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A B S T R A C T

Chemokines are chemotactic cytokines whose main function is to direct cell migration. The chemokine
network is highly complex and its deregulation is linked to several diseases including immunopathology,
cancer and chronic pain. Chemokines also play essential roles in the antiviral immune response. Viruses
have therefore developed several counter strategies to modulate chemokine activity. One of these is the
expression of type I transmembrane or secreted proteins with the ability to bind chemokines and
modulate their activity. These proteins, termed viral chemokine binding proteins (vCKBP), do not share
sequence homology with host proteins and are immunomodulatory in vivo. In this review we describe
the discovery and characterization of vCKBP, explain their role in the context of infection in vivo and
discuss relevant novel findings.
ã 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents lists available at ScienceDirect

Cytokine & Growth Factor Reviews

journal homepage: www.else vie r .com/ locate / cytogfr
1. Introduction

1.1. Chemokines

Chemokines are small, basic cytokines that orchestrate the
migration of leukocytes during development, homeostasis, tissue
damage and infection [1]. Deregulation of chemokine function
plays a key role in cancer development, immunopathologies and
induction of pain [2,3]. Chemokines are secreted, with the
exception of CXCL16 and CX3CL1, which are transmembrane
proteins and can be shed following cleavage (reviewed in [4]).
Interaction with glycosaminoglycans (GAGs) on the cell surface is
required for chemokine retention on the endothelium, presenta-
tion to the chemokine receptor and thereby activity in vivo [5,6].
Binding of the chemokine to its receptor at the leukocyte plasma
membrane triggers signalling cascades leading to a coordinated
reorganization of the cytoskeleton, activation of adhesion mole-
cules and leukocyte extravasation [7] (Fig. 1). Chemokines can
interact with both GAGs and the chemokine receptor simulta-
neously through distinct domains, although for some chemokines
these domains may overlap [8,9]. Chemokine receptors are
7 transmembrane G protein-coupled receptors (GPCR) that signal
through heterotrimeric G proteins, normally of the Gai-type. There
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are, however, atypical chemokine receptors that act as chemokine
scavengers and do not induce G protein signalling [10]. For a
detailed description of the nature and nomenclature of atypical
chemokine receptors see the report by Bachelerie and colleagues
[11].

Chemokines form the largest family of cytokines, with
approximately 50 chemokines and 20 chemokine receptors
discovered to date [10]. Most receptors interact with more than
one chemokine and most chemokines use more than one receptor
[10]. This peculiarity led to the assertion that there is a high level of
redundancy in the chemokine network. This notion is partially
supported by failure of therapeutic strategies aimed at blocking
single chemokine activity and by the use of knock out and
transgenic mouse models. However, several sets of data indicate
that there is a certain degree of selectivity in the chemokine
network. This selectivity seems to be achieved by (i) biased
signalling; (ii) differential interaction with GAGs; (iii) effect of GAG
binding on chemokine oligomerization and (iv) chemokine–
chemokine interactions [5,12–15].

Chemokines are classified as homeostatic, inflammatory or dual
function according to their main functional activity and as CXC, CC,
C, and CX3C according to structural criteria based on the relative
position of their N-terminal cysteines [13,16]. Inflammatory
chemokines are essential in controlling the recruitment of
leukocytes during inflammation whereas homeostatic chemokines
are involved in directing the migration of leukocytes during
development, adaptive immune response, and in peripheral
healthy tissues [13]. Homeostatic chemokines seem to be less
promiscuous and more conserved between species than
der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Viral chemokine binding proteins (vCKBP) interfere with chemokine-mediated migration of leukocytes to the site of infection or tissue damage. Leukocytes rolling on
the surface of endothelial cells detect GAG-bound chemokines. The interaction of the chemokine with the GPCR of the rolling leukocyte activates signalling cascades in the
leukocyte. Arrest, crawling and transmigration depend also on adhesion molecules, mainly integrins and selectins. The process terminates with the para- or transcellular
migration of the leukocyte to the site of injury or infection [7]. Inlet: vCKBP modulate chemokine activity through interacting with the GPCR-, GAG-binding domain of the
chemokine or both (in bold). Examples for both types of vCKBP are indicated. Interaction with the GPCR-binding site results in inhibition of chemokine activity in vitro and in
vivo. Binding to the GAG-binding site of the chemokine may affect chemokine retention at the cell surface and generation of a chemotactic gradient inhibiting chemokine
activity in vivo. An exception to this rule is HSV gG, which interacts through the GAG-binding domain of the chemokine and enhances chemokine activity in vitro and in vivo.
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inflammatory chemokines, probably reflecting the evolutionary
pressure exerted on the latter by different types of pathogens [13].
Dual function chemokines include those that share functions of
both inflammatory and homeostatic chemokines [16]. Chemokine
receptors show a higher degree of conservation between mammals
than their ligands and they are classified according to the
chemokine group they interact with [17].

Despite differences in sequence, chemokines share some
structural features: a long, flexible N-terminal loop followed by
a three-stranded b sheet and a C-terminal a helix [18]. Recently,
the structure of chemokines bound to their receptors was solved
[19,20]. These studies reported the crystal structure of human
CXCR4 complexed with the Kaposi’s sarcoma-associated herpes-
virus (KSHV) chemokine vMIP-II [20], and the structure of human
cytomegalovirus (HCMV) chemokine receptor US28 bound to
CX3CL1 [19]. In both cases the core of the chemokine interacts with
the receptor N-terminus whereas the chemokine N-terminal
residues bind to the transmembrane pocket of the receptor
[19,20]. The predicted model suggests a two-step interaction of the
chemokine with its receptor, triggering conformational changes in
the latter leading to insertion of the N-terminal residues of the
chemokine between the transmembrane helices [21].

1.2. Viral chemokine binding proteins (vCKBP)

Due to the essential role of chemokines in the antiviral
response, some viruses express proteins that are able to interfere
with the host chemokine network, modulating its activity and
thereby interfering with leukocyte migration (Table 1). To do so
they express viral chemokine receptors, viral chemokines and
soluble receptors interfering with extracellular chemokines [22].
Viral chemokine receptors and viral chemokines share high degree
of identity with host proteins suggesting that the virus has
acquired them from the host and modified them in a process
termed viral piracy (reviewed in Ref. [22]). However, in the case of
the soluble receptors, also known as vCKBP, there is very little or no
sequence identity with host proteins. Moreover, the amino acid
homology between the distinct vCKBP in different viruses is very
low or non-existent [23]. Despite this, the crystal structures of
several vCKBP show common structural patterns [24,25], probably
due to parallel evolution as suggested by Lubman and Fremont
[24].

All known vCKBP have been so far discovered in members of the
Pox and Herpesviridae families. Similar to chemokines, most vCKBP
are secreted proteins but some are also structural proteins present
at the viral envelope or at the plasma membrane of infected cells
[26–29]. Also, like the chemokines, some vCKBP interact with GAGs
and this seems to be relevant for their function [30–33]. While the
majority of known vCKBP inhibits chemokine activity in vitro or in
vivo, a vCKBP with the ability to potentiate chemokine function
was found recently in herpes simplex virus type 1 and 2 (HSV-1
and HSV-2, respectively) [27]. In the following paragraphs we
discuss the properties of the different vCKBP groups in more detail.

2. Discovery and characteristics of vCKBP

2.1. vCKBP that inhibit chemokine activity

All but one of the vCKBP described to date inhibit chemokine
activity in vitro or in vivo. To inhibit chemokine activity, vCKBP bind
to the chemokine through either its chemokine receptor- or its
GAG-binding pocket or both, thereby impairing the interaction
between the chemokine and its receptor or GAGs (Fig. 1).
Impairment of GPCR binding can be functionally addressed in
vitro by performing classical transwell assays. However, when the
interaction takes place exclusively through the GAG-binding
pocket of the chemokine, this type of assay may not provide
information regarding the inhibitory properties of the vCKBP.
Nevertheless, both types of binding impairment may result in
inhibition of chemotaxis in vivo. The known vCKBP are described



Table 1
Interactions and effects of vCKBP.

vCKBP Virus Interacting partners Targeted
chemokine
domain

Effect of D-vCKBP virus in vivo References

Inhibitory
vCKBP

35-kDa Orthopoxviruses:
Camelpox, CPXV,
Rabbitpox, Racoonpox,
VACV Lister, VARV

CC chemokines, CXCL1 and CXCL8
(low affinity), GAGs (MYXV M-T1
(canonical motif)

GPCR binding
domain

chemotaxis", immunopathology",
viral replication at low MOI",
Leukocyte infiltration",

[30,34–39,41–
43,81–83]

T1 Leporipoxviruses:
MYXV, Shope fibroma
virus; (homolog to 35-
kDa)

M-T7 Leporipoxvisues:
MYXV

IFN-g; CXC, CC, C chemokines GAG binding
domain

Viral pathogenicity#, viral spread#,
leukocyte infiltration"

[45–48]

ORFV-CKBP Parapoxviruses:
ORFV

CC chemokines, CL1 GPCR binding
domain

Not tested [50–52]

Crm SECRET
domain

Orthopoxviruses:
CrmB (VARV, CPXV),
CrmD (CPXV, ECTV),

CC, CXC Chemokines, CrmB: CL1
(low affinity), CrmD: CX3CL1 (low
affinity)

GPCR binding
domain

Virulence# [53,55,84]

SCP Orthopoxviruses:
CPXV (SCP-1, V128),
ECTV(E12, E184), VACV
(B7R)

CC, CXC chemokines GPCR binding
domain

Lesion size# [53,86]

M-T2C-
terminal
domain
(predicted)

Leporipoxvisues:
MYXV (CrmB structural
homolog)

Chemokine binding predicted but
not tested, except for CCL5 (no
interaction)

GPCR binding
domain
(predicted)

Virus highly attenuated [47,85]

A41
E163

Orthopoxviruses:
VACV (A41)
ECTV (E163)

Some CC chemokines, CXCL9,
CXCL10, CXCL11 (Weak
interaction),
GAGs (canonical motif) for E163

GAG binding
domain

A41: Leukocyte infiltration", viral
clearance", CD8+T-cell response"
E163: Not tested

[31,56–58]

M3 Gammaherpesvirinae:
MHV-68

C, CC, CXC, CX3C chemokines GPCR binding
domain and GAG
binding domain

C57BL/6: Attenuation in CNS,
altered lymphoid infiltrate
BALB/c: viral load#, B-cell
activation#
Wood mice: chemokine activity#,
lymphoid tissue (iBALT, splenic
follicles)# Latency#

[59–62,80,87–89]

R17 Gammaherpesvirinae:
RHVP

C, CC chemokines, GAGs
(canonical BBXB motif)

GPCR binding
domain

Not tested [24,32]

pUL21.5 Betaherpesvirinae:
HCMV

CCL5, others not tested GPCR binding
domain

Not tested [65]

gG Alphaherpesvirinae:
EHV-1, BHV-1, BHV-5,
FeHV-1, ILTV, PRV

C, CC, CXC chemokines (different
set of chemokines depending on
the virus)

GPCR binding
domain and GAG
binding domain

Leukocyte infiltration", Immuno-
pathology"

[26,27,68–73,91]

Enhancing
vCKBP

gG Alphaherpesvirinae:
HSV-1 and HSV-1

CC, CXC chemokines,
neurotrophic factors, GAGs (non-
canonical motif)

GAG binding
domain

HSV-1: viral replication#
HSV-2: not tested

[27,33,78,92,93,95]
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below, starting with those expressed by poxviruses followed by
those found in herpesviruses. In both cases they appear in
chronological order of discovery.

2.1.1. Ortho and leporipoxvirus 35-kDa/T1
Most poxviruses from the Orthopoxvirus or Leporipoxvirus

genera express a protein with the ability to interact with CC
chemokines [34–36]. This vCKBP expressed by orthopoxviruses is
termed 35-kDa whereas in leporipoxviruses is termed T1.
Collectively, these two proteins are called viral CC chemokine
inhibitor (vCCI) because they target nearly exclusively CC chemo-
kines. The binding activity was initially discovered by performing
crosslinking experiments with radio-iodinated chemokines and
supernatants from cells infected with several viruses or by the use
of surface plasmon resonance (SPR) with purified protein. Binding
activities were found in the orthopoxviruses camelpox, cowpox
(CPXV), rabbitpox, raccoonpox, vaccinia virus (VACV) strain Lister,
variola virus (VARV) and the leporipoxviruses myxoma virus
(MYXV) and Shope fibroma virus [34–36]. Despite the low amino
acid sequence identity (40% between T1 and 35-kDa), a study
comparing 35-kDa from VACV Lister strain and T1 from MYXV
showed that they share similar binding and functional properties
[37]. Binding to CC chemokines is of high affinity and specific since
members of other chemokine subfamilies are not targeted by 35-
kDa, with the exception of low affinity binding to CXCL1 and CXCL8
[35–38]. This selectivity is probably due to the presence of
conserved epitopes in the CC chemokines [39]. Interaction with CC
chemokines results in inhibition of chemokine activity in vitro and
in vivo through impairment of the chemokine-GPCR interaction
[35–37,40]. The chemokine residues responsible for GPCR interac-
tion are shared with the vCKBP as shown using CCL2 mutants
[41,42]. Structural and site-directed mutagenesis studies have
shown that VACV 35-kDa b-sheet II binds to the N-terminal region
and residues within the 20’s region and 40’s loop of the chemokine
[43]. Apart from binding chemokines, MYXV T1 (M-T1) also binds
to cell surface GAGs through basic residues located in its
C-terminal domain, an ability not present in VACV 35-kDa [30].
M-T1 contains two canonical GAG-binding motifs, XBBXBX and
XBBBXXBX where B indicates a basic residue and X any amino acid,
characteristic of heparin-binding proteins [44]. This permits
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M-T1 to bind simultaneously GAGs and chemokines, probably
inhibiting chemokine activity in the proximity of infected cells in
vivo [30].

2.1.2. Myxoma virus M-T7
The discovery of the second vCKBP expressed by leporipoxvi-

ruses came following the finding that MYXV lacking expression of
M-T7, a protein that binds and inhibits IFN-g [45], had higher
leukocyte infiltration in the site of virus replication in vivo [46].
Later, the secreted M-T7 was shown to act as a broad range binding
protein of CXC, CC and C chemokines through the chemokine GAG-
binding site [47]. M-T7 probably disrupts the GAG-chemokine
interaction required for chemokine activity in vivo [47]. Binding to
chemokines and IFN-g seems to occur through overlapping or
neighbouring sites in M-T7 [47], making it difficult to address each
activity independently in vivo. However, since the IFN-g activity is
rabbit-specific whereas M-T7 binds chemokines of different
species [47,48], the relevance of chemokine inhibition was proven
in several in vivo models using rodents [40,49].

2.1.3. The orf virus CKBP
The only vCKBP discovered to date in a poxvirus belonging to a

genus other than Orthopoxvirus or Leporipoxvirus was described in
orf virus (ORFV), a member of the Parapoxvirus genus. This vCKBP
was discovered due to sequence homology of ORFV with
granulocyte–macrophage colony-stimulating factor/IL-2 inhibito-
ry factor protein [50]. This sequence encodes a vCKBP that, despite
Fig. 2. Two possible outcomes of vCKBP-GAG interactions. (A, B) Certain viruses express 

functional relevance of vCKBP-GAG interaction is not well characterized. However, depen
inhibit chemotaxis: Some vCKBP that interact with the chemokine through its receptor-bi
chemokine is thereby retained in the cell surface and cannot interact with the GPCR at t
spread to the neighbouring cells. (B) vCKBP that enhances chemotaxis: HSV gG is express
domain following proteolytic cleavage (for HSV-2). Both transmembrane and secreted gG
GAG-binding domain of the chemokine and results in potentiation of chemokine activ
concentration of the chemokine in the proximity of the GPCR, modifying its activity an
subsets of leukocytes or it could modify the nature of the infiltrating leukocytes, damp
low sequence identity to the 35-kDa/T1 family of vCKBP, binds CC
chemokines with high affinity as shown by SPR [50]. However, its
binding range is wider, being also able to interact with CL1 [50].
ORFV-CKBP inhibits chemokine-induced calcium mobilization in
vitro [50] and chemotaxis in vitro and in vivo in an LPS-induced
inflammation model [51,52]. The mechanism of action involves
interaction with the receptor-binding site of the chemokine [50].

2.1.4. Orthopoxvirus SECRET domain
Most poxviruses express soluble receptors of TNF termed

cytokine response modifiers (Crm) [53]. There are four Crms
(CrmB-E) with the ability to bind to and inhibit TNF through a
conserved N-terminal, cysteine-rich domain, which is similar to
the cellular TNF receptor [54]. Interestingly, CrmB and CrmD have a
C-terminal domain of unknown function and with no sequence
similarity to host proteins. The work by Alejo and coworkers
elegantly showed that this C-terminal domain was able to bind
chemokines. They termed this novel domain SECRET for smallpox
virus-encoded chemokine receptor [53]. Both VARV CrmB and
ectromelia virus (ECTV) CrmD can bind simultaneously TNF and
chemokines and inhibit their functional activities in vitro making
these Crms excellent immunomodulatory tools. The SECRET
domain is also present in other poxvirus proteins termed
SECRET-containing proteins (SCP) that lack the TNF-binding
domain. There are 3 SCP described in poxviruses, with some
viruses expressing more than one. CPXV CrmB and SCP-1, VARV
CrmB, and ECTV CrmD inhibit chemokine activity [53]. CrmB,
vCKBP that modulate chemokine activity and have also the ability to bind GAGs. The
ding on the nature of the vCKBP, at least two scenarios are possible. (A) vCKBP that
nding site can bind to GAGs at the surface of the infected and neighbouring cells. The
he plasma membrane of the leukocyte, inhibiting chemotaxis and facilitating virus
ed as a type I transmembrane protein (for HSV-1) that sheds the secreted N-terminal

 interact with chemokines. Interaction with the chemokine takes place through the
ity. HSV gG can simultaneously bind to the chemokine and GAGs, increasing the
d potentiating chemokine function. This could facilitate the infection of particular
ening the local immune response. None of these hypotheses have been tested yet.
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CrmD and the analyzed SCP (CPXV V218, ECTV E12 and E184) bind a
similar subset of chemokines from the CXC and CC subfamilies
with nanomolar affinities [53]. CrmB can also interact with CL1 and
the CrmD SECRET domain also binds CX3CL1 with low affinity, as
shown in a study solving the crystal structure of the complex [55].
The fact that several poxviruses express more than one vCKBP
targeting similar chemokines points to the relevance of these
chemokines in their viral cycle. Further characterization of the
different proteins in vivo is required to decipher the reasons of such
an apparent redundancy.

2.1.5. Orthopoxvirus A41
A secreted protein of 30 kDa, A41, expressed by orthopoxviruses

has the ability to bind chemokines. Although its immunomodula-
tory role was clear from previous studies [56,57], its role as a vCKBP
was not discovered until 2008. An initial report showed that
A41 from VACV Western Reserve (WR) was not required for in vitro
replication but played a role in pathogenesis [56] (see below). In
that report, a role for A41 in inhibiting leukocyte migration in vivo
was postulated. However, despite these results, the use of
recombinant protein could not demonstrate the interaction of
A41 with a limited number of chemokines by SPR [56]. Weak
interaction with CXCL9, CXCL10 and CXCL11, the ligands of CXCR3,
was observed although chemotaxis induced by these ligands was
not inhibited by A41 [56]. Later, a more extensive chemokine
screening showed that VACV A41 interacts with a limited number
of CC chemokines [58]. Similarly, the ECTV E163 protein, an
ortholog of VACV A41, binds a limited number of CC and CXC
chemokines with high affinity [31]. The interaction of the
A41 family of vCKBP with chemokines takes place through the
GAG-binding domain of the chemokine [31,58]. Therefore, as
expected, A41 does not inhibit chemokine migration in transwell
assays since the contribution of GAG-binding to chemokine
activity cannot be measured with this type of assay. However,
previous results [56,57] suggest that it does so in vivo, probably by
disrupting chemokine retention and presentation by GAGs. ECTV
E163 can also interact with GAGs providing the possibility of vCKBP
retention, and disruption of chemokine activity in the proximity of
the infected cells [31] (Fig. 2).

2.1.6. Murine gammaherpesvirus 68 M3
The first vCKBP described in herpesviruses was M3, a 44-kDa

secreted glycoprotein, expressed by the gammaherpesvirus
murine herpesvirus 68 (MHV-68) [59,60]. M3 is a broad-spectrum
vCKBP, interacting with high affinity with members of all four
chemokine families although the affinities for CXC chemokines are
lower compared with those for others, suggesting still some kind of
specificity [59,60]. M3 blocks receptor binding by interacting with
the N-terminus of the chemokine [59,61] and inhibits chemokine-
mediated calcium mobilization and chemotaxis in vitro [59–61].
Further characterization revealed that M3 is also able to interact
with the GAG-binding site of the chemokine and displace
chemokines already bound to heparin [62]. These results indicate
that M3 could inhibit also the formation of GAG-dependent
chemokine gradients in vivo. Due to its broad binding activity,
M3 has been widely used as a tool to decipher the role of the
chemokine network during homeostasis and in disease models
[63,64].

2.1.7. Human cytomegalovirus pUL21.5
HCMV, a betaherpesvirus containing the largest double

stranded DNA genome among human viruses, expresses
pUL21.5, a small secreted protein with high affinity for human
CCL5 [65]. HCMV is a nearly ubiquitous pathogen that establishes
latency in cells of the myeloid lineage. HCMV does not cause
serious illness in healthy individuals but is a serious threat for
immunocompromised patients, such as transplant recipients, and
for developing fetuses or newborns. The interaction between
pUL21.5 and CCL5 inhibits binding of the chemokine to its receptor,
probably inhibiting migration, although this was not formally
proven [65]. As only a small number of chemokines were included
in the binding experiment it is still not clear whether this protein
can bind chemokines other than CCL5.

2.1.8. Rodent herpesvirus Peru R17
The protein expressed by open reading frame 17, R17, of the

gammaherpesvirus rodent herpesvirus Peru (RHVP), is a novel
vCKBP [32]. R17 interacts with both CC and C chemokines with
nanomolar affinity, but not with CX3C and the 6 CXC chemokines
tested by SPR. R17 blocks chemokine-induced chemotaxis and
calcium influx in vitro probably through inhibition of chemokine
interaction with its receptor [32]. Interestingly, R17 enhances
chemokine binding to cell surface GAGs through a simultaneous
interaction with both chemokines and GAGs. Interaction of
R17 with GAGs takes place through two consensus BBXB motifs
not involved in chemokine binding [32]. These two sets of results
indicate that R17 acts similarly to M-T1, interacting with plasma
membrane GAGs to inhibit chemokine activity in the proximity of
infected cells [30] (Fig. 2).

2.1.9. Glycoprotein G of animal alphaherpesviruses
In alphaherpesviruses so far only one vCKBP has been

identified, glycoprotein G (gG), encoded by the US4 ORF [28].
The gene encoding gG is present in most human and animal
alphaherpesviruses with the notable exceptions of varicella zoster
virus (VZV) and Marek’s disease virus [66,67]. Chemokine binding
activity was detected in the supernatant of cells infected by several
animal alphaherpesviruses including equine herpesvirus 1
(EHV-1), bovine herpesvirus 1 and 5, and shown to correspond
to gG [28]. Further reports showed similar activity for the gG of
Felid herpesvirus 1 (FeHV-1), infectious laryngotracheitis virus
(ILTV) and pseudorabies virus (PRV) [26,68,69]. The interaction of
gG with CC, CXC and C chemokines is of high affinity as shown by
SPR [26,28,68,69]. However, there is selectivity in the interaction
with chemokines since not all the gG proteins interact with the
same chemokines or members of the same chemokine subfamily.
gG expressed by animal alphaherpesviruses inhibits chemokine
activity in vitro [26,28,68–70] and in vivo as shown for EHV-1, ILTV
and PRV [27,70–72] by blocking the interaction of the chemokine
with its receptor [26,28,69]. Similar to MHV-68 M3, gG can also
interact with the GAG-binding domain of the chemokine probably
inhibiting gradient formation and chemokine presentation to the
chemokine receptor in vivo [28,69]. The fact that gG from EHV-
1 but not EHV-4 binds chemokines permitted the identification of
the gG residues involved in chemokine interaction [73]. The
hypervariable region of EHV-1 gG is required for chemokine
interaction and N-glycosylation is essential for inhibitory activity
[73]. For other alphaherpesviruses no binding or functional
domains in gG have been characterized so far.

An interesting property of alphaherpesvirus gG compared to
other vCKBP is that it is a type I transmembrane protein that sheds
a secreted domain following proteolytic cleavage. This does not
apply to HSV-1 gG, which is not secreted [74]. Most experiments
regarding the chemokine binding activity of gG have been
performed with the secreted form. However, transmembrane gG
also binds chemokines at the surface of the cell [26–28] and, at
least for FeHV, also on the viral envelope [29]. The functional
relevance of chemokine interaction in these settings is unknown. It
has been proposed that transmembrane gG may act as a
chemokine sink or may signal following chemokine interaction
[26], although there are no results to prove either hypotheses.
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Chemokine-gG interaction at the viral envelope of FeHV did not
play a role in the infection of feline kidney cells [29].

2.2. vCKBP that enhance chemokine activity

The vCKBP described so far inhibit chemokine activity by
preventing formation of the chemokine gradient or blocking
receptor interaction. Interestingly, in contrast to this, the vCKBP gG
encoded by the human alphaherpesviruses HSV-1 and HSV-2, has
been shown to enhance chemokine activity in vitro and in vivo [27].
Both proteins bind a limited number of chemokines with high
affinity through their GAG-binding pocket and enhance the activity
of hCXCL12-b and hCXCL13 in vitro and hCXCL12-a and hCCL28 in
vivo. Interaction with the chemokine is required for this activity
since gG does not have chemotactic properties when used alone or
together with a chemokine not bound by gG [27]. HSV gG is also
able to interact with GAGs [33], despite gG lacking canonical GAG-
binding motifs. Binding to GAGs results in higher level of
chemokine localized in the proximity of the chemokine receptor,
indicating that gG can interact with GAGs and chemokines
simultaneously [33] (Fig. 2). The mechanism of action of HSV
gG also involves modification of receptor localization at the plasma
membrane, clustering, signalling and internalization [27,33]. The
fact that HSV gG enhances chemotaxis is intriguing since one
would expect that viral proteins would aim at inhibiting chemo-
kines due to their antiviral role. However, enhancing leukocyte
migration can also be pro-viral depending on the specific
requirements in the viral life cycle as other viruses have been
shown to express viral chemokines with agonist activity that
enhance leukocyte migration. Examples include KSHV vCCL1 and
vCCL2 [75,76]. Most of these viruses have the ability to infect
leukocytes whereas this is not a property of HSV, with the
exception of dendritic cells whose infection results in impairment
of dendritic and T cell activity [77]. In this regard, it is important to
recall that chemokine receptors are not limited to leukocytes. They
are also expressed in epithelial cells and neurons, two cell types
that are essential in HSV biology and pathogenesis. The modulation
of chemokine activity through GPCR signalling could play a role in
these cellular settings, facilitating infection of epithelial cells or
neurons. In this context HSV gG is a structural protein present at
the viral envelope. Whether it binds chemokines like FeHV-1 gG
and enhances their activity in this setting is currently unknown.
However, one could envisage that the interaction of the virion with
chemokines could play a role during cell entry through enhancing
the activation of GPCR-dependent signalling pathways, modulat-
ing them to benefit viral gene expression and replication.
Furthermore, alphaherpesviruses establish latency in neurons
and this is required for their in vivo persistence and pathogenesis.
Interestingly, HSV-1 and HSV-2 gG binding activity is not limited to
chemokines. They also bind neurotrophic factors including nerve
growth factor (NGF). However, only HSV-2 gG enhances NGF
activity [78]. Whether this activity has any relevance in the
infection of particular subsets of neurons deserves further
investigation.

2.3. vCKBP interaction with GAGs

As mentioned above some vCKBPs also show high affinity for
GAGs, underscoring the relevance of these polysaccharides in
chemokine activity. Interestingly, this has been shown both for
inhibitory vCKBP that interfere with GPCR or GAG interaction such
as RHVP R17, ECTV E163 and MYXV M-T1, and for a potentiating
vCKBP, gG of HSV [30–33]. Consensus GAG-binding motifs are
present in chemokines and also in some vCKBP such as RHVP R17,
ECTV E163 and MYXV M-T1 [30–32]. Other vCKBP that interact
with GAGs such as HSV gG, do not contain known canonical GAG-
binding sites. Therefore, interaction with GAGs must take place
through other motifs or through the generation of basic stretches
in their quaternary structure. M-T1, R17 and HSV gG can interact
simultaneously with chemokines and GAGs [30,32,33]. It is
predicted that GAG-binding permits inhibitory vCKBP to act locally
in the proximity of the infected cells, facilitating virus spread
(Fig. 2). In case of potentiating vCKBP HSV gG, binding to GAGs may
facilitate the interaction of the viral protein with the plasma
membrane allowing it to increase the concentration of the
chemokine in the proximity of the chemokine receptor. This,
together with its ability to modulate the biology of the chemokine
receptor could potentiate chemokine activity [33] (Fig. 2). The
possible benefit of chemokine potentiation for HSV is discussed in
Section 2.2.

2.4. Structural features of vCKBP

The crystal structure of several vCKBP, alone or complexed with
chemokine, has been solved. A thorough analysis of these
structures helps understanding the molecular mechanism of
action of vCKBP and how such a divergence in amino acid
sequence is able to result in proteins with similar activity. Due to
space constraints only a few important considerations are included
here. The reader is referred to relevant manuscripts and references
therein for further insight [24,25]. The current knowledge so far
leads to the conclusion that several poxviral immunomodulatory
proteins share a common fold consisting of a globular b-sandwich
formed from two nearly parallel b sheets connected by loops [25].
This fold has not been previously observed in prokaryotic or
eukaryotic proteins [25]. Proteins containing this structure
signature include 35-kDa [79], A41 [58], SECRET [55] and it is
predicted to be present in a large number of poxviral proteins with
possible or confirmed immunomodulatory activity [25]. The
characteristics of this fold, tentatively termed poxvirus immune
evasion (PIE) domain, and the structures of different vCKBP have
been reviewed elsewhere [24,25]. Similarly, comparative analysis
of the crystal structures of chemokine receptors and CKBP coupled
to ligands showed that they all interact with a disulfide present in
all chemokine subfamilies [24]. The structures of two herpesvirus
vCKBP, M3 and R17, coupled to chemokine have been solved
[24,80]. An important difference is that M3 binds CCL2 as a dimer
whereas a monomer of R17 is present in the crystal bound to CCL3.
Nevertheless, they both share a similar structural scaffold to
interact with the chemokine, despite their very low amino acid
identity [24].

3. Relevance of vCKBP in the context of infection in vivo

The role of several vCKBP during infection in vivo has been
extensively studied with several animal viruses in their natural
host or using mouse models as surrogate for other species. This is
not always possible since some of these viruses are species specific
(i.e., HCMV). The outcome of vCKBP deletion is normally
unpredictable due to the multiple interactions with chemokines.
This may cause lower disease due to virus attenuation or higher
disease due to immunopathology.

VACV was used in the vaccination campaign led by the world
health organisation to eradicate smallpox. VACV strains are widely
studied and used as vaccine vectors for infectious diseases.
Different strains have diverse immunomodulatory activities since
they express different immune modulators. This has facilitated the
investigation of the functional role of some of these proteins. For
instance, insertion of the gene encoding the 35-kDa vCKBP from
VACV Lister strain into the 35-kDa negative strain WR attenuates
the virus in an intranasal mouse model of infection [81].
Expression of 35-kDa results in lower migration of inflammatory
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cells into the lungs of infected mice, accompanied by lower virus
replication, spread and reduced mortality. Moreover, the bron-
choalveolar lavage of mice infected with the 35-kDa-expressing
virus shows lower chemotactic activity, probably due to the
inhibitory function of the vCKBP [81]. Intranasal infection of BALB/
c mice with a rabbitpox lacking the 35-kDa protein results in
higher pathogenicity than wild type infection at sub-lethal but not
at higher doses of infection [82]. Other parameters of infection
such as size of primary lesions or virus spread from skin to the
lungs are not affected, indicating that this vCKBP is not a virulent
factor in this animal model [82]. However, rabbits infected with the
deletion mutant suffer a profound inflammatory response [34]
indicating that rabbitpox 35-kDa inhibits chemotaxis in vivo in its
natural host.

MYXV causes myxomatosis in rabbits, a lethal, systemic disease
associated with immunosuppression. The functional role of two
MYXV vCKBP, M-T1 and M-T7, has been analysed in vivo.
M-T1 inhibits leukocyte migration during MYXV infection in its
natural host. Lack of M-T1 expression does not affect virulence but
results in increased leukocyte infiltration [83]. The IFN-g and
chemokine inhibitor M-T7 has also been studied in vivo in
European rabbits [46]. Disruption of M-T7 expression attenuates
the virus, resulting in lower disease symptoms and reduced spread
to secondary infection sites. Leukocyte infiltration to the site of
infection is evident in the dermis of rabbits infected with the M-
T7 defective mutant whereas it is blocked in the wild type virus
[46]. Moreover, lymph node, spleen and other secondary lymphoid
organs contain high numbers of activated lymphocytes in animals
infected with the defective virus [46]. These phenotypes suggest
that M-T7 interaction with chemokines plays a role in the
inhibition of leukocyte infiltration to the site of infection and
the mounting of appropriate adaptive immune responses [46].
However, since M-T7 inhibits both IFN-g and chemokines, the sole
contribution of chemokine inhibition in pathogenesis could not be
clarified in this study.

Initial attempts to discover the ligands of A41 were unsuccess-
ful [56]. However, deletion of A41L gene from VACV WR results in a
virus causing larger skin lesions and being cleared faster from the
infected mice [56]. Similar experiments in rabbits show that,
despite similar lesion size, lack of A41 protein results in higher
leukocyte infiltration indicating that, as 35-kDa, A41 inhibits
chemotaxis in vivo and its deletion facilitates virus clearance [56].
Another report using also VACV WR devoid of A41L showed that the
deletion results in a mild increase in virulence following intranasal
infection of mice [57]. In this model, and also when using VACV
modified virus Ankara strain lacking A41L to immunize mice,
cytotoxic and VACV-specific memory CD8+ T cells are increased in
the spleen [57]. Since CD8+ T cells play a protective role against
poxviruses, vaccination with VACV lacking A41L provides better
protection than the parental VACV to a challenge with VACV WR
[57].

The SECRET domain is present in several poxviruses including
VARV [53]. Research with VARV is strictly limited due to its high
infection and mortality rate in humans. CPXV, ECTV and
monkeypox virus represent good models to study lytic viral
infections in general and VARV pathogenesis in particular. The only
report addressing the function of CrmB in vivo showed that CrmB
from CPXV strain Brighton Red is a virulence factor in an
intracranial model of mouse infection [84]. However, the role of
the chemokine binding activity of CrmB SECRET domain was
not specifically addressed. Another poxviral TNF receptor,
M-T2 expressed by MYXV, shares a similar domain structure to
CrmB and CrmD containing the TNF-binding domain followed by a
C-terminal domain with no sequence homology to host proteins.
Disruption of M-T2 expression results in a highly attenuated MYXV
unable to cause lethal disease in most rabbits [85]. Moreover,
survivor rabbits are protected against subsequent challenges with
wild type MYXV [85]. However, the potential role of M-T2
C-terminal domain as a chemokine inhibitor has only been
addressed for CCL5 with negative results [47]. Deletion of VACV
B7R, an SCP-3, does not affect virulence in an intranasal mouse
model of infection. However, there is a decrease in lesion size in an
intradermal infection model in the ear pinnae when compared
with wild type virus [86]. Overall, the relevance of the SECRET
domain in pathogenesis is still unknown.

MHV-68 is a natural pathogen of murine species belonging to
the Apodemus genus such as the wood mice. MHV-68 intranasal
infection of mice can result in pneumonia during acute infection,
normally followed by establishment of latency mainly in B cells of
the spleen. Moreover, MHV-68 is widely used as a model for the
two human oncogenic gammaherpesviruses, KSHV and Epstein-
Barr virus, which are host specific and do not infect mice.
Experiments with recombinant virus lacking M3 expression have
been performed in both inbred mice and in its natural host, the
wood mice, with different results. Lytic replication in the
respiratory tract and spread to lymphoid tissue are not affected
by lack of M3 expression, but establishment of latency in B cells is
impaired following intranasal infection of BALB/c mice [87]. Lack of
M3 expression also affects total viral load and virus-driven B cell
activation [87]. This phenotype is reverted when CD8 T cells are
depleted suggesting that M3 ability to inhibit chemokine activity
may reduce the recruitment of this cell population during
expansion of latently infected B cells [87]. In another study using
C57BL/6 mice M3 was not required for establishment of latency
following intranasal infection but the virus lacking M3 was
attenuated after intracerebral injection compared to wild type.
This attenuation correlates with differences in the leukocyte
infiltrate. Lack of M3 results in infiltration of lymphocytes and
macrophages, whereas the infiltrate in the wild type-infected mice
is composed predominantly of neutrophils, causing meningitis
[88]. MHV-68 infection induces the expression of several chemo-
kines and inhibition of their activity by M3 may explain the
differences in leukocyte infiltration [88]. Interestingly, experi-
ments performed using the natural host wood mice show that
M3 has immunomodulatory properties during infection [89] and
plays an important role in the establishment of latency in the lung
and spleen [89]. The kinetics of M3 expression differ also between
wood and BALB/c mice, especially at 14 days post infection [89]
where M3 expression is detected within lymphocytes in inducible
bronchus-associated lymphoid tissue (iBALT) and splenic follicles
[89]. These iBALT are composed mainly of B cells and are not
present in the mice infected with the M3 stop codon mutant [89].
In the spleen, lack of M3 expression results in no germinal centre
formation and a reduction in latently infected cells [89]. Therefore,
M3 is required for the formation of iBALT in the lungs and for the
organization of splenic follicles following intranasal infection of
the natural host of MHV-68 [89]. These results underscore the
importance of choosing the appropriate animal model when
studying immunomodulatory proteins in vivo.

Alphaherpesviruses are characterized by establishing latency in
ganglia of the peripheral nervous system. They cause a variety of
diseases: neurological disorders, encephalitis, meningitis, blind-
ness, chickenpox, shingles, skin lesions, and abortion among
others. Work with EHV-1 has been fundamental to understand the
relevance of gG inhibition of chemotaxis in vivo. Deletion of gG
results in increased EHV-1 pathogenicity in an intranasal mouse
model of infection [90]. Mice infected with the deletion virus lose
more weight and recover slower than those infected with a
gG-expressing virus despite having similar virus titers in the lungs
[70]. This is probably due of the presence of a higher inflammatory
infiltrate in the lugs of mice infected with the gG-negative EHV-1
[70]. A report using CCL3 knockout mice showed the relevance of
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gG inhibition of CCL3-mediated neutrophil migration and subse-
quent inflammation in the lungs [71]. Studies with ILTV, a virus
that causes respiratory tract disorders in poultry, indicate that gG
modulates leukocyte migration to the infection site. Deletion of gG
results in higher levels of inflammatory infiltrate in the trachea of
birds [68,72]. Deletion of PRV gG, on the contrary, does not seem to
affect the virus during infection of pigs [91].

The role of HSV-1 gG has been addressed in the mouse model.
Intracerebral infection of mice with HSV-1 lacking gG expression
results in lower levels of virus replication in the central nervous
system [92]. Similarly, a virus lacking gG and US3 expression is
attenuated following intracranial infection of mice [93]. However,
the contribution of gG could not be separated from that of US3, a
kinase with multiple relevant modulatory functions [94]. Finally,
lower titres were observed following infection of mice using the
ear scarification model [95]. The role of HSV-2 gG in vivo has not
been investigated.

4. Concluding remarks

Some viruses express type I transmembrane or secreted
proteins with low or no sequence identity to host proteins that
bind and modulate chemokine activity. Until now all vCKBP have
been discovered in members of the Poxviridae and Herpesviridae,
viruses that despite their differences in viral cycle and subcellular
localization share one important characteristic: they contain a
large double stranded DNA genome that permits them to include
many genes involved in host interaction, including these encoding
for vCKBP. This raises the question of whether other large DNA
viruses such as members of the Asfarviridae also express this kind
of proteins. It is noteworthy that such proteins have not yet been
discovered in several human herpesviruses (VZV, KSHV, Epstein-
Barr virus, human herpesvirus 6A, 6B and 7) or in the human
poxvirus molluscum contagiosum virus. Whether these human
viruses express vCKBP or whether they rely on other strategies to
modulate the chemokine network is currently unknown. In this
regard, we have recently found a vCKBP in VZV and are currently
investigating its modulatory properties (V.G.-M. and A.V.-B.,
unpublished). Several studies have shown the presence of CKBP
in more complex organisms such as the parasite Schistosoma
mansoni and ticks [96–98]. Moreover, a similar activity has been
recently discovered in a human protein, TNF- stimulated gene/
protein-6 [99], showing that the expression of soluble proteins
with the ability to bind and modulate chemokine function is more
common than initially anticipated. Further research in this exciting
field may uncover novel vCKBP in relevant pathogens with clinical
implications.
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