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We fix the following notations. Let n e N : = N U {0} and let k be a field of  

characteristic zero. Put ~7 n = k if n = 0 and ~7 n is the ring of  formal power series 

in n variables x~ . . . . .  x n over k if n e N. Instead of ~n we write A. Furthermore 

B: = A [[tl] is the ring of formal power series in t with coefficients in A. Instead 

of  the derivation 6 / 6 t  we write (3. If  R is a ring, _M(R) denotes the category of  

left R-modules of  finite type. 

Let P:B--*B be a differential operator of the form 

P = ~ pii) i, with r E N,  Pi E B. 
i=0 

In [2] we showed that if Pr is t-regular i.e. Pr(O .... ,0, t)g:0, both ker P and 
coker P ( = B / P B )  belong to _M(A). 

In this paper we give a much simpler proof  of this result, based on work of 

Malgrange in [3]. Moreover, the theorems we obtain below generalize the 
previous results of  [2] and are complete in the sense that they clarify under what 

conditions on P the kernel and cokernel are finitely generated A-modules. 

= r 0 . THEOREM 1. Put P(O): ~i=oPi( . . . .  0 , 0 6 (  Then coker P ~ _ M ( A )  iff 
P(O) ~: o. 

REMARK 1. This result can be viewed as a generalization of  Weierstrass' 
division theorem, by taking r =  0. 
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PROOF. i) Assume coker P e M ( A ) .  Since A is noether ian the A-submodu le  
A t  i of  coker P is in _M(A) where ~-i: = t i+pB.  Hence 

tN +aN_l tN-1 + ... +ao=Pb for  some N e  N, a i e A ,  b e B .  

Now substitute Xl . . . . .  Xn=O and we get P(0) ~:0. 
ii) Conversely,  let P(0) :~ 0. We use induct ion on n. The case n = 0 is proved 

by  Malgrange in [3]. So let n e N. Pu t  

Bo= Pn_ l [[t]], P0 = ~ Pi(X1, ...,Xn_ l, O, t)¢) i. 

We have the following i somorphism of  B0-modules 

B / P B  + xnB = B/xnB + Po B = Bo/PoB o. 

By the induct ion hypothesis  Bo/PoB o e M(O n_ 1), so we get 

B / P B  + Xn B e M ( 6  n _ 1). 

Hence there exist s e N, el . . . . .  e s e B satisfying 

B C  ~, On_lei+PB+xnB. 

Let b e B .  Then 

(1) b= S, ciei+xng+Ph, some cie6n_l,g,  h e B .  

Similarly 

(2) g= ~ c~ei+Xng'+Ph', some c[e6n_ l ,g ' , h ' eB .  

Substituting (2) in (1) gives 

(3) b= 2 (ci+c[xn)ei+xZg'+P(h+xnh').  

Again  we can substitute a fo rmula  for  g '  in (3) and so on. 

Since A and B are complete local rings the process above gives 

b e  ~,Aei+ PB, all b e B .  

Hence BC ~ Aei+PB,  which implies coker PeM_(A), as desired. 

F r o m  the p r o o f  above we immediately conclude:  

COROLLARY 2. Assume P(0):~0.  I f  coker P(0) (=k[[t]]/P(O)k[[t]]) is gener- 

ated as a k-module  by the residue classes o f  some elements ea . . . . .  edek[[t]], 
then coker P is generated as an A-modu le  by the residue classes o f  el . . . . .  ed. 

In  general coker P is not  a free A-module ,  as can be seen as follows. 
Let n = 1. So A = k[[x]], B = k[[x, t]]. Pu t  P :  = t8 + ( x -  1). So P(0) = tb - 1. It 

is easily seen that  coker  P(0) = kt-, where the residue class 7: = t + P(0) k[[t]] is 

non-zero.  By Cor.  2 we get coker P=A~,  with ~: = t + P B ~ O .  Finally, since 
x t = P t  we get x~=0 .  So coker P is not  a free A-module .  Observe that  ker 
P(0):~0,  since P ( 0 ) t = 0 .  However ,  the fol lowing general result completely 
clarifies the si tuation when ker P ( 0 ) =  0. 
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PROPOSITION 3. If  ker P(0)= 0, then coker P is a free A-module of  rank d, 

where d:  = dime coker P(0). More precisely, for every d-tuple el . . . .  , ed in k[[t]] 

such that (~i . . . .  ,0d) is a k-basis of coker P(O), the elements ei+PB, l<_i<_d 
form an A-basis of  coker P. 

To prove this result we also generalise [2], Th. II.1). Observe that if P = 0 ,  

then ker P=B~iM_(A). In fact this is the only case where ker P~iM(A). This 

follows from 

THEOREM II. ker PeM_(A) iff P#:O. 

PROOF. i) Write P =  Y. PjxJn, PjeBo[6]. Assume Pg:0 .  Then there exists 

some minimal J0 e N with PJo-VaO" Put P=xJoQ. Obviously ker P =  ker Q and 

(2o = PJo --/= O. So we may assume P0 * 0. 
ii) Let b e ker P. Write b = Y~ bjx~, bj ~ Bo. Then b0 e ker Po. So we get a 

map 

q~:ker P~b-- 'boeker Po. 

If  b0=O, then b=xnb', some b'eB.  Since O=Pb=x,,Pb' and B has no zero- 

divisors, b ' e  ker P follows. Hence ker q~ =xn ker P. So q~ induces an injective 

a n_ l-module homomorphism 

qS:ker P/x  n ker P ~ k e r  P0. 

iii) Now we prove our theorem by induction on n. The case n = 0 is proved 

by Malgrange in [3]. So let n e N. Then ker P0 e _M(Yn- 1)- So by ii) ker P/xn 
ker Pe_M((~n_l), say 

q 

ker P/xn ker P = Z g~n- 1 (ei + xn ker P),  some ei~ ker P. 

Then, arguing as in the second part of the proof  of  TH. I we find 

ker P =  ~ AeieM(A),  which concludes the proof. 

COROLLARY 4. If ker P(0)= 0, then ker P =  0. 

PROOF. Induction on n. So we may assume ker P0=0 .  Then by ii) above 

ker P/xn ker P = 0, whence ker P =  0 by the result of iii) above. 

PROOF OF PROPOSITION 3. Let e 1 . . . . .  eaek[[t]] be such that (~1 . . . . .  0a) is a 

k-basis of  coker P(0). 
Using Cor. 2 it remains to verify that the elements ei+PB, 1 <_i<_d are A- 

linearly independent. So let ~ aiei=Pb, some aieA, beB.  We use induction 
on n. Therefore we write as before 

aijx , b = bjx , P :  Pixy. 

405 



W e  get 

(*) E a i j e i = P j b o + P j _ l b l + . . . + P o b j ,  all j ~  N. 

By induc t ion  on  j we shall  prove:  aij = 0, all i, bo . . . . .  bj = 0. F r o m  this we 

deduce  a i = 0, all  i as desi red.  

The  case j = 0 .  Pu t  j = 0  in (*). This  gives 

2 aioei = Pobo. 

So by our  induc t ion  on  n we get aio = 0, all i. Whence  Pobo = 0 imply ing  b0 = 0 

(Cor .  4). N o w  let j ~  N and  assume bo . . . . .  bj_ 1 = 0. 

Then  (*) gives 

E aijei = Pobj. 

Whence ,  by  induc t ion  on  n, aij = O, all i, imply ing  bj = 0 by  Cor .  4 as desired.  

FINAL REMARK. A n  app l i ca t i on  o f  T H .  I is given in [1] where  it is shown tha t  

the  cokerne l  o f  a h o l o n o m i c  ~n-module  under  the  o p e r a t o r  6/6Xn is a 

h o l o n o m i c  ~n -  1-module i f  M satisfies some gener ic  cond i t ion .  The  impor t a nc e  

o f  this last  resul t  for  the  theo ry  o f  9 - m o d u l e s  will be po in t ed  ou t  in a for th-  

coming  pape r .  
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