The kernel and cokernel of a differential operator in several variables. II

by Arno van den Essen

Mathematisch Instituut, Budapestlaan 6, 3508 TA Utrecht, the Netherlands

Communicated by Prof. T.A. Springer at the meeting of June 20, 1983

We fix the following notations. Let $n \in \mathbb{N}:=\mathbb{N} \cup\{0\}$ and let k be a field of characteristic zero. Put $\mathscr{O}_{n}=k$ if $n=0$ and \mathscr{O}_{n} is the ring of formal power series in n variables x_{1}, \ldots, x_{n} over k if $n \in \mathbb{N}$. Instead of \mathscr{O}_{n} we write A. Furthermore $B:=A[[t]]$ is the ring of formal power series in t with coefficients in A. Instead of the derivation $\partial / \partial t$ we write ∂. If R is a ring, $\underline{\underline{M}}(R)$ denotes the category of left R-modules of finite type.

Let $P: B \rightarrow B$ be a differential operator of the form

$$
P=\sum_{i=0}^{r} p_{i} \partial^{i}, \text { with } r \in \bar{N}, p_{i} \in B .
$$

In [2] we showed that if p_{r} is t-regular i.e. $p_{r}(0, \ldots, 0, t) \neq 0$, both ker P and coker $P(=B / P B)$ belong to $\underline{=}(A)$.

In this paper we give a much simpler proof of this result, based on work of Malgrange in [3]. Moreover, the theorems we obtain below generalize the previous results of [2] and are complete in the sense that they clarify under what conditions on P the kernel and cokernel are finitely generated A-modules.

THEOREM 1. Put $P(0):=\sum_{i=0}^{r} p_{i}(0, \ldots, 0, t) \mathrm{d}^{i}$. Then coker $P \in \underline{\underline{M}}(A)$ iff $P(0) \neq 0$.

REMARK 1. This result can be viewed as a generalization of Weierstrass' division theorem, by taking $r=0$.

PROOF. i) Assume coker $P \in M(A)$. Since A is noetherian the A-submodule $\sum A \bar{t}^{i}$ of coker P is in $\underline{\underline{M}}(A)$ where $\bar{t}^{i}:=t^{i}+P B$. Hence

$$
t^{N}+a_{N-1} t^{N-1}+\ldots+a_{0}=P b \text { for some } N \in \mathbb{N}, a_{i} \in A, b \in B
$$

Now substitute $x_{1}=\ldots=x_{n}=0$ and we get $P(0) \neq 0$.
ii) Conversely, let $P(0) \neq 0$. We use induction on n. The case $n=0$ is proved by Malgrange in [3]. So let $n \in \mathbb{N}$. Put

$$
B_{0}=\bigoplus_{n-1}[[t]], P_{0}=\sum p_{i}\left(x_{1}, \ldots, x_{n-1}, 0, t\right) \mathrm{d}^{i} .
$$

We have the following isomorphism of B_{0}-modules

$$
B / P B+x_{n} B=B / x_{n} B+P_{0} B \simeq B_{0} / P_{0} B_{0}
$$

By the induction hypothesis $B_{0} / P_{0} B_{0} \in M\left(\Theta_{n-1}\right)$, so we get

$$
B / P B+x_{n} B \in M\left(\mathscr{O}_{n-1}\right) .
$$

Hence there exist $s \in \mathbb{N}, e_{1}, \ldots, e_{s} \in B$ satisfying

$$
B \subset \sum \mathscr{O}_{n-1} e_{i}+P B+x_{n} B
$$

Let $b \in B$. Then

$$
\begin{equation*}
b=\sum c_{i} e_{i}+x_{n} g+P h, \text { some } c_{i} \in \mathscr{O}_{n-1}, g, h \in B \tag{1}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
g=\sum c_{i}^{\prime} e_{i}+x_{n} g^{\prime}+P h^{\prime}, \text { some } c_{i}^{\prime} \in \mathscr{O}_{n-1}, g^{\prime}, h^{\prime} \in B \tag{2}
\end{equation*}
$$

Substituting (2) in (1) gives

$$
\begin{equation*}
b=\sum\left(c_{i}+c_{i}^{\prime} x_{n}\right) e_{i}+x_{n}^{2} g^{\prime}+P\left(h+x_{n} h^{\prime}\right) \tag{3}
\end{equation*}
$$

Again we can substitute a formula for g^{\prime} in (3) and so on.
Since A and B are complete local rings the process above gives

$$
b \in \sum A e_{i}+P B, \text { all } b \in B
$$

Hence $B \subset \sum A e_{i}+P B$, which implies coker $P \in \underline{\underline{M}}(A)$, as desired.
From the proof above we immediately conclude:
Corollary 2. Assume $P(0) \neq 0$. If coker $P(0)(=k[[t]] / P(0) k[[t]])$ is generated as a k-module by the residue classes of some elements $e_{1}, \ldots, e_{d} \in k[[t]]$, then coker P is generated as an A-module by the residue classes of e_{1}, \ldots, e_{d}.

In general coker P is not a free A-module, as can be seen as follows.
Let $n=1$. So $A=k[[x]], B=k[[x, t]]$. Put $P:=t \mathrm{D}+(x-1)$. So $P(0)=t \mathrm{D}-1$. It is easily seen that coker $P(0) \simeq k \bar{t}$, where the residue class $\bar{t}:=t+P(0) k[t t]]$ is non-zero. By Cor. 2 we get coker $P \simeq A \overline{\bar{t}}$, with $\overline{\bar{t}}:=t+P B \neq 0$. Finally, since $x t=P t$ we get $x \overline{\bar{t}}=0$. So coker P is not a free A-module. Observe that ker $P(0) \neq 0$, since $P(0) t=0$. However, the following general result completely clarifies the situation when ker $P(0)=0$.

PROPOSITION 3. If ker $P(0)=0$, then coker P is a free A-module of rank d, where $d:=\operatorname{dim}_{k}$ coker $P(0)$. More precisely, for every d-tuple e_{1}, \ldots, e_{d} in $k[[t]]$ such that $\left(\bar{e}_{1}, \ldots, \bar{e}_{d}\right)$ is a k-basis of coker $P(0)$, the elements $e_{i}+P B, 1 \leq i \leq d$ form an A-basis of coker P.

To prove this result we also generalise [2], Th. II.1). Observe that if $P=0$, then ker $P=B \notin \underline{\underline{M}}(A)$. In fact this is the only case where ker $P \boxminus \underline{=}(A)$. This follows from

THEOREM II. ker $P \in \underline{\underline{M}}(A)$ iff $P \neq 0$.
PROOF. i) Write $P=\sum P_{j} x_{n}^{j}, P_{j} \in B_{0}[\delta]$. Assume $P \neq 0$. Then there exists some minimal $j_{0} \in \overline{\mathbb{N}}$ with $P_{j_{0}} \neq 0$. Put $P=x_{n}^{j_{0}} Q$. Obviously ker $P=$ ker Q and $Q_{0}=P_{j_{0}} \neq 0$. So we may assume $P_{0} \neq 0$.
ii) Let $b \in \operatorname{ker} P$. Write $b=\sum b_{j} x_{n}^{j}, b_{j} \in B_{0}$. Then $b_{0} \in \operatorname{ker} P_{0}$. So we get a map

$$
\phi: \operatorname{ker} P \ni b \rightarrow b_{0} \in \operatorname{ker} P_{0} .
$$

If $b_{0}=0$, then $b=x_{n} b^{\prime}$, some $b^{\prime} \in B$. Since $0=P b=x_{n} P b^{\prime}$ and B has no zerodivisors, $b^{\prime} \in \operatorname{ker} P$ follows. Hence $\operatorname{ker} \phi=x_{n} \operatorname{ker} P$. So ϕ induces an injective 0_{n-1}-module homomorphism

$$
\bar{\phi}: \text { ker } P / x_{n} \text { ker } P \rightarrow \operatorname{ker} P_{0} .
$$

iii) Now we prove our theorem by induction on n. The case $n=0$ is proved by Malgrange in [3]. So let $n \in \mathbb{N}$. Then ker $P_{0} \in M\left(\mathfrak{O}_{n-1}\right)$. So by ii) ker P / x_{n} ker $P \in \underline{M}\left(O_{n-1}\right)$, say

$$
\operatorname{ker} P / x_{n} \text { ker } P=\sum_{i=1}^{q} \mathscr{O}_{n-1}\left(e_{i}+x_{n} \text { ker } P\right), \text { some } e_{i} \in \operatorname{ker} P .
$$

Then, arguing as in the second part of the proof of TH. I we find ker $P=\sum A e_{i} \in M(A)$, which concludes the proof.

COROLLARy 4. If ker $P(0)=0$, then ker $P=0$.
PROOF. Induction on n. So we may assume ker $P_{0}=0$. Then by ii) above ker P / x_{n} ker $P=0$, whence ker $P=0$ by the result of iii) above.

PROOF OF PROPOSITION 3. Let $e_{1}, \ldots, e_{d} \in k[[t]]$ be such that $\left(\bar{e}_{1}, \ldots, \bar{e}_{d}\right)$ is a k-basis of coker $P(0)$.

Using Cor. 2 it remains to verify that the elements $e_{i}+P B, 1 \leq i \leq d$ are A linearly independent. So let $\sum a_{i} e_{i}=P b$, some $a_{i} \in A, b \in B$. We use induction on n. Therefore we write as before

$$
a_{i}=\sum a_{i j} x_{n}^{j}, b=\sum b_{j} x_{n}^{j}, P=\sum P_{j} x_{n}^{j}
$$

We get

$$
\begin{equation*}
\sum a_{i j} e_{i}=P_{j} b_{0}+P_{j-1} b_{1}+\ldots+P_{0} b_{j}, \text { all } j \in \overline{\mathbb{N}} \tag{*}
\end{equation*}
$$

By induction on j we shall prove: $a_{i j}=0$, all $i, b_{0}=\ldots=b_{j}=0$. From this we deduce $a_{i}=0$, all i as desired.

The case $j=0$. Put $j=0$ in (*). This gives

$$
\sum a_{i 0} e_{i}=P_{0} b_{0}
$$

So by our induction on n we get $a_{i 0}=0$, all i. Whence $P_{0} b_{0}=0$ implying $b_{0}=0$ (Cor. 4). Now let $j \in \mathbb{N}$ and assume $b_{0}=\ldots=b_{j-1}=0$.

Then (${ }^{*}$) gives

$$
\sum a_{i j} e_{i}=P_{0} b_{j}
$$

Whence, by induction on $n, a_{i j}=0$, all i, implying $b_{j}=0$ by Cor. 4 as desired.
FINAL REMARK. An application of TH. I is given in [1] where it is shown that the cokernel of a holonomic \mathscr{D}_{n}-module under the operator $\partial / \partial x_{n}$ is a holonomic \mathscr{T}_{n-1}-module if M satisfies some generic condition. The importance of this last result for the theory of \mathscr{P}-modules will be pointed out in a forthcoming paper.

REFERENCES

1. Essen, A. van den - Le conoyau de l'opérateur $\partial / \partial x_{n}$ agissant sur un \mathscr{D}_{n}-module holonome, C.R. Acad. Sci. Paris, t. 296, Série I, p. 903-906 (1983).
2. Essen, A. van den - The kernel and cokernel of a differential operator in several variables. Indagationes Mathematicae, 45, 1, 67-76 (1983).
3. Malgrange, B. - Sur les points singuliers des équations differentielles, l'Enseignement Math. 20, 147-176 (1974).
