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Abstract The oculocerebrorenal syndrome of Lowe is a rare
X-linked multisystemic disorder characterized by the triad of
congenital cataracts, intellectual disability, and proximal renal
tubular dysfunction. Whereas the ocular manifestations and
severe muscular hypotonia are the typical first diagnostic
clues apparent at birth, the manifestations of incomplete renal
Fanconi syndrome are often recognized only later in life.
Other characteristic features are progressive severe growth
retardation and behavioral problems, with tantrums. Many
patients develop a debilitating arthropathy. Treatment is symp-
tomatic, and the life span rarely exceeds 40 years. The causa-
tive oculocerebrorenal syndrome of Lowe gene (OCRL) en-
codes the inositol polyphosphate 5-phosphatase OCRL-1.
OCRL variants have not only been found in classic Lowe
syndrome, but also in patients with a predominantly renal
phenotype classified as Dent disease type 2 (Dent-2). Recent
data indicate that there is a phenotypic continuum between
Dent-2 disease and Lowe syndrome, suggesting that there
are individual differences in the ability to compensate for the
loss of enzyme function. Extensive research has demonstrated
that OCRL-1 is involved in multiple intracellular processes
involving endocytic trafficking and actin skeleton dynamics.
This explains the multi-organ manifestations of the disease.
Still, the mechanisms underlying the wide phenotypic spec-
trum are poorly understood, and we are far from a causative

therapy. In this review, we provide an update on clinical and
molecular genetic findings in Lowe syndrome and the cellular
and physiological functions of OCRL-1.
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Introduction

The classic form of the oculocerebrorenal syndrome of Lowe
(OMIM #309000), first described by Lowe et al. in 1952 [1],
is characterized by the triad of congenital cataracts, severe
intellectual impairment, and renal tubular dysfunction with
slowly progressive renal failure [2, 3]. Other features include
postnatal growth retardation independent of kidney function,
areflexia, nontender joint swelling, subcutaneous nodules, and
arthropathy, which can be observed in about 50 % of adult
patients [3].

Lowe syndrome is caused by variants in the OCRL gene on
chromosome Xq25-26, which encodes OCRL-1, an inositol
polyphosphate 5-phosphatase [4]. Interestingly, variants in
OCRL have also been found in some patients with a Dent-
like disease (OMIM #300009), now called Dent disease type
2 (Dent-2; OMIM #300555), raising the question of how var-
iants in the same gene could cause two seemingly distinct dis-
eases [5, 6]. In fact, many Dent-2 patients show mild extra-
renal features of Lowe syndrome, suggesting that Dent-2 dis-
ease represents a mild form of Lowe syndrome [7, 8].

Here, we review the phenotypic features of Lowe syn-
drome, the molecular genetics of OCRL variants, and the cur-
rent understanding of the physiological functions of OCRL-1.
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Prevalence

Based on the observations of the American Lowe’s syndrome
Association (LSA) and the Italian Association of Lowe’s
Syndrome (AISLO), the prevalence of Lowe syndrome has
been estimated to be 1 in 500,000 in the general population
[3].

Clinical manifestations and management

Lowe syndrome is a multisystem disorder involving mainly
the eyes, the central nervous system (CNS), and the kidneys.
The manifestation of different symptoms over time is summa-
rized in Table 1.

Eyes

Dense congenital bilateral cataract is a hallmark of Lowe syn-
drome and present at birth [3, 9, 10]. Cataracts develop early
in embryogenesis due to defective formation and subsequent
degeneration of the primary posterior lens fibers [9] and have
even been demonstrated on prenatal ultrasound images [11].
Severe glaucoma with buphthalmos requiring surgical man-
agement is observed in around 50 % of Lowe syndrome pa-
tients, usually in the first year of life but possibly as late as in
the second or third decade [10, 12]. Corneal scarring and

keloids develop without prior trauma in about 25% of patients
usually after the age of 5 years [13, 14]. Corrected visual
acuity is rarely better than 20/100 [15], partly due to a primary
retinal dysfunction [13]. Management includes early lens ex-
traction and prescription of eyeglasses, while surgical lens
implants are not recommended [3]. Lewis et al. also advise
that contact lenses not be prescribed because of the risk of
corneal keloid formation []. Ocular tone should be tested reg-
ularly and glaucoma treated as necessary.

Detailed ophthalmological examination of patients with
Dent-2 disease may reveal discrete peripheral opacities be-
tween the nucleus and cortex that are clinically asymptomatic
[7]. Several recent reports have described the absence [17, 18]
or late manifestation [19, 20] of cataract in patients with
OCRL variants, thereby underlining the phenotypic continu-
um between Dent-2 disease and Lowe syndrome.

Nervous system

Both the central and the peripheral nervous system are in-
volved in Lowe syndrome, and it is their involvement which
causes the greatest disease burden of the illness [13]. Although
less well documented, Dent-2 patients with the mild pheno-
type of ORCL variants may also show some developmental
delay [5, 7].

Muscle hypotonia

The first clinical symptom is severe neonatal hypotonia, often
in the absence of deep tendon reflexes [3, 21]. The hypotonia
is of central origin, although muscle biopsy in two brothers
demonstrated selective type-1 fiber atrophy resembling con-
genital fiber type disproportion myopathy [22], and creatine
kinase and/or lactate dehydrogenase levels are typically ele-
vated in Lowe syndrome and to a lesser extent in Dent-2
disease [7, 23, 24]. Decreased motor tone results in delayed
motor milestones (75 % of patients achieve independent am-
bulation by the age of 6–13 years) [15].

Intellectual disability

The majority of Lowe syndrome patients have severe intellec-
tual impairment with a mean IQ in the range of 40–54. Still, in
a study on 47 patients with Lowe syndrome, 25 % had an IQ
of >70 [25].

Seizures

Seizures occur in up to 50 % of Lowe syndrome patients [13,
26]. There is no specific seizure type.

Table 1 Typical age at manifestation of symptoms or complications of
Lowe syndrome

Age at onset Manifestation

Prenatal Cataract

Elevated alpha-fetoprotein

Neonatal Cataract

Muscle hypotonia

Absent deep tendon reflexes

Elevated creatinine kinase/lactate dehydrogenase

Low-molecular-weight proteinuria

1–3 months Fanconi syndrome

Infancy Glaucoma

Growth retardation

Developmental delay

Childhood Behavioral abnormalities

Corneal scarring, keloids

Tubulointerstitial fibrosis/glomerulosclerosis

Adolescence Scoliosis

Adulthood Arthropathy

End-stage renal disease

No specific age Convulsions

Platelet dysfunction
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Behavioral abnormalities

Patients with Lowe syndrome have a characteristic pat-
tern of behavioral abnormalities. More than 80 % of
patients show stubbornness, aggression, irritability, tem-
per tantrums, and complex repetitive purposeless move-
ments (e.g., hand flapping) that interfere with adaptive
functioning and are significantly worse than those ob-
served in other visually impaired or comparably mental-
ly retarded individuals [27]. There is a high prevalence
of self-injury associated with repetitive and impulsive
behavior [28]. Some evidence suggests that the most
difficult period for behavior problems is between the
ages of 8 and 13 years. Drugs, such as neuroleptics,
antidepressants, stimulants, and benzodiazepines, are on-
ly partially effective. More promising results have been
reported with clomipramine, paroxetine, and risperidone
[3, 15].

Neuroradiological and neuropathological features

Cranial magnetic resonance (MR) imaging may demon-
strate mild ventriculomegaly and hyperintense lesions on
T2-weighted images that are distributed in the
periventricular and deep white matter. These lesions cor-
respond to perivascular lacunes and are undetectable un-
til cerebral myelination is well advanced [29]. They ap-
pear to be stable in size and location and have no clin-
ical significance [13].

Onur et al. [30] reported a tigroid pattern with hypointense
radially oriented stripes within the hyperintense cerebral white
matter on T2-weighted images. This pattern of demyelination
has also been described in Pelizaeus–Merzbacher disease, glo-
boid cell leukodystrophy, and metachromatic leukodystrophy.
ProtonMR spectroscopy in Lowe syndrome has shown prom-
inent myoinositol peaks suggesting the presence of gliosis
[31].

Neuropathological findings are variable and non-specific
and may include ventriculomegaly, brain atrophy, cerebellar
hypoplasia, pachygyria, polymicrogyria, aberrant neuronal
migration, subependymal cysts, and cysts located in the white
matter [13].

Kidney

The renal phenotype of Lowe syndrome is characterized by
proximal tubular dysfunction [2, 7] and slowly progressive
renal failure which often leads to end-stage renal disease
(ESRD) in the second or third decade. Unlike congenital cat-
aract, the renal tubular dysfunction is not always present at
birth; rather, it usually manifests within the first weeks to
months [23, 32].

Low-molecular-weight proteinuria

Low-molecular-weight (LMW) proteinuria is a cardinal
finding in Lowe syndrome and is observed in all patients.
This condition reflects impaired megalin–cubulin
receptor-mediated endocytosis in the proximal tubule
[33] (Fig. 1), and it has been detected directly after birth
prior to any other symptom of proximal tubular dysfunc-
tion [34]. Retinol binding protein in particular is a highly
sensitive marker for the impairment of tubular protein
absorption, presenting in this context with a mean eleva-
tion of approximately 1000-fold above the upper limit of
normal [2, 35]. Alternative markers are alpha-1 and beta-2
microglobulin, the latter being unstable at a urine pH of
<5.5. Although LMW proteins are the major constituents
of proteinuria in Lowe syndrome patients, urinary albu-
min excretion is also elevated. This reflects defective re-
absorption via the megalin receptor pathway of some of
the 3.3 g of albumin passing through the intact glomerular
barrier per day [36]. Total proteinuria is in the nephrotic
range (>1 g/m2/day) [37] in more than one-half of the
patients, but serum albumin concentrations are normal
[23]; this also applies to patients with the milder pheno-
type of Dent-2 disease [38].

Aminoaciduria

Generalized aminoaciduria is observed in around 80 % of
patients with classic Lowe syndrome, but only in about one-
half of patients with Dent-2 disease [7]. There is considerable
inter-individual variation in amino acid excretion [2]. Charnas
et al. noted that branched-chain amino acids were spared [23].

Lysosomal enzymuria/hyperenzymemia

Although N-acetyl-ß-D-glucosamine levels have been report-
ed only infrequently, all patients with Lowe syndrome who
have been tested showed increased levels of this enzyme [2,
34]. Nielsen et al. [39] demonstrated that filtered lysosomal
enzymes are physiologically reabsorbed in the proximal tu-
bule via megalin, suggesting that impaired uptake is a
common mechanism of LWM proteinuria and lysosomal
enzymuria in Lowe and other forms of the Fanconi syn-
drome. Ungewickell and Majerus reported a 1.6- to 2.0-
fold increase in plasma levels of seven lysosomal en-
zymes in Lowe syndrome patients [40], which is attribut-
ed to disturbed lysosomal enzyme trafficking [41].
Mistargetting of lysosomal enzymes might cause shedding
of lysosomal enzymes via the apical membrane of proxi-
mal tubular cells and might also explain tissue damage in
Lowe syndrome patients.
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Hypercalciuria/nephrocalcinosis

Hypercalciuria is a common finding in patients with Lowe
syndrome and in Dent-2 patients [2, 7, 42, 43] and is observed
in approximately 80 % of patients. Urinary calcium excretion
is about twofold higher than the age-appropriate upper limit of
normal and is independent of age [2].

The pathophysiology of hypercalciuria in patients
with OCRL defects has not been fully elucidated. It is
tempting to extrapolate findings from patients with Dent
disease type 1 (Dent-1 disease) who harbor defects in
CLCN5 leading to impaired megalin–cubulin receptor-
mediated endocytosis in the proximal tubule. In a
Clcn-5 knock-out model, Günther et al. demonstrated
loss of vitamin D-binding protein and increased distal
delivery of parathyroid hormone (PTH) [44]. While the
former reduces 25-hydroxyvitamin D3 levels, the latter
stimulates 1-alpha hydroxylase, leading to increased for-
mation of 1,25-dihydroxyvitamin D3 and resulting in
hyperabsorptive hypercalciuria. Another line of evidence
indicates a direct effect of OCRL-1 on intestinal calci-
um transport [45] via the intestinal calcium channel
TRPV6 (transient receptor potential, vanilloid subfamily,
subtype 6), which is regulated by OCRL-1 and mediates
1,25-dihydroxyvitamin D3 action in intestinal epithelial
cells.

Nephrocalcinosis/nephrolithiasis is present in approxi-
mately one-half of Lowe syndrome patients [2, 7]. Stones
are composed of calcium oxalate and calcium phosphate [2].
Similar to patients with CLCN5 variants [46], the presence of
nephrocalcinosis/nephrolithiasis has not been found to be re-
lated to calciuria or to age [2].

There are no data on the treatment of nephrocalcinosis
in patients with Lowe syndrome. Thiazide diuretics have
been used to decrease calcium excretion in Dent-1 patients
[47], but the use of diuretics in the setting of renal potas-
sium loss has to be weighed against the risk of hypoka-
lemia and hypovolemia. Potassium citrate may be useful
as it corrects both hypokalemia and metabolic acidosis and
has been shown to retard nephrocalcinosis in an animal
model of Dent-1 disease [48].

Acidosis

Hyperchloremic metabolic acidosis is a common finding in
Lowe syndrome and is observed in 33–82 % of patients [2,
7, 32, 49]. Even in non-acidotic patients plasma total carbon
dioxide concentration is typically found at the lower end of
normal [2]. Renal tubular acidosis (RTA) appears to be less
prevalent in patients with Dent-2 disease [7]. Although most
reports classify renal tubular acidosis as type 2 (i.e., proximal
RTA), Lowe et al. reported that decreased ammonia

Fig. 1 Pathogenesis of low-molecular-weight (LMW) proteinuria in
Lowe syndrome. LMWproteins (filled circles) are internalized after bind-
ing to megalin (helices) on the brush border of proximal tubular cells. a In
the wild-type, the megalin–LMW protein complex in the endosome dis-
sociates at low pH, followed by the recycling of megalin to the cell
surface and delivery of the LMW proteins to lysosomes for degradation.

b In Lowe syndrome/Dent-2 disease, megalin trafficking to the cell sur-
face is impaired. Due to the aberrant accumulation of actin at the
endosomal membrane, megalin is retained in the endosome and mis-
sorted to the lysosome instead of being recycled to the brush border via
recycling tubules (modified from Mehta et al. [33] with permission)
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production differentiated patients with Lowe syndrome from
those with other forms of the renal Fanconi syndrome in
whom a strongly increased amount of ammonia was detected
[1].

Phosphaturia

As with other proximal tubular functions, data on the preva-
lence of phosphate wasting vary considerably in the literature.
Böckenhauer et al. [2] reported phosphate wasting in three of
15 patients with Lowe syndrome, with two of the former re-
quiring supplementation. In other studies, however, phosphate
wasting has been reported to be present in approximately 40–
50% of Lowe syndrome patients [7, 32, 43, 49]. Abbassi et al.
[32] reported that hypophosphatemic rickets was observed in
50 % of their untreated patients with Lowe syndrome, usually
manifesting at the age of 1 year. As discussed by Böckenhauer
et al. [2], any assessment of phosphaturia may be complicated
by the often-present elevated PTH levels. Tubular maximum
for phosphate reabsorption/glomerular filtration rate (TmP/
GFR) values in their series were obtained while PTH levels
were normal, and seven of the 16 patients investigated re-
quired 1-OH cholecalciferol substitution to keep the level of
PTH in the normal range.

Glycosuria

The most striking difference with other forms of the renal
Fanconi syndrome is the absence of glycosuria in the vast
majority of patients with Lowe syndrome [2, 7, 32, 43, 49].

Poor renal accumulation
of 99mtechnetium-dimercaptosuccinic acid

99m-Technetium-dimercaptosuccinic acid (99mTc-DMSA)
scans are used to assess tubulointerstitial integrity and to de-
tect focal scarring. DMSA passes through the glomerular fil-
tration barrier and enters the proximal tubular cells via the
megalin–cubulin system [50]. Consequently, defective accu-
mulation of 99mTc-DMSA is a common finding in patients
with proximal tubular damage and has been reported in pa-
tients with Lowe syndrome [50, 51], with Dent-1/Dent-2 dis-
ease [52, 53], as well as with other forms of the renal Fanconi
syndrome [54].

Progressive renal failure

Slowly progressive renal failure is a hallmark of Lowe
syndrome and leads to ESRD in adulthood. Monitoring
of kidney function using serum creatinine-based esti-
mates of GFR may result in an overestimation of the
GFR due to the decreased muscle mass of patients with
Lowe syndrome. Böckenhauer et al. [2] recalibrated the

Schwartz-equation using 51Cr-EDTA clearance and de-
rived a k value of 26 (as compared to 36 in the most
recent version of the Schwartz-equation [55]). In view
of the abnormal muscle mass of patients with Lowe
syndrome, cystatin C-based estimates of GFR [56]
should be the method of choice in this patient group.
Due to calibration issues, only recent GFR estimating
equations based on the reference material provided by
the International Federation for Clinical Chemists [57,
58] should be used.

Cross-sectional [7, 49] as well as serial [2] studies
have demonstrated a slowly progressive decline in
GFR starting from low-normal values [chronic kidney
disease (CKD) stage 1–2] in the first year of life to
CKD stage 4–5 in the second to fourth decade of life.
There is wide intra- and inter-individual variation in
decline in GFR. Intra-individual variability in GFR
may reflect changes in hydration from salt loss and
decreased concentrating capacity, as observed in 21 of
the 23 patients in the series of Charnas et al. [49].
Tricot et al. reported a patient who developed ESRD
at the age of 49 years [59] and was started on chronic
ambulatory peritoneal dialysis. Although transplantation
was considered, it is not clear from the report whether
this patient actually did receive a renal transplant.

Patients with the Dent-2 disease phenotype have better pre-
served kidney function than those with Lowe syndrome. In a
pediatric series of 25 children with Dent-2 disease, eight had
CKD stage 2. Unlike in Lowe syndrome, there was no corre-
lation between preserved kidney function and age [7]. There
are very limited data on adults [60], and to the best of our
knowledge there are no reports of a patient with Dent-2 dis-
ease and ESRD.

The pathogenesis of progressive renal failure in Lowe
syndrome is not entirely clear. Renal biopsy shows a
characteristic course, starting with normal biopsy find-
ings in children aged 1 or 2 years [61, 62], followed by
tubular dilation with proteinaceous casts at age 3–5
years [32] and increased glomerular cellularity and focal
glomerular sclerosis as well as diffuse tubulointerstitial
fibrosis in older children [32, 59, 61, 62]. This progres-
sion is in line with histological findings in patients with
Dent-1 disease due to variants in CLCN5 [63, 64].
Renal biopsy in four patients with Dent-2 disease (age
at biopsy 4–16 years) was unremarkable in three pa-
tients [38, 52, 60] and showed isolated focal-segmental
glomerulosclerosis in one patient [65].

The fact that renal tubular dysfunction precedes the decline
in renal function suggests that glomerulosclerosis results from
progressive renal tubular injury, leading to tubulointerstitial
fibrosis [59, ]. Of note, Norden et al. demonstrated tubular
wasting of a wide variety of polypeptides, hormones (e.g.,
insulin, growth hormone, insulin-like growth factor 1), and
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chemokines (e.g., monocyte chemoattractant protein 1) in pa-
tients with defective absorption of LMW protein [67]. Some
of these molecules have been implicated in the pathogenesis
of tubulointerstitial fibrosis and might play a role in patients
with Dent disease and Lowe syndrome.

Other manifestations

Musculoskeletal

Musculoskeletal complications can arise from the principal
manifestations of Lowe syndrome, i.e., hypotonia and renal
disease, or as a unique manifestation of the underlying disor-
der [13]. Hypotonia contributes to joint hypermobility, and
decreased movement fosters the development of contractures
and osteopenia. About one-half of the patients develop scoli-
osis [15], which often progresses post-puberty [13].

Osteopenia is almost universally present in patients with
Lowe syndrome and may be worsened by untreated acidosis
and renal phosphate wasting [49]. Treatment with 1-OH vita-
min D is often required to normalize increased PTH levels [2].
However, even in the presence of well-corrected Fanconi syn-
drome, some patients have repeat pathologic bone fractures
with poor healing []. There is one report describing the com-
bination of intravenous pamidronate treatment with growth
hormone and the standard therapy of renal Fanconi syndrome
in a pre-pubertal 17-year-old Lowe syndrome patient with
multiple fractures, extreme stunting, and osteopenia [68].
Bone mineral density increased from −7.3 to −3.3 standard
deviation over a period of 3 years. During this treatment the
patient did not develop new fractures.

Tenosynovitis, arthritis, and a debilitating arthropathy are
frequent complications of Lowe syndrome [69, 70] and have
been reported in one-half of the patients over 20 years of age
[15]. Clinical manifestations are palmar and plantar fibrosis,
focal nodules, non-tender swelling of multiple interphalangeal
and metacarpal joints, ankles, and wrists leading to flexion
contractures and, eventually, bone erosions. Synovial biopsy
shows rubbery tissue without an inflammatory infiltrate and
fibrous tissue containing fibrillary material [70]. Zhu et al.
have recently demonstrated abundant expression of OCRL in
normal cartilage, which was downregulated in a mouse model
of osteoarthritis and could be restored by intraarticular injec-
tion ofORCL-encoding lentivirus [71]. Musculoskeletal com-
plications have not yet been reported in Dent-2 patients.

Growth failure

Severe post-natal growth retardation is a hallmark of Lowe
syndrome and is unrelated to the level of renal insufficiency
or bone disease [7, 49]. By 3 years of age, the mean height of
Lowe syndrome patients has already fallen to the third percen-
tile, and it continues to fall so during development [13]. Of

note, patients with Dent-2 disease also show mild growth
retardation, which is not observed in Dent-1 patients,
supporting the concept that Dent-2 disease is a mild manifes-
tation of Lowe syndrome [7]. Hou reported improved growth
during growth hormone therapy in a Lowe syndrome patient
with severe stunting [68]. In view of the extremely delayed
puberty (bone age 6 years at the chronological age of 17
years), the impressive treatment response in Hou’s patient
may have been due to growth hormone deficiency, which
the author did not rule out [68].

Oral and dental manifestations

Several case reports have documented dental anomalies in
Lowe syndrome patients, including enamel hypoplasia, dys-
plastic dentin formation, and delayed tooth eruption, the latter
being associated with eruption cysts [72]. Some patients de-
velop gingival hyperplasia as a complication of anti-epileptic
therapy. Orthodontic complications arise from palatal con-
striction, crowded teeth, skeletal malocclusion, underdevel-
oped mandibule, and impacted permanent teeth [73].

Hemostasis

Lowe syndrome patients frequently require surgery (e.g., lens
extraction, scoliosis correction, dental surgery). This has led to
the recognition of a bleeding disorder in Lowe syndrome [74],
which is characterized by impaired primary hemostasis when
examined in vitro using the PFA-100® platelet function ana-
lyzer system (Siemens Healthcare, Erlangen, Germany), while
the results of other platelet aggregation tests are normal. These
findings may reflect impaired early activation of platelets, i.e.,
platelet adhesion and shape change, caused by disturbed
RhoA-dependent signaling in OCRL-1 deficiency, and have
been confirmed in other studies [20]. In addition, mild throm-
bocytopenia has been noted in around 20 % of patients [20,
74]. Prothrombin time (PT) and activated partial thromboplas-
tin time (aPTT) are normal, as are fibrinogen levels and van
Willebrand factor. Tranexamic acid has been observed to ame-
liorate platelet dysfunction in Lowe syndrome patients (D.
Böckenhauer, personal communication).

Sexual development

Cryptorchidism is reported in about one-third of Low syn-
drome patients [32]. Puberty is normal in the majority of pa-
tients, as are testosterone levels [13]. Fertility may be reduced
due to peritubular fibrosis and azoospermia [75].

Dermatological findings

Benign cystic lesions in the skin have been reported in several
Lowe syndrome patients. These resemble eruptive vellus hair
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cysts [76] but may also originate from mature hair follicles
[77]. Won et al. reported large epidermal cysts located on the
scalp [78]. The etiology of these findings is unclear but has
been related to increased extracellular concentrations of lyso-
somal enzymes [76].

OCRL gene analysis

Variant spectrum

TheOCRL gene (Fig. 2) is located on Xq25-26 and comprises
24 exons occupying 52 kb [79]. The coding region includes
exons 1–23. Alternative splicing of exon 18a in the brain
enlarges the OCRL-1 protein of 893 amino acids by eight
(in frame) additional amino acids and improves clathrin bind-
ing [79, 80].OCRL nucleotide and amino acid numbering has
recently been updated based on the data of Hichri et al. [18].

More than 200 different OCRL variants have been
described, however in 10–20 % of patients with
suspected Lowe syndrome no variant is found [18]. In
their study of OCRL1 gene mutations and clinical and
biochemical phenotypes of Lowe syndrome, Hichri et al.
reported that 63 % of their Lowe syndrome patients
displayed frameshift, nonsense, or splice defects leading
to mRNA decay or premature termination of the resul-
tant OCRL-1 protein, while missense variants and gross
deletions accounted for 33 and 4 % of the cases, re-
spectively [18]. Of the milder affected Dent-2 patients,
43 % carried frameshift and nonsense variants.
Termination variants in Dent-2 disease affect only the
first seven exons, whereas they concentrate in exons

8–23 in classic Lowe syndrome [8, 18, 20] (Fig. 2).
Other variant types are scattered throughout the OCRL
gene and unrelated to the Dent-2 disease or Lowe syn-
drome phenotype. No variant affecting the alternative
exon 18a has been reported to date.

Hichri et al. also measured phosphoinositide (PtdIns)
(4,5)P2 5-phosphatase (OCRL-1) activity in fibroblasts
from patients with Lowe syndrome and Dent-2 disease
and found an 80–90 % decrease compared to controls,
irrespective of variant type or clinical phenotype [18].

Variants in OCRL that are repeatedly observed may either
reflect a founder effect or repeat de novo events. As outlined
by Recker et al. [20], the fitness of Lowe syndrome patients to
reproduce is so low that the half-life of a novel OCRL variant
is less than two generations, and after four generations more
than 90 % of variants will have disappeared. Therefore, the
occurrence of an identical variant in unrelated families is most
probably due to coincidence, which is in line with the obser-
vation that there are no OCRL variants predominating in a
specific ethnic background.

Genotype–phenotype correlation

In most cases, the type of variant in Lowe syndrome/Dent-2
disease cannot be correlated to clinical severity. This is illus-
trated by two missense variants (p.Ile274Thr, p.Arg318Cys)
associated with both the mild Dent-2 phenotype and the clas-
sic Lowe syndrome phenotype, even within the same family
[18].

Recker et al. [20] recently reported a patient with a
p.Asp523Asn variant who presented with the cerebral and
renal manifestations of Lowe syndrome, while cataract was

Fig. 2 Structure and function of phosphoinositide (4,5)P2 5-phosphatase
(OCRL-1). Black boxesExome structure of theOCRL gene, including the
alternatively spliced exon 18a, shaded boxes domains/binding sites of the
OCRL-1 protein, dashed boxes functions related to the different domains,
text in italics intracellular processes involving OCRL-1. PtdIns

Phosphoinositide, PH N-terminal pleckstrin homology domain, 5-
phosphatase 5-phosphatase domain, ASH ASPM–SPD2–Hydin domain,
RhoGap C-terminal (catalytically non-active) Rho GTPase activating-
like domain
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first noted at the age of 10 years. The same variant was report-
ed by Tosetto et al. [81] in two brothers with the milder Dent-2
phenotype who developed cataract and megalocornea only at
the ages of 5 and 8 years, respectively. These observations
suggest that the p.Asp523Asn variant exhibits some geno-
type–phenotype correlation.

Female carriers

Based on the large study by Hichri et al. [18] about two-
thirds of Lowe cases are transmitted by maternal carriers.
As in other X-linked diseases, carriers may show a mild
phenotype that might aggravate in cases of unfavorable
lyonization. In post-pubertal female carriers harboring
OCRL variants, slitlamp examination invariably reveals
punctuate white to gray opacities, distributed in a radial
fashion in all layers of the lenticular cortex. This finding
can be used for genetic counseling [82].

Manifestation of a more complete phenotype has been re-
ported in a total of ten cases and has been attributed to either
cytogenetic abnormalities (reciprocal translocation involving
the X-chromosome), a 45,X karyotype, uniparental disomy, or
an extremely skewed X-inactivation [83].

Genetic counseling and prenatal diagnosis

Lowe syndrome/Dent-2 disease can be attributed to a de novo
variant in around one-third of all cases. Germline mosaicism
for a single-point variant has been reported in five Lowe syn-
drome families.

In families with a known OCRL variant, genetic diagnosis
can be performed following chorionic villi or amniotic fluid
sampling [84]. Suchy et al. reported prenatal diagnosis by
measuring PtdIns(4,5)P2 5-phosphatase activity in cultured
amniocytes [85]. However, the lack of genotype–phenotype
correlation and the fact that Dent-2 patients and patients with
Lowe syndrome have comparable PtdIns(4,5)P2 5-
phosphatase activity [18, 86] limit prenatal diagnosis with
respect to disease severity. Other parameters that can be used
for prenatal screening are elevated maternal serum and amni-
otic fluid alpha-fetoprotein [87], or the presence of fetal cata-
ract on ultrasonography images [11]. Increased nuchal trans-
lucency has recently been reported in two fetuses with Lowe
syndrome [88].

OCRL-1 function

Phosphoinositides play a central role in the regulation of di-
verse cellular processes, including gene expression, cytokine-
sis, cell motility, actin cytoskeleton remodeling, membrane

trafficking, and cell signaling [33]. Of the seven
phosphoinositides identified to date, which differ in the revers-
ible phosphorylation at the 3′, 4′, and 5′ positions of the inositol
ring, phosphatidylinositol(4,5)bisphosphate [PtdIns(4,5)P2] is
the most abundant [33]. Each phosphoinositide has its own
unique subcellular distribution, and most organelles appear to
be enriched in a specific phosphoinositide. Changing of
phosphoinositide species can lead to a switch in compartment
identity (e.g., maturation of endosomes) and promote direc-
tionality of membrane traffic between distinct compartments
[33]. Phosphoinositide kinases and phosphatases play a central
role in the regulation of these processes.

OCRL-1 [PtdIns(4,5)P2 5-phosphatase] is one of ten hu-
man inositol 5-phosphatases [89] and is expressed in all hu-
man cells except cells of hematopoietic origin [90]. OCRL-1
is a multi-domain protein comprising an N-terminal PH
(pleckstrin homology) domain, a central 5-phosphatase do-
main, an ASH (ASPM–SPD2–Hydin) domain, and a C-
terminal (catalytically non-active) RhoGAP (Rho GTPase ac-
tivating)-like domain [89] (Fig. 2).

In recent years, much progress has been made in terms of
understanding the role played byOCRL-1 inmany processes of
cell metabolism (Fig. 3). These have recently been reviewed in
depth by Mehta et al. [33] and Pirruccello et al. [89].

OCRL-1 plays a major role in membrane and endosomal
trafficking and is present in clathrin-coated pits on the cell
surface, on different types of endosomes and the trans-Golgi
network. In clathrin-mediated endocytosis, ORCL-1 is neces-
sary for closure of the newly formed endocytic vesicle [91]. In
proximal tubular cells, defective recycling of the megalin re-
ceptor after endocytosis [41] accounts for the characteristic
shedding of LMW protein in Lowe syndrome and Dent-2
patients (Fig. 1). Defective OCRL-1 leads to increased
amounts of PtdIns(4,5)P2 on early endosomes, thereby pro-
moting actin accumulation on the endosomal surface [41].
Indeed, decreasing PtdIns(4,5)P2 accumulation through the
inhibition of PtdIns4P 5-kinases in OCRL knock-down cells
results in improved endocytosis and diminished F-actin for-
mation [41]. OCRL-1 is also involved in the actin remodeling
necessary for phagosome formation at the cell surface [33].

OCRL-1-deficient fibroblasts migrate poorly and show de-
fective cell adhesion [92], again most likely due to dysregula-
tion of the actin cytoskeleton [33]. Cell polarization is also
impaired in OCRL-1 deficiency, possibly related to distur-
bance of adherens and tight junctions [33].

OCRL-1 has been demonstrated in primary cilia [33].
Polarized membrane traffic during cilia formation is regulated
via OCRL-1 [93] and fibroblasts from Lowe syndrome pa-
tients or cell lines with knocked-down OCRL fail to form
functional primary cilia [93]. The Rho GTPase binding do-
main of the OCRL-1 molecule has a critical role in the polar-
ized vesicle processing necessary for cilia formation by
interacting with the small GTPase regulators Rab1 and
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CDC42 [93]. The exclusive expression in the CNS of the
extended OCRLb-1 isoform, characterized by increased
clathrin binding and the presence of OCRL-1 in neuronal
clathrin-coated vesicles from synaptosomal preparations, un-
derscore the importance of clathrin-dependent trafficking for
neuronal function [94].

Although at first glance OCRL-1 participates in a large
number of cellular processes that are apparently distinct from
one another, Mehta et al. have proposed Bmembrane
trafficking^ and Bactin cytoskeleton remodeling^ as the two
unifying mechanisms for OCRL-1 action [33].

Lowe syndrome or Dent-2 disease?

As already noted in this review, there is overlap in clinical
signs between patients with Lowe syndrome and those with
Dent-2 disease, with the latter possibly presenting with extra-
renal features of Lowe syndrome (peripheral cortical lens
opacities, stunted growth, mild intellectual impairment, eleva-
tion of serum creatine kinase/lactate dehydrogenase, implying
that Dent-2 disease represents a mild form of Lowe syndrome
[7, 8]. This clinical observation is supported by a recent study
on fibroblasts from patients with Lowe syndrome and Dent-2
disease in which Montjean et al. [86] demonstrated an inter-
mediate phenotype of Dent-2 fibroblasts in terms of the F-
actin network, alpha-actinin, and primary cilia. Of note,
PtdIns(4,5)P2 was elevated in cells from patients with Lowe
syndrome and Dent-2 disease, and it did not differ between
these groups. This result is in line with Hichri et al.’s obser-
vation that PtdIns(4,5)P2 5-phosphatase in fibroblasts does not
distinguish Dent-2 disease from Lowe syndrome [18].

Furthermore, the description of patients with Lowe syn-
drome without any ocular involvement [17] and the presenta-
tion of two pairs of brothers with discordant clinical

phenotypes, one with Lowe syndrome and the other with
Dent-2 disease [18], indicates that there are individual differ-
ences in the ability to compensate for the loss of enzyme
function. It has been suggested that this occurs through
INPP5B, an inositol 5-phosphatase which shares nearly all
functional domains with OCRL-1 [89]. Indeed, ocrl knock-
out mice are phenotypically normal as long as murine inpp5b
is present. As murine inpp5b and human INPP5B differ in
terms of gene transcription and splicing, inpp5bmay compen-
sate for ocrl deficiency in mice, while INPP5B does not fulfill
this role in man [95]. Indeed, double knock-out of inpp5b and
ocrl resulted in embryonic lethality, while double knock-out
with expression of human INPP5B in mice using a bacterial
artificial chromosome created a phenotype resembling Lowe
syndrome/Dent-2 disease (postnatal growth failure, LMW
proteinuria, and aminoaciduria) [96]. It is questionable, how-
ever, whether this mechanism does explain the phenotypic
differences between patients with Dent-2 disease and those
with Lowe syndrome as Montjean et al. observed identical
expression not only of OCRL but also of INPP5B at the
RNA and protein levels in fibroblasts from both Dent-2 and
Lowe syndrome patients [86].

Conclusions

Using the presence of an OCRL variant for case definition, it
has become clear that there is a disease spectrum spanning
from an isolated tubulopathy (Dent-2 disease) to the most
severe presentation of the oculocerebrorenal syndrome de-
scribed by Lowe et al. in the 1950s. Much progress has been
made in terms of understanding the many functions of OCRL-
1 in cell metabolism and, consequently, of understanding
the multi-organ manifestations of the disease. However, the
factors determining disease severity have not yet been

Fig. 3 Subcellular localization of
OCRL-1. Cartoon summarizing
subcellular expression of OCRL-
1 (hexagones). TGN Trans-Golgi
network, MVB multivesicular
body (modified from Mehta et al.
[33], with permission)
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clarified. If found they might offer novel therapeutic ap-
proaches for this debilitating disease.
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