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We fix the following notations. Let neN: =NU {0} and let £ be a field of
characteristic zero. Put &, =k if n=0 and &, is the ring of formal power series
in n variables xy, ..., x,, over k if ne N. Instead of &, we write A. Furthermore
B: = A[[#]] is the ring of formal power series in ¢ with coefficients in A. Instead
of the derivation 8/0¢ we write . If R is a ring, M(R) denotes the category of
left R-modules of finite type. -

Let P:B— B be a differential operator of the form

P= Y po' with reN, p;eB.
i=0

In [2] we showed that if p, is z-regular i.e. p(0,...,0,1)#0, both ker P and
coker P (=B/PB) belong to M(A).

In this paper we give a much simpler proof of this result, based on work of
Malgrange in [3]. Moreover, the theorems we obtain below generalize the
previous results of [2] and are complete in the sense that they clarify under what
conditions on P the kernel and cokernel are finitely generated A-modules.

THEOREM 1. Put P(O):=Zf=0p,-(0,...,0,t)6i. Then coker PeM(A) iff
P0)+0.

REMARK 1. This result can be viewed as a generalization of Weilerstrass’
division theorem, by taking r=0.
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PROOF. i) Assume coker PeM(A4). Since A4 is noetherian the A-submodule

¥ AT’ of coker P is in M(A) where 7': =+ PB. Hence
tNtay_ N + ... +a,=Pb for some NeN, g, A4, beB.

Now substitute x; =...=x,=0 and we get P(0)*0.
ii) Conversely, let P(0)#0. We use induction on n. The case n=0is proved
by Malgrange in [3]. So let neN. Put

By =0, 4[]}, Po=X pi(¥y, .-, X1, 0, )0".
We have the following isomorphism of By-modules
B/PB + x,B=B/x,B+ PyB=B,/PyB,.
By the induction hypothesis By/PyBye M(0,_,), so we get
B/PB+x,Be M(0,_))-
Hence there exist se N, e, ..., e, € B satisfying
BCY ¢,_,e;+ PB+x,B.
Let be B. Then
(1) b=} cie;+x,8+ Ph, some c;e 0,_,,8, heB.
Similarly
(2) g=Y cie;+x,g"+Ph’, some c/e0,_,8",h’ € B.
Substituting (2) in (1) gives
(3) b= Y (c;+cix,)e+xkeg + P(h+x,h").

Again we can substitute a formula for g’ in (3) and so on.
Since A and B are complete local rings the process above gives

be Y Ae;+PB, all beB.

Hence BC ¥ Ae;+ PB, which implies coker Pe M(A), as desired.
From the proof above we immediately conclude:

COROLLARY 2. Assume P(0)#0. If coker P(0) (= kl[t11/P)k[[]]) is gener-
ated as a k-module by the residue classes of some elements ey, ..., e; € k[[?]],
then coker P is generated as an A-module by the residue classes of ej,...,e,.

In general coker P is not a free 4A-module, as can be seen as follows.

Letn=1.So A=k[[x]], B=k[[x,t]]. Put P: =td+(x—1). So P(Q)=r0— 1. It
is easily seen that coker P(0)= k7, where the residue class 7: = ¢+ P(0) k[[¢]] is
non-zero. By Cor. 2 we get coker P=At=, with 7: =¢+ PB+0. Finally, since
xt=Pt we get xt=0. So coker P is not a free A-module. Observe that ker
P(0)#0, since P(0)t=0. However, the following general result completely
clarifies the situation when ker P(0)=0.
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PROPOSITION 3. If ker P(0)=0, then coker P is a free A-module of rank 4,
where d: = dim, coker P(0). More precisely, for every d-tuple ey, ..., e; in k[[{]]
such that (&, ...,&,) is a k-basis of coker P(0), the elements e;+ PB, 1<i=<d
form an A-basis of coker P.

To prove this result we also generalise [2], Th. II.1). Observe that if P=0,
then ker P=B¢M(A). In fact this is the only case where ker P¢ M(A4). This
follows from

THEOREM II. ker Pe M(A) iff P#0.

PROOF. i) Write P=Y ij,{, P;e By[d]. Assume P#0. Then there exists
some minimal j,e N with P; #0. Put P=x}°Q. Obviously ker P=ker Q and
Qo=P; #0. So we may assume Py+0.

ii) Let beker P. Write b=}, b;x}, b;e By. Then byeker Py. So we get a
map

¢:ker Pob—byeker P,.

If by=0, then b=x,b’, some b’e B. Since 0=Pb=x,Pb’ and B has no zero-
divisors, b’ e ker P follows. Hence ker ¢ =x,, ker P. So ¢ induces an injective
&, _;-module homomorphism

¢ :ker P/x, ker P—~ker P,.

iii) Now we prove our theorem by induction on n. The case n=0 is proved
by Malgrange in [3]. So let neN. Then ker PoeM(0, ). So by ii) ker P/x,
ker PeM(4,_,), say

q
ker P/x, ker P= Y 0,_i(e;+x, ker P), some ¢;€ker P.
i=1

Then, arguing as in the second part of the proof of TH. I we find
ker P=} Ae;e M(A), which concludes the proof.

COROLLARY 4. If ker P(0)=0, then ker P=0.

PROOF. Induction on #. So we may assume ker Py=0. Then by ii) above
ker P/x, ker P=0, whence ker P=0 by the result of iii) above.

PROOF OF PROPOSITION 3. Let ey,...,e ;€ k[[f]] be such that (6,...,&;) is a
k-basis of coker P(0).

Using Cor. 2 it remains to verify that the elements ¢;+ PB, 1 <i<d are A-
linearly independent. So let ¥ a;e;=Pb, some a,€ A, be B. We use induction
on n. Therefore we write as before

a;=Y ayxj, b=Y bx), P=Y Pxj.
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We get
(*) Za,-je,-=Pj-b0+Pj_1b1+...+P0bj, allje N.

By induction on j we shall prove: a;;=0, all i, by=...=b;=0. From this we
deduce ¢;=0, all / as desired.
The case j=0. Put j=0 in (*). This gives

L aje;=Pyby.
So by our induction on n we get a;,=0, all i. Whence Pyby=0 implying by =0
(Cor. 4). Now let jeN and assume by=...=b;_;=0.
Then (*) gives
E aije,-=P0bj.

Whence, by induction on n, a;;=0, all i, implying b;=0 by Cor. 4 as desired.

FINAL REMARK. An application of TH. I is given in [1] where it is shown that
the cokernel of a holonomic 9,-module under the operator 9/dx, is a
holonomic %,_,-module if M satisfies some generic condition. The importance
of this last result for the theory of 2-modules will be pointed out in a forth-
coming paper.
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