓ ([Δ, v]) is a repair of [Δ, v] (i.e., �x ∈ RΓ ([Δ, v]))
although, of course, not necessarily p-optimal.

The next propositions state the relation between DC
p
Γ ([Δ, v]) and SCp,δΓ ([Δ, v]).
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Proposition 24. DC
p
Γ ([Δ, v]) = 1

ε
if and only if, for all δ ∈ (0, 1], SCp,δΓ ([Δ, v]) does not exist.

Proof. It follows trivially from the definition of DCp. �

For the next proposition let us assume thatmc[Γ ,v|Γ ](C) > 0. Consider {δn}n∈N a decreasing sequence that converges to

0, with δn ∈ (0,mc[Γ ,v|Γ ](C)) for all n ∈ N, and

� = lim
n→∞ SCp,δnΓ ([Δ, v]).

Proposition 25. If |SCp,δnΓ ([Δ, v])− �| > 0 for all n ∈ N then DC
p
Γ ([Δ, v]) = �+ ε, otherwise DC

p
Γ ([Δ, v]) = �.

Proof. It follows trivially from the definition of the map DCp. �

Corollary 26. If DC
p
Γ ([Δ, v])= � ∈ R then there existsN ∈ N such that, for all n,m≥N, |SCp,δnΓ ([Δ, v])−SCp,δmΓ ([Δ, v])| = 0.

Notice that the constraint functions of the form

(η
i
− xi)�rθi · �y, (ηi + xi+k)�rθi · �y

in (1) for each i ∈ {1, . . . , k} are not linear. That places our problem Cp,δΓ ([Δ, v]) within non-convex optimization grounds

and, unfortunately, there seem to be no effective methods to obtain SCp,δΓ ([Δ, v]) for the general case (see for example [4]

or [5] for more on these issues). Nevertheless, there exist methods to deal with at least small instances of these problems.

Such methods normally take some compromise that could consist, for example, in a simplification of the problem bymeans

of a modification in the constraints and/or the obtention of an approximation to the solution at best.

6. Measuring inconsistency in ΦCB

In the companion paper [12] it was shown that ΦCB is unsatisfiable. A study of the sources of inconsistency was also

carried out and we found that, for a slightly relaxed version of ΦCB given by replacing every rule of the form 〈p|q, η〉 in

it with η ∈ (0, 1) for 〈p|q, [η − 0.01, η + 0.01]〉 7 the number of minimal unsatisfiable subsets is 695. These subsets

happen to be also minimal unsatisfiable subsets of ΦCB itself (i.e., under the natural, point-valued interpretation for the

rules). We actually know the number of minimal unsatisfiable subsets of ΦCB itself is much larger yet not all of them have

been computed so far (we refer to [12] for more on these issues).

On a straightforward reading, one could claim that such a large number of minimal unsatisfiable subsets makes ΦCB

highly inconsistent as each inconsistent subset is an inconsistency. Our notion of p-distance constitutes a graded approach to

measuring inconsistency in probabilistic knowledge bases and gives a very different reading as to how inconsistentΦCB is.

6.1. Measuring DCp(ΦCB)

The computation of DCp for a general knowledge base [Δ, v] ∈ PK is, as we have seen in the previous section, not a

trivial matter. In particular, in order to compute DCp(ΦCB), we will use some heuristics and will take advantage of its simple

structure, as we will shortly show.

Let [Δ, v] ∈ PK be such that, for all φ|θ ∈ Δ, we have that φ, θ ∈ L. We can regard [Δ, v] as a directed graph where the

edges and nodes are given by the conditional statements in Δ (i.e., the conditional statement φ|θ yields the edge directed

from the node θ to the node φ).
For what follows let us consider the collection of real intervals Ir ⊂ I that differs from I in that the end points of its

members are rational (i.e., for [η1, η2] ∈ Ir we will have that η1, η2 ∈ Q).

For the next lemma let [Δ, v] ∈ PKr , where

PKr = {[Δ, v] ∈ PK | v(φ|θ) ∈ I
r for all φ|θ ∈ Δ}.

Lemma 27. [Δ, v] is satisfiable if and only if there exists a model I of [Δ, v].
Proof. That there exists amodel I of [Δ, v] if and only if [Δ, v] is satisfied by a rational probability function is clear.We need

to prove that if a probability function satisfies [Δ, v] then there exists a rational probability function that satisfies [Δ, v].

7 All the degrees of confirmation in the rules ofΦCB contain at most two decimal digits and so these intervals are well defined.
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Let us consider the following linear system with variables the 2l coordinates of the vector �y given by the collection of

inequalities of the form

η�rθ · �y ≤ �rφ∧θ · �y ≤ η�rθ · �y,
for all φ|θ ∈ Δ, with v(φ|θ) = [η, η] ∈ Ir .

Along with these inequalities we also consider the constraints �y ∈ D2l (i.e., �y is a probability function on L) and �rθ · �y > 0

for each φ|θ ∈ Δ.
We assume that this linear system has a solution (i.e., that there exists a probability function that satisfies [Δ, v]) and

thus its solution set is non-empty. Notice that the set of solutions of the system needs to contain rational solutions given

the nature of its linear constraints and the form of the intervals in Ir . Thus we can conclude that if a probability function

satisfies [Δ, v] then there has to exist a rational probability function that satisfies [Δ, v]. �

For the next proposition let [Δ, v] ∈ PK be as follows:

• φ, θ ∈ L for all φ|θ ∈ Δ.
• [Δ, v] is, as a directed graph, acyclic.
• v(φ|θ) ∈ (0, 1) ∩ Q, for all φ|θ ∈ Δ.

Proposition 28. [Δ, v] is satisfiable.
Proof. By Lemma 27 the pair [Δ, v]will be satisfiable if and only if it has a model. We aim at constructing a model of [Δ, v].

Let C = {v(φ|θ) | (φ|θ) ∈ Δ}. By assumption on [Δ, v], C will be a set of rational values. Let Q be the least commom

multiple of the denominators of all the values in C.

For the construction of I we consider first the set of nodes in [Δ, v] that have no parents, when dealing with [Δ, v] as a
graph. Let p be a node in [Δ, v]with no parents.We set a collection ofQ elements for p, labelledDp = {ap1, . . . , apQ }. At the nth
step in the construction of I we select a node q in [Δ, v], with parents q1, . . . , qk (for some k ∈ N) and assume, without loss

of generality, that the sets Dq1 , . . . ,Dqk have been defined at a previous step. We set a collection of Q(
∑k

i=1 |Dqi |) elements,

labelled Dq = {aq1, . . . , aqQ(∑k
i=1 |Dqi

|)}, for q.
We impose some restrictions on the sets of the form Dp, for p ∈ L. We construct I in a way that, for p, q ∈ L, Dp ∩Dq �= ∅

if and only if one of p|q, q|p is inΔ or there exists r ∈ L such that p|r, q|r ∈ Δ. 8 That this can be achieved is clear given the

restrictions on the cardinality of such sets and the fact that v(φ|θ) is at most Q−1
Q

for all φ|θ ∈ Δ.

For p ∈ L, with parents q1, . . . , qk (for some k ∈ N) and sets Dq1 , . . . ,Dqk already defined, we will set Dp to have exactly

|Dqi |v(p|qi) elements of Dqi , for each i ∈ {1, . . . , k}. The elements of Dqi chosen for Dp could also be elements of Dqj , for

j ∈ {1, . . . , i − 1, i + 1, . . . , k}, (depending on whether qi and qj are related inΔ by a conditional statement or not) but of

no other sets thus far defined. That a suitable definition of Dp can be achieved (considering that the sets Dq1 , . . . ,Dqk might

not be pairwise disjoint) is clear given the restrictions on the cardinality of such sets and the fact that 1
Q

≤ v(φ|θ) ≤ Q−1
Q

for all φ|θ ∈ Δ.

We define

DI = ⋃
p∈L

Dp

and vI on L × DI as expected. For p ∈ L and a ∈ DI ,

νI(p, a) =
⎧⎨
⎩

1 if a ∈ Dp,

0, otherwise. �

Proposition 29. DCp(ΦCB) = ε for all p ∈ [1,∞].
Proof. We know from results in [12] that ΦCB is inconsistent and thus that DCp(ΦCB) > 0 for all p ∈ [1,∞] (i.e., at least
ε). On the other hand ΦCB is, when regarded as a graph, acyclic and with nodes in L. Replacing 0 and 1 by any values in

(0, 1) ∩ Q as close as desired to 0 and 1 in rules of the form 〈q|p, 0〉, 〈q|p, 1〉 ∈ ΦCB respectively guarantees satisfiability,

by Proposition 28. Therefore we can conclude that DCp(ΦCB) = ε for all p ∈ [1,∞]. �

Proposition 29 tells us that the amount of inconsistency inΦCB, as measured by DCp, is infinitesimal and thusΦCB is very

close to consistency (i.e., almost consistent).

8 In general, we could impose the condition that distinct sets of the form Dp , for p ∈ L, should have as little domain elements in common as possible.
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By considering the notion of satisfiability taken in [17] (which differs from that based on Definition 3 in that a probability

functionω on Lwithω(θ) = 0 is assumed to satisfy any statement of the form 〈φ|θ,Ω〉, for φ|θ ∈ K andΩ ∈ I) wewould

have thatΦCB is satisfiable (for example, one can consider a probability functionω on L such thatω(¬p1 ∧ · · · ∧ ¬pl) = 1,

which satisfies ΦCB). Thus the amount of inconsistency in ΦCB according to the metric presented in [17] would be zero.

Certainly, in terms of magnitude, there is not much of a difference between the metric presented in [17] and that given by

DCp when it comes to quantifying the amount of inconsistency ofΦCB (in magnitude, such difference is just infinitesimal).

In order to see in more detail the difference between these two approaches (i.e., that in [17] and ours) let us consider a

small fragment ofΦCB, given by the following subset of rules:

Φ = {〈D21|S1022, 1〉, 〈D20|S1022, 0.1〉, 〈D20|D21, 1〉},
with D20,D21 ∈ D and S1022 ∈ S.

Byconsidering thenotionof satisfiabilityderived fromDefinition3Φ isunsatisfiable (actually,Φ is aminimalunsatisfiable

subset) and DCp(Φ) = ε whereas according to the notion of satisfiability in [17]Φ is satisfiable (for example, consider the

probability distribution ω on {D21, S1022,D20} such that ω(¬D21 ∧ ¬D20 ∧ ¬S1022) = 1, which would correspond,

in set theoretical or first order terms, to the empty model). Beyond magnitudes or degrees of inconsistency, it is important

to appreciate the qualitative difference between these two approaches for our particular example. DCp acknowledges the

unsatisfiability of Φ (and, we believe, modelers would agree in that Φ should be regarded as unsatisfiable and thus as

non-desirable) whereas the approach in [17] does not.

Let us assume now that the conditional D20|D21 is regarded as well evaluated (i.e., that 〈D20|D21, 1〉 is regarded by

the modeler as a reliable piece of information). We will have in this case that DC1
Γ (Φ) = 0.9 (with normalized measure

DC
1
Γ (Φ) = 0.3), where Γ = {D20|D21}, and thus that there is a considerable difference between our approach and that of

[17] also in terms of magnitude in this particular example.

7. Conclusion

Wehave presented and analyzed a family ofmeasures (p-measures) aimed at helping themodeler in evaluating inconsis-

tency in probabilistic knowledge bases. Unlike most approaches to measuring inconsistency in the literature, ours is graded

in the sense that we take into account minimal adjustments in the degrees of certainty (i.e., probabilities) that make the

knowledge base consistent. We have also seen that the computation of the measures here presented yield possible repairs

to bring or restore consistency in such knowledge bases.

There is stillmuch left tobedone in relation to the familyofmeasurespresentedhere. Inparticular, adeeperunderstanding

of the differences among distinct p-measures (and, by extension, among the possible repairs they yield), both on theoretical

and practical considerations, would be desirable. This task is left for future work and, hopefully, will constitute the core of a

future paper.

References

[1] K. Adlassnig, Fuzzy set theory in medical diagnosis, IEEE Transactions on Systems, Man and Cybernetics 16 (2) (1986) 260–265.

[2] K. Adlassnig, G. Kolarz, W. Effenberger, H. Grabner, CADIAG: approaches to computer assisted medical diagnosis, Computers in Biology and Medicine 15
(1985) 315–335.

[3] K. Adlassnig, G. Kolarz, W. Scheithauer, H. Grabner, Approach to a hospital-based application of a medical expert system, Medical Informatics 11 (3) (1986)
205–223.

[4] D. Bertsekas, Nonlinear Programming, Athena Scientific, 2009.
[5] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.

[6] J.S. Chun Lam, D.H. Sleeman, J.Z. Pan, W. Weber Vasconcelos, A fine-grained approach to resolving unsatisfiable ontologies, Journal of Data Semantics 10

(2010) 62–95.
[7] A. Ciabattoni, T. Vetterlein, On the fuzzy (logical) content of CADIAG-2, Fuzzy Sets and Systems 161 (14) (2010) 1941–1958.

[8] R. Goldblatt, Lectures on the hyperreals, .An Introduction to Nonstandard Analyses, Graduate Texts in Mathematics, vol. 188, Springer, 1998
[9] A. Hunter, S. Konieczny, Measuring inconsistency throughminimal inconsistent sets, in: G. Brewka, J. Lang (Eds.), Eleventh International Conference on the

Principles of Knowledge Representation and Reasoning, AAAI Press, 2008, pp. 358–366.
[10] A.Hunter, S. Konieczny, Approaches tomeasuring inconsistent information. Inconsistency tolerance, LectureNotes in Computer Science, vol. 3300, Springer,

2005, pp. 189–234.

[11] A. Kalyanpur, B. Parsia, E. Sirin, B.C. Grau, Repairing unsatisfiable concepts in OWL ontologies, in: Y. Sure, J. Domingue (Eds.), Third European SemanticWeb
Conference. The Semantic Web: Research and Applications. Lecture Notes in Computer Science, vol. 4011, Springer, 2006, pp. 170–184.

[12] P. Klinov, B. Parsia, D. Picado Muiño, The consistency of the CADIAG-2 knowledge base: a probabilistic approach, in: C.G. Fermüller, A. Voronkov (Eds.),
Logic for Programming, Artificial Intelligence and Reasoning – 17th International Conference, Lecture Notes in Computer Science, vol. 6397, Springer, 2010,

pp. 432–446.
[13] K.M. Knight, Measuring inconsistency, Journal of Philosophical Logic 31 (2002) 77–98.

[14] H. Leitich, K. Adlassnig, G. Kolarz, Evaluation of two different models of semiautomatic knowledge acquisition for the medical consultant system CADI-

AG-2/RHEUMA, Artificial Intelligence in Medicine 25 (2002) 215–225.
[15] D. Picado Muiño, The (probabilistic) logical content of CADIAG-2, in: J. Filipe, A. Fred, B. Sharp (Eds.), Second International Conference on Agents and

Artificial Intelligence, Artificial Intelligence, vol. 1, Valencia, Spain, 2010, pp. 28–35.
[16] R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence 32 (1987) 57–95.

[17] M.Thimm,Measuring inconsistency inprobabilisticknowledgebases, Twenty-FifthConferenceonUncertainty inArtificial Intelligence,AUAIPress,Corvallis,
Oregon, 2009, pp. 530–537.

[18] L. Zadeh, Fuzzy logic and approximate reasoning, Synthese 30 (1975) 407–428.


	Measuring and repairing inconsistency in probabilistic knowledge bases
	1 Introduction
	2 Preliminary definitions and notation
	3 The knowledge base of CADIAG-2
	4 Measuring inconsistency: p-distance
	4.1 Properties of DCp
	4.2 Normalized p-distance
	4.3 Examples and some remarks

	5 Computation of DCp and R
	6 Measuring inconsistency in CB
	6.1 Measuring DCp(CB)

	7 Conclusion
	References


