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Abstract

Proton ATP synthases carry out energy conversion in mitochondria, chloroplasts, and bacteria. A key element of the membrane integral

motor CFO in chloroplasts is the oligomer of subunit III: it converts the energy of a transmembrane electrochemical proton gradient into

rotational movement. To enlighten prominent features of the structure–function relationship of subunit III from spinach chloroplasts, new

isolation methods were established to obtain highly pure monomeric and oligomeric subunit III in milligram quantities. By Fourier-transform

infrared (FTIR) and CD spectroscopy, the predominantly a-helical secondary structure of subunit III was demonstrated. For monomeric

subunit III, a conformational change was observed when diluting the SDS-solubilized protein. Under the same conditions the conformation of

the oligomer III did not change. A mass of 8003 Da for the monomeric subunit III was determined by MALDI mass spectrometry (MALDI-

MS), showing that no posttranslational modifications occurred. By ionisation during MALDI-MS, the noncovalent homooligomer III14
disaggregated into its III monomers.

D 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The energy-converting processes of oxidative- and photo-

phosphorylation generate a transmembrane electrochemical

proton gradient across mitochondrial and chloroplastidic

membranes, respectively. This gradient powers the synthesis

of adenosine triphosphate via a membrane protein complex

consisting of two rotating devices, the ATP synthase. The

ATP-driven or generating engine, depending on the energe-

tisation, is located in the hydrophilic F1 portion of the ATP
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synthase. Chloroplast F1 consists of the subunits a3h3gyq
[1]. A rotating shaft composed of subunits g and q drives

ATP formation by conformational changes of the catalytic

hexamer a3h3. The membrane-integrated part, CFO, consist-

ing of the protein subunits I, II, III, and IV functions as a

rotary motor or proton pump [2,3].This device couples

vectorial proton translocation to the rotational movement

of the oligomer III14, which is responsible for the rotation of

g and q. While rotation in F1 is well established, e.g. for

chloroplast [4], the detection of a rotational movement in the

membrane integral FO sector was more difficult (e.g. Ref.

[5]) and up to now not successfully proven for chloroplasts.

In synthesis direction, the rotation of the c-oligomer has been

demonstrated for a Na+-translocating ATP synthase of Pro-

pionigenium modestum [6].While an X-ray crystallographic

structure of incomplete yeast ATP synthase [7] displays a

complex consisting of a3h3g and c10 (homologous to III14),

much less is known about the chloroplast FO. The two parts

of ATP synthases are connected by two stalks, i.e., one

central rotating shaft (g, q and III14) and a thin stalk at the
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periphery, which holds together the F1 and FO portion. The

peripheral stalk, the stator, consists of the subunits y, I and II.
The rotating oligomer III14 converts the electrochemical

proton gradient into mechanical motion. Therefore, elucida-

tion of the structure–function relationship of subunit III is

of outstanding importance for bioenergetics. Electron micro-

graphs show the overall arrangement of subunits in the

chloroplast ATP synthase [8]. Several high-resolution struc-

tures are published for F1 from mitochondria or E. coli [9–

11]. X-ray structures of the CF1 portion (a3h3g) have been

obtained [12,13]. In contrast, the chloroplast FO subunits are

only poorly characterised. High-resolution structures of CFO
subunits are not available.

The topography and stoichiometry of the cylindrical III

oligomer have been determined by atomic force microscopy

(AFM) [3]. Single particle cryo-electron microscopy pro-

vided evidences for two membrane-spanning a-helices per

subunit III monomer of spinach CFO [14]. This agrees with

studies of the monomeric bacterial subunit c, which has

been investigated in organic solvents [15] or detergent [16].

While these structures differ in detail, they agree in showing

that the c monomer is a-helical, forming a hairpin with a

short loop. NMR studies suggest that the conformation of

the c subunit of E. coli in organic solvent changes signif-

icantly in response to the protonation state of Asp61. In the

functional ATP synthase complex, the III/c subunit forms a

cylindical oligomer. A c-oligomer of 10 subunits was

observed in a 4-Å X-ray structure of yeast ATP synthase

[7]. 2D crystals of the c-subunit oligomer from Ilyobacter

tartaricus revealed a similar cylindrical structure of 11

subunits [17] whereas AFM of 2D crystals of CFO indicates

a ring composed of 14 subunits [18].

The goal of the present study was to elucidate if

oligomerisation of subunit III monomers results in confor-

mational alterations. This is relevant not only for the

interpretation of previous NMR and X-ray investigations

[7,15,16,19] but also for the assembly of the membrane

integral FO proton turbine in vitro and in vivo. Isolation

methods for the monomer III and the oligomer III14 were

established, also with the aim to prepare samples for 2D and

3D crystallization. With CD and Fourier-transform infrared

(FTIR) spectroscopy, it was found that they have a predom-

inantly a-helical secondary structure, similar in the mono-

meric and oligomeric states. Depending on the solvent,

differences in the secondary structure are observable.

According to MALDI mass spectrometry (MALDI-MS)

data, the assembled subunit III is not posttranslationally

modified.
2. Methods

2.1. Isolation of CFOF1

CFOF1 was isolated from spinach chloroplasts by a

modified procedure [2,20] of Pick and Racker [21] employ-
ing rate-zonal centrifugation as the last purification step.

ATP synthase was obtained from the sucrose step gradient in

30 mM Tris, 30 mM succinate/NaOH pH 6.5, 0.5 mM

EDTA, 1 mg/ml asolectin and about 30% sucrose, either in

the presence of 0.2% Triton X-100 or 12 mM CHAPS as

detergent.

2.2. Isolation of the monomeric subunit III

A method based on studies by Sigrist-Nelson et al. [22]

was used to extract several milligrams of the subunit III

from spinach chloroplasts [23]. Chloroplasts were isolated

from spinach lettuce according to Apley et al. [24]. The

chloroplast suspension was sedimented at 3640� g for 30

min, then homogenised in 120-ml chloroform/methanol/

diethylether 2:1:12 (v/v/v) at a chlorophyll concentration

of 1 mM. By centrifugation (3640� g, 5 min, RT), an

occasionally occurring uppermost phase consisting of resid-

ual water was removed. The pellet containing subunit III

together with the supernatant was diluted with the same

volume of chloroform/methanol/diethylether 2:1:12 (v/v/v)

and shaken vigorously. Upon centrifugation (3640� g, 5

min, RT) the supernatant was discarded and the pellet

washed with 80-ml chloroform/methanol/diethylether

2:1:12 (v/v/v) and centrifuged again. The washing step

was repeated with 80-, 60-, and 50- ml chloroform/metha-

nol/diethylether 2:1:12 (v/v/v). The residual pellet was

stirred in 50-ml chloroform/methanol 2:1 (v/v) for 64 h at

4 jC to solubilize subunit III. After centrifugation in Corex-

tubes (3000� g, 5 min, 4 jC) to remove insoluble material,

6-ml 1-butanol was added to the supernatant. At 0.1 bar,

most chloroform/methanol, but not 1-butanol, was removed

for 4 h at RT using a rotating evaporator.

For a further chromatographic purification of subunit III,

DEAE-cellulose was prepared as described by Sigrist-Nel-

son and Azzi [25]. The column (d = 3.5 cm, h = 5.5 cm) was

equilibrated with 130-ml 1-butanol. The monomer III in 1-

butanol was applied to the column. The solvents for

chromatography were 60-ml 1-butanol, 60-ml 1-butanol/

formic acid 50:1 (v/v), 50-ml chloroform/methanol 2:1 (v/

v), and 50-ml chloroform/methanol/water 5:5:1 (v/v/v).

Fractions of 10 ml were collected and stored at � 20 jC.
The column was regenerated with 30-ml chloroform/meth-

anol/water 5:5:1 (v/v/v) with 22 mM ammonium acetate,

and thereafter with 55-ml chloroform/methanol/water 5:5:1

(v/v/v) containing 47 mM ammonium acetate.

2.3. Isolation of the supramolecular complex III14

Six-milliliter CFOF1 (about 24 mg) from sucrose gra-

dient with Triton X-100 was dialysed against 1-l buffer A

(10 mM Tricine/NaOH pH 7.8, 5 mM DTT) for 12 h at 4

jC using a visking type 8 (Biomol) dialysis tubing with a

cut-off of 12 kDa. The dialysed CFOF1 solution was

concentrated with an ultrafiltration unit (Centricon 100

kDa, Millipore) to a volume of maximal 4 ml. The ATP
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synthase was mixed with solid SDS (final concentration

1% w/v) and incubated for 1 h at RT. Concentrated

sample (0.5 ml) containing about 6-mg ATP synthase

was loaded on a 12.4-ml linear gradient from 7.5% to

30% glycerol containing 10 mM Na-phosphate pH 7.8,

1% (w/v) SDS, or alternatively on a gradient buffer

containing 10 mM Na-phosphate pH 7.8, 8 mM dodecyl

maltoside (DDM). Other subunits besides III14 were

separated by rate-zonal centrifugation at 222,500� g,

swing-out rotor, for 23 h at 20 jC when using the buffer

with SDS, or at 10 jC when using the buffer with DDM.

Fractions of 0.5 ml were collected from the bottom of the

tube.

2.4. Protein analysis

SDS-PAGE and Coomassie R250 or silver staining

[26,27] as well as protein determination were performed

according to Ref. [20]. When determining the N-terminal

protein sequence of subunit III, SDS-PAGE with borate

buffer according to Poduslo [28] was employed. For se-

quencing, proteins were transferred after borate SDS-PAGE

to PVDF-membranes (Bio-Rad) with the Bio-Rad transfer

device Trans-Blot SD using the ‘‘semi-dry’’ technique [29].

Subunit III immobilized on the PVDF membrane was

deformylated [30]. Membranes were stained with 0.1%

(w/v) Coomassie R-250 in 50% (v/v) methanol and bands

cut out with a scalpel. N-terminal sequencing was carried

out by automated Edman degradation.

2.5. CD spectroscopy

CD spectra were recorded with a Jasco J-720 CD

spectrometer at 4 jC and a cuvette of 0.1-mm path length.

The secondary structure elements of the monomer III were

calculated with the algorithm of Chang et al. [31], the helix

content of the III14-complex was calculated with the algo-

rithm of Chang et al. [31] and Compton and Johnson [32].

To record the spectra, subunit III monomer was either used

directly in organic solvent (chloroform/methanol 2:1 or 1-

butanol) or after evaporation of the solvent transferred in

aqueous solution of SDS. The oligomer III14 was measured

in the density gradient solution with SDS.

2.6. FTIR spectroscopy

Measurements were made with a Bruker Vector 22 at RT

and a CaF2-cuvette of 10-Am path length. After evaporation

of other organic solvents, 10 Al of the monomer of subunit

III dissolved in CDCl3/CD3OD/D2O 4:4:1 (v/v) was depos-

ited on the CaF2 cuvette. Four hundred infrared spectra were

recorded at an optical resolution of 2 cm� 1. The vibrational

contributions of the solvent and of residual water vapor

were subtracted from the spectrum of the dissolved protein.

A sum of Gaussians was used to fit the amide I band of the

IR spectrum as provided by the OPUS software (Bruker).
Integration of each Gaussians provided the relative content

of the respective secondary structure.

2.7. Mass spectrometry

Protein and peptide samples were analysed on a Voyag-

er-DE PRO (Applied Biosystems) matrix-assisted laser

desorption/ionisation time-of-flight mass spectrometer

(MALDI-TOF MS). For peptide mass fingerprinting, tryptic

peptides were obtained from silver-stained gels after

destaining [33] and in-gel digestion [27]. The peptide

mixtures were analysed using a 5 mg/ml solution of a-

cyano-4-hydroxycinnamic acid in 50% acetonitrile/0.1%

trifluoroacetic acid [34].

For molecular mass determination of the III-subunit, III14
solubilized in DDM was diluted to 0.15 mg/ml. A saturated

solution of 2-(4-hydroxyphenylazo)-benzoic acid (HABA)

in 50% acetonitrile/0.1% trifluoroacetic acid was used as

matrix for dried droplet target preparation. Mass spectra

were obtained in the linear, delayed extraction mode.
3. Results

3.1. Isolation of the subunit III monomer

Spinach chloroplasts were homogenised in chloroform/

methanol/diethylether 2:1:12 (v/v/v), leaving the subunit III

insoluble and removing the chlorophylls. Subunit III mono-

mer was solubilized in chloroform/methanol 2:1 (v/v). No

other protein species besides subunit III were solubilized as

revealed by SDS-PAGE and silver staining (Fig. 1A).

However, analysis by thin-layer chromatography showed

that the protein contained lipid impurities and a small

amount of pigments (data not shown). To remove the lipid

and pigment contaminations, subunit III was further purified

by chromatography on DEAE-cellulose. Pigments could be

eluted in 1-butanol, or in 1-butanol/formic acid. The subunit

III eluted in chloroform/methanol 2:1 preceding the main

lipid impurity sulfoquinovosyldiacylglyceride (according to

TLC) in chloroform/methanol/water 5:5:1 (v/v/v). The yield

from the chloroplasts was 0.1 mg subunit III/mg chlorophyll

before chromatography. Of the applied subunit III, 60% was

recovered after chromatography.

3.2. Isolation of the oligomer III14

CFOF1 was dissociated with 1% SDS into its subunits.

We observed that most of the III14 oligomer remained intact

at this SDS concentration in a temperature range of 15-35

jC. Dissociated proteins were separated by velocity sedi-

mentation, then analysed by SDS-PAGE and silver staining.

The supramolecular complex III14 sedimented fastest and

was found at high purity in fractions 8–11 (corresponding

to a glycerol concentration of 15.5–17.5%) as documented

in Fig. 1B, lanes 7 and 8 (sharp band at about 100 kDa). To



Fig. 1. Isolation of subunit III monomer and of the oligomer III14. (A) By SDS-PAGE (T= 15%, C = 5%) with subsequent silver staining, subunit III extract

before chromatography (lanes 1 and 2) and subunit III after chromatography (lanes 3 and 4) were analysed. (B) Isolation of the oligomer III14 by velocity

sedimentation. Membrane proteins were analysed by SDS-PAGE (T= 14%, C= 4%) and silver staining. Lane 1: CFOF1 before sedimentation; lane 2: LMW-

standard; lanes 3 to 8: fraction 1 (7.5% glycerol), fraction 3 (9.5% glycerol), fraction 5 (11.5% glycerol), fraction 7 (13.5% glycerol), fraction 9 (15.5%

glycerol), fraction 11 (17.5% glycerol).
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determine the degree of dissociation of the oligomeric

subunit III, we analysed the bands of the oligomeric and

the monomeric subunit on silver-stained SDS gels by

densitometry and compared the areas using the software

QuantiScan (Biosoft). Less than 20% of the oligomeric

subunit III dissociated into the monomer. Besides the

monomer and the oligomer III14, no other stoichiometries

were found. Partial dissociation of the complex may have

occurred during isolation and storage or SDS-PAGE. If the

gradient buffer contained SDS, 0.94-mg highly pure subunit

III was obtained in fractions 8–11 from 25-mg CFOF1,

which is a yield of about 22% of the subunit III originally

present in the centrifuged ATP synthase. With DDM in the

gradient buffer, the purest fractions with 14–18% glycerol

contained 0.61-mg subunit III from 20-mg CFOF1 (a yield of

about 15%). N-terminal sequencing of the first six amino

acids (MNPLIA) after deformylation was used to confirm

that the isolated protein corresponds to subunit III. The

MALDI mass spectra of the isolated subunit III monomer

and the oligomer show a single peak at a mass of 8003 Da,

which is almost exactly the theoretical value of 8002.5 Da

computed from the amino acid sequence (81 amino acids)

and the formyl-modification of methionine (Fig. 2). This

proves that no posttranslational modifications of subunit III

occurred. No impurities were present. The identification of

subunit III by tryptic digestion and MALDI mass spectrom-

etry of the peptide fragments verified the result of the N-

terminal sequencing. Fragments of 1027.55 and 3728.03 Da

were detected. Theoretically, six fragments should result

from tryptic digestion of subunit III, but the low and high

( > 4000 Da) mass of the other fragments makes them

difficult to identify. The mass of the identified fragments
corresponds to the theoretical values of 1027.55 and

3728.00. The latter represents the N-terminal peptide in-

cluding the formyl modification.

3.3. Secondary structure of subunit III

The subunit III monomer was obtained by solubilisation

and chromatography in chloroform/methanol 2:1. To record

the CD spectrum, the organic solvent was evaporated and

the protein was resuspended in aqueous 2% (w/v) SDS. The

CD spectrum (Fig. 3A) of the subunit III monomer displays

the double minimum of the transitions at 208 and 222 nm,

characteristics of a-helices. This was confirmed by calcu-

lating the contribution of each protein secondary structure

element to the spectrum by the algorithm of Chang et al.

[31]: 44% a-helix, 26% h-sheet, 25% random coil.

To study the influence of the solvent on the conformation

of the protein, a spectrum in 1-butanol was recorded from

191 to 260 nm. With chloroform/methanol 2:1 as solvent, the

CD spectrum could only be recorded in the range between

215 and 260 nm. In the measured wavelength ranges, the CD

spectra of subunit III monomer in chloroform/methanol 2:1

and 1-butanol (data not shown) were identical to the spec-

trum in 2% SDS, indicating that the overall structure of the

III is neither affected by the two different solvents nor altered

in the more lipid-like SDS micelle.

The IR spectrum of the monomer III dissolved in CDCl3/

CD3OD/D2O 4:4:1 (v/v) (Fig. 3B) displays four prominent

bands. The amide I band (mainly C =O stretching mode of

the protein backbone) appears at 1656 cm� 1 with a shoul-

der at 1628 cm� 1. The former frequency confirms the

predominance of the a-helical conformation of the protein



Fig. 2. MALDI-TOF mass spectrum of subunit III oligomer, displaying the m/z of the dissociated monomeric subunit III.

Fig. 3. CD spectrum (A: 184–260 nm) and FTIR spectrum (B: 1800 to

1400 cm� 1) of isolated subunit III monomer. To record the CD spectrum,

the subunit III monomer after evaporation of other organic solvents was

resuspended in aqueous 2% (w/v) SDS. For recording the FTIR spectrum,

the monomer III was dissolved in CDCl3/CD3OD/D2O 4:4:1 (v/v).
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backbone. The peak at 1546 cm� 1 corresponds to the amide

II vibration (C =N stretch coupled to the N–H bending

mode of the backbone). This band indicates that the

backbone protons do not exchange with deuterons in the

deuterated solvent. The corresponding amide IIV mode

appears at 1459 cm� 1, typically downshifted by ca. 100

cm� 1. To calculate the proportion of each secondary

structure element from the FTIR spectrum, the amide I

absorption band was fitted to a sum of Gaussians. Accord-

ing to this analysis, subunit III is predominantly a-helical

(50% a-helix, 30% h-sheet, 20% random coil) consistent

with results from CD spectroscopy. Not only the a-helix but

also the proportion of the two other secondary structural

elements coincide quite well for both methods. Neverthe-

less, the high proportion of h-sheet is in contradiction to the

recent electron and X-ray structures [7,16].

The band at 1737 cm� 1 in the FTIR spectrum of the

monomeric subunit III is caused by residual lipid from the

buffer which was not completely removed during the

purification procedure.

3.4. Comparison of subunit III monomer and oligomer

For a direct structural comparison of the subunit III

oligomer with the monomeric subunit, a sample of the

oligomer was incubated with chloroform. This treatment

dissociates the oligomer into monomers (data not shown).

After evaporation of the organic solvent, subunit III mono-

mer was dissolved in 0.5% or 1% SDS buffer. The CD

spectra of the samples prior or after chloroform treatment

show the same secondary structure of the isolated monomer

and the oligomer in the presence of 1% SDS (Fig. 4). The

CD spectra of the subunit III oligomer in 0.5% and 1% SDS



Fig. 4. CD spectra of oligomeric and monomeric subunit III, recorded in 1% and 0.5% SDS buffer, respectively. The spectra were normalized to the protein

mass. To obtain the monomer III, the oligomer was dissociated by chloroform treatment.
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buffer suggest a higher a-helix content at the 50% reduced

SDS concentration. However, significantly larger differen-

ces exist between the CD spectra of the III monomer in 1%

SDS and 0.5% SDS, as exemplified by the pronounced

hypsochromic shift at the lower concentration. If the pro-

portion of a-helix for the oligomer in 1% SDS is set to 1.0,

the relative content for the monomer is 0.9 in 1% SDS and

only about 0.7 in 0.5% SDS. In summary, in 1% SDS, the

helix contents of the subunit III monomer and oligomer are

very similar. However, 1:1 dilution of the detergent leads to

a drastic decrease of the a-helix content for the III monomer

only, indicating that the conformation of the subunit III

monomer is stabilized by protein–protein interactions in the

oligomer.
4. Discussion

The lack of structural information for chloroplast FO
motivated us to develop new isolation procedures for

monomeric subunit III and its oligomer III14. Previous

methods for isolation of the oligomer from spinach chlor-

oplasts had two main disadvantages. Both methods [2,35]

were based on gel electrophoresis. Therefore, it was neces-

sary to extract the protein from the gel matrix for further

use. Only small amounts of protein could be obtained by

both methods, insufficient for screening of 2D and 3D

crystallization conditions. The newly established method

with SDS in the buffer for the density gradient allowed us to

isolate a highly pure oligomer III in milligram amounts.

Upon replacing the detergent SDS by DDM, the oligomer

was contaminated with the a, h, and g subunits of CF1.

This latter detergent was therefore inefficient in dissociating

the ATP synthase. However, it was preserving the oligo-
meric architure better, so that the amount of contaminating

monomer was lower and the oligomer was more stable. It is

worth noting that isolation of the oligomer c11 of I.

tartaricus [17] and of yeast F1c10 [7] has been described

but not for E. coli, even though an in vitro self-assembly of

monomeric subunits c into an oligomeric ring is possible in

E. coli [36]. Compared to mitochondria or E. coli, the

oligomers from spinach chloroplasts and I. tartaricus [37]

are very stable, because both can be found in the high mass

range of SDS gels.

In order to determine the secondary structure of subunit

III, CD and FTIR spectroscopy were applied. Both samples,

i.e., subunit III and its oligomer, have a predominantly a-

helical structure. The determined helix content of about 50%

seems to be too low for a protein arranged as an a-helical

hairpin. But indeed, the value is in accordance with the helix

content of about 52% in the NMR structure of subunit c

from E. coli, which possess three helical segments [15]. In

P. modestum, the a-helix content of subunit c is much higher

(about 80%) in the NMR structure [16], but the earlier

published value of 40% based on CD measurement [38] is

in line with our own results. For subunit c of Neurospora

crassa, a helix content of 60% in SDS has been determined

by CD [39]. The helix content of subunit III or c is not

constant, but changes with the solvent or pH. In E. coli a

significant change in the conformation of the c subunit was

observed after pH increase from 5 to 8 in organic solvent/

monomer c mixtures [19]. This conformational alteration

was suggested to be an essential mechanism in subunit c to

transfer protons to subunit a. For mitochondrial subunit c, a

conformational change with different solvents has been

reported [39]. Differences of about 20% in the helix content

occurred upon changing the detergent from SDS to octyl

glucoside. In organic solvent or in the presence of non-
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charged detergent, the helix content is markably higher than

in 0.1% SDS. In the present study, for monomeric subunit

III, a conformational change is observed upon dilution of

the SDS solubilized protein. We conclude that a pH change

[19] or a change in the hydrophobicity of the environment

can induce conformational changes in the monomeric sub-

unit III or c, but smaller changes occur in the oligomer. As a

result of this conformational alteration, protons might be

transferred from Asp 61 or Glu 61 of subunit c (III) to

subunit a (IV). In the oligomeric subunit, solvent-induced

conformational changes are less pronounced (Fig. 4). Since

during the rotation of the proton turbine only one of the

protomers is protonated at any time according to the

presently postulated mechanism [1,19], the possible

changed helix content of only one subunit cannot be

resolved when observing the whole oligomeric cylinder

with CD or FTIR spectroscopy. Besides the a-helix content

in CD or FTIR spectra, a significant proportion of h-sheets
is detected. This is in contradiction to the more direct

biophysical methods (NMR, electron microscopy, and X-

ray diffraction), in which no h-sheets were revealed. In

NMR studies often an isotropic organic solvent was used

[15], which might perturb the secondary structure much

more than the aqueous buffers in our study. However, the

main cause for the discrepancy is most probably that CD

and FTIR only reflect the overall structure but do not allow

precise determinations of the exact secondary structure.

Application of MALDI mass spectrometry for integral

membrane proteins is still a challenge although the first

successful attempts emerged in 1995 [40]. With MALDI-

MS we could determine the mass of the extraordinary

hydrophobic (GRAVY index 1.035) monomeric subunit III

and were able to reveal that besides the formyl-modification,

no posttranslational modifications occurred. Additionally,

analysing the band of the subunit III oligomer from SDS-

PAGE by MALDI MS, we were able to prove that this band

contains subunit III only. No other proteins were present as

contaminants. The subunit III monomer of spinach (81 amino

acids) has a lower molecular mass (8003 Da) than its

homologue from Chlamydomonas reinhardtii (8125 Da, 82

amino acids, Meyer zu Tittingdorf, submitted for publica-

tion), and from I. tartaricus (8790 Da, 89 amino acids, [17]).

Two main problems emerge with mass spectrometric identi-

fication of this subunit. The first problem is the small size.

Only two tryptic fragments could be obtained, therefore the

data base search has to be very restricted. The second problem

is the lack or limited accessibility of proteolytic cleavage sites

in the membrane-spanning segments [41].

According to Fig. 2, only a single ion of m/z = 8003 is

present in the MALDI spectrum of the III14 sample. This

shows, on the one hand, the very high purity of the

preparation. On the other hand, since the starting material

was the III14 oligomer, the present time limitation of

MALDI-MS in the investigation of protein complexes

stabilized by only hydrophobic interactions is documented.

The use of organic solvents during sample preparation
affects the hydrophobic protein–protein interactions. Also

the matrix employed or the high-energy laser ionisation

might dissociate the oligomer into its protomers. As long as

appropriate matrices or ionisation procedures, as success-

fully applied in the case of the trimeric porin channel [40],

are not available for other noncovalent protein complexes,

such as CFOF1, biochemical cross-linking of the various

subunits might be the only way to determine their mass by

MALDI-MS.

The highly pure samples of monomeric and oligomeric

subunit III now available, as well as their determined

secondary structures and solvent-induced conformational

changes, will hopefully facilitate the elucidation of the

structure as well as of the mechanism of the chloroplast

proton ATP synthase.
Acknowledgements

This work was funded by the Deutsche Forschungsge-

meinschaft (SFB 472 to NAD and HS), Fonds der

chemischen Industrie (to NAD), the Bundesministerium

für Bildung, Wissenschaft, Forschung und Technologie (03-

DE4DAR-18 to N.A.D.). The authors are grateful to Dr. D.

Neff for supplying the FTIR spectrum of monomer III. We
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