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Abstract A closed-loop control allocation method is proposed for a class of aircraft with multiple

actuators. Nonlinear dynamic inversion is used to design the baseline attitude controller and derive

the desired moment increment. And a feedback loop for the moment increment produced by the

deflections of actuators is added to the angular rate loop, then the error between the desired and

actual moment increment is the input of the dynamic control allocation. Subsequently, the stability

of the closed-loop dynamic control allocation system is analyzed in detail. Especially, the closed-

loop system stability is also analyzed in the presence of two types of actuator failures: loss of effec-

tiveness and lock-in-place actuator failures, where a fault detection subsystem to identify the actu-

ator failures is absent. Finally, the proposed method is applied to a canard rotor/wing (CRW)

aircraft model in fixed-wing mode, which has multiple actuators for flight control. The nonlinear

simulation demonstrates that this method can guarantee the stability and tracking performance

whether the actuators are healthy or fail.
ª 2013 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

Modern aircraft, automotive vehicles and marine vessels are

usually equipped with more control actuators than controlled
variables to achieve multiple control objectives and high per-
formance. And the nonlinear control design methods, like dy-
namic inversion1,2 and backstepping,3,4 result in control laws

specifying the forces and moments, rather than the control sur-
face deflections. Determining how to distribute the control sig-
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nals to the available actuators is known as the control
allocation problem. Meanwhile, the actuator selection is sepa-
rated from the regulation task to simplify the control design

using the control allocation. In particular, an effective re-allo-
cation among the remaining healthy actuators can maintain
the acceptable performance in the case of actuator failures.

Control allocation methods have been studied extensively. The
surveypaper that compares the strengths and limitationsof control
allocation methods is presented in Ref.5. Regardless of methods,

suchaspseudoinverse,6 direct allocation,7,8 daisy chainallocation,9

linear programming10 and nonlinear programming,11 the resulting
methods are static in the sense that the control input depends only
on the current virtual control command.

Different from these methods, the dynamic control alloca-
tion method12,13 is proposed to make use of the redundancy
to get different actuators operate in the different parts of

frequency domain. The control allocation mapping of this
method is a linear filter when there are no actuators in satura-
SAA & BUAA. Open access under CC BY-NC-ND license.
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tion state. And the control designer can decide the frequency
characteristic of this filter by weighting matrices selected.

Both the static and the dynamic methods mentioned above

are the open-loop control allocation. These control allocation
approaches can be implemented to satisfy the optimization cri-
terion when there is no actuator failure. However, the system

stability or tracking performance becomes a problem if some
unknown actuator failures occur.

Recently, a new nonlinear flight control design method is

presented in Ref.14 for aircraft with redundant actuators, com-
bining the bases sequence control allocation with the moment
compensation to implement the desired moment commands.
However, this method fails to consider the closed-loop stability

of control allocation system whether the actuators are healthy
or fail. In this paper, a new systematic method for closed-loop
dynamic control allocation is proposed, and the design process

and stability analysis are introduced in detail.

2. Closed-loop dynamic control allocation

As mentioned in the first section, the control allocation plays
an important role in nonlinear flight control for aircraft with
multiple actuators, particularly, when the actuators have

dynamics, limits and failures. A conceptual block diagram of
the attitude control loop with closed-loop dynamic control
allocation is shown in Fig. 1. The moments M acting on the

aircraft are given as

M ¼M0 þ DM ð1Þ

where M0 is determined by the aircraft configuration and flight
states, and DM the moment increments produced by the con-

trol surface deflections.
The control allocation problem is solved by the moment

allocation among different actuators in this research. In
Fig. 1, the input of system is the commanded attitude rg.

And the desired moment increment DMd is derived by the non-
linear dynamic inversion attitude controller in outer-loop,
while the actual moment increment DM can be measured by

the angular acceleration sensors. Then, the error v between
the desired moment increments DMd and the actual moment
Fig. 1 Closed-loop dynamic con
increments DM is as the input of dynamic control allocation.
Thus, the output of control allocation uv has the form of incre-
ment and one integration step delay is required. At last, the in-

put of actuator is u(k) = u(k � 1) + uv(k), and k denotes the
current sampling period. And the output of actuator d is
deflections of actuators, which produces the actual moment

increments DM and aerodynamic force F.

2.1. Aircraft model

The aircraft model is described as15

_p ¼ ðc1rþ c2pÞqþ c3Mx þ c4Mz

_q ¼ c5pr� c6ðp2 � r2Þ þ c7My

_r ¼ ðc8p� c2rÞqþ c4Mx þ c9Nz

8><
>: ð2Þ

_Vx ¼ rVy � qVz � g sin hþ Fx=m

_Vy ¼ �rVx þ pVz þ g sin/ cos hþ Fy=m

_Vz ¼ qVx � pVy þ g cos/ cos hþ Fz=m

8><
>: ð3Þ

_/ ¼ pþ ðr cos/þ q sin/Þ tan h
_h ¼ q cos/� r sin/
_w ¼ ðr cos/þ q sin/Þ= cos h

8><
>: ð4Þ

_xg ¼ Vx cos h coswþ Vyðsin/ sin h cosw� cos/ sinwÞ
þVzðsin/ sinwþ cos/ sin h coswÞ

_yg ¼ Vx cos h sinwþ Vyðsin/ sin h sinwþ cos/ coswÞ
þVzð� sin/ coswþ cos/ sin h sinwÞ

_h ¼ Vx sin h� Vy sin/ cos h� Vz cos/ cos h

8>>>>>><
>>>>>>:

ð5Þ

where p, q and r are the roll, pitch, and yaw angular rates; Vx, Vy

and Vz the components of flight velocity along the body axes; /,
h and w the roll, pitch, and yaw attitude angles; xg, yg and h are

respectively the north, east, and vertical components of the aircraft
position in the locally-level geographic frame on the surface of the
Earth;m is the mass of the aircraft, and g the gravity acceleration;
the constants ci (i= 1, 2, . . . ,9) are defined by
trol allocation configuration.
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c1 ¼ ½ðJy � JzÞJz � J2xz�=C
c2 ¼ ðJx � Jy þ JzÞ=C; c3 ¼ Jz=C

c4 ¼ Jxz=C; c5 ¼ ðJz � JxÞ=Jy; c6 ¼ Jxz=Jy

c7 ¼ 1=Jy; c8 ¼ ½JxðJx � JyÞ þ J2xz�=C
c9 ¼ Jx=C; C ¼ JxJz � J2xz

8>>>>>><
>>>>>>:

ð6Þ

where Ji (i = x,y,z) is the moment of inertia about i axis, and
Jxz the cross-product of inertia; Mx, My and Mz are the roll,
pitch, and yaw moments, which can be described as

Mx ¼ qV2SbCl=2

My ¼ qV2S�cCm=2

Mz ¼ qV2SbCn=2

8><
>: ð7Þ

where q is the air density, V the flight velocity, S the wing ref-
erence area, b the wing span, and �c the wing mean geometric
chord; Cl, Cm and Cn are the roll, pitch and yaw moment

coefficients.
In Eq. (3), Fx, Fy and Fz are the components of the resultant

force including aerodynamic force and engine thrust along the
body axes, and they are defined by

Fx ¼ Pþ L sin a� Y cos a sinb�D cos a cos b

Fy ¼ Y cos b�D sin b

Fz ¼ �L cos a� Y sin a sinb�D sin a cos b

8><
>: ð8Þ

where a and b are the angles of attack and sideslip; the engine
thrust P = CPdP, where CP is the thrust coefficient, and dP the
throttle setting; D, L and Y are the drag, lift and side-force,

which can be described as

D ¼ qV2SCD=2

L ¼ qV2SCL=2

Y ¼ qV2SCY=2

8><
>: ð9Þ

where CD, CL and CY are the drag, lift and side-force
coefficients.

The expressions of M0 and DM in Fig. 1 will be given in the

following text. According to Eq. (1), the roll, pitch, and yaw
moments Mx, My and Mz can be respectively separated into
two parts as follows:

Mx ¼M0
x þ DMx

My ¼M0
y þ DMy

Mz ¼M0
z þ DMz

8><
>: ð10Þ

where DMx, DMy and DMz are the moment increments
produced by control surface deflections, and

M0 ¼ M0
x M0

y M0
z

h iT
is given by

M0
x ¼ qV2SbðClbbþ Cl�p�pþ Cl�r�rÞ=2

M0
y ¼ qV2S�cðCm;a¼0 þ Cmaaþ Cm�q�qþ Cm�_a

�_aÞ=2
M0

z ¼ qV2SbðCnbbþ Cn�p�pþ Cn�r�rÞ=2

8><
>: ð11Þ

where C(*) is the aerodynamic derivatives; �p; �q; �r and �_a are de-
fined by

�p ¼ pb=ð2VÞ; �r ¼ rb=ð2VÞ
�q ¼ q�c=ð2VÞ; �_a ¼ _a�c=ð2VÞ

�
ð12Þ

and _a is the derivative of the angle of attack.
Substituting Eqs. (10)–(12) into Eq. (2), Eq. (2) can be

rewritten in the affine nonlinear form
_p

_q

_r

2
64
3
75 ¼

fp

fq

fr

2
64

3
75þ Bc

DMx

DMy

DMz

2
64

3
75 ð13Þ

where fq, fq, fr and Bc are

fp ¼ ðc1rþ c2pÞqþ c3Mx þ c4Mz

fq ¼ c5pr� c6ðp2 � r2Þ þ c7My

fr ¼ ðc8p� c2rÞqþ c4Mx þ c9Mz

Bc ¼
c3 0 c4

0 c7 0

c4 0 c9

2
64

3
75

8>>>>>>>><
>>>>>>>>:

ð14Þ

We suppose DM= [DMx DMy DMz]
T, and according to

Eq. (13), the actual moment increments DM is derived by

DM ¼ B�1c _p� fp _q� fq _r� fr½ �T ð15Þ

where _p; _q and _r are measured by the angular acceleration

sensors.
2.2. Dynamic inversion attitude controller design

Having separated the attitude states into fast and slow dynam-
ics, the feedback is used to provide the system with desirable
dynamics. The fast dynamics of the aircraft attitude has been

given in Eq. (2). And the desired attitude angular rates dynam-
ics is specified by1

_pd

_qd

_rd

2
64

3
75 ¼

xp 0 0

0 xq 0

0 0 xr

2
64

3
75

pc � p

qc � q

rc � r

2
64

3
75 ð16Þ

where xp, xq and xr are the design parameters; pc, qc, and rc
the commanded angular rates given by the slow dynamics
loop.

Replacing the ½ _p _q _r�T in the left of Eq. (13) by

½ _pd _qd _rd�T from Eq. (15), we can derive the desired moment

increment DMd:

DMd ¼ B�1c _pd � fp _qd � fq _rd � fr½ �T ð17Þ

The slow dynamics of the aircraft attitude has been given in

Eq. (4). And the desired attitude angular dynamics is similar to
Eq. (16):

_/d

_hd

_wd

2
64

3
75 ¼

x/ 0 0

0 xh 0

0 0 xw

2
64

3
75

/c � /

hc � h

wc � w

2
64

3
75 ð18Þ

where x/, xh and xw are the design parameters; /c, hc, and wc

the commanded attitude angles given by designer.

Replacing ½ _/ _h _w�T in the left of Eq. (4) by

½ _/d
_hd

_wd�
T
from Eq. (18), we can derive the commanded

angular rates ½pc qc rc�T as follows:

pc

qc

rc

2
64

3
75 ¼

1 tan h sin/ tan h cos/

0 cos/ � sin/

0 sin/= cos h cos/= cos h

2
64

3
75
�1 _/d

_hd

_wd

2
64

3
75 ð19Þ
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2.3. Control allocation problem

The objective of control allocation is to determined the actual
control vector u 2 Rm according to the virtual control vector
v 2 Rl, where m > l.

Mathematically, given v(t), then u(t) is derived by

fðuðtÞÞ ¼ vðtÞ ð20Þ

where f : Rm
´ Rl is the nonlinear mapping from u(t) to v(t).

The actuator dynamics can be described as

_d ¼ gðd; uÞ ð21Þ

where d 2 Rm is the actuator deflection, and Eq. (21) is subject

to a set of constraints

dmin 6 d 6 dmax; j _dj 6 _dmax ð22Þ

where dmin, dmax and _dmax are the lower and upper actuator po-
sition and rate constraints, respectively. Due to the typically
fast actuator dynamics, we assume d = u.

In a digital flight control system, it is reasonable to trans-
form the actuator constraints from Eq. (22) to the following
formula16:

uðtÞ 6 uðtÞ 6 �uðtÞ
uðtÞ ¼ maxðdmin; ðuðt� TÞ � _dmaxTÞÞ
�uðtÞ ¼ minðdmax; ðuðt� TÞ þ _dmaxTÞÞ

8><
>: ð23Þ

where T is the sample time.

2.4. Analytical solution of closed-loop dynamic control
allocation

The dynamic control allocation can be expressed as the follow-

ing sequential quadratic-programming problem if no actuators
are saturated.

uvðtÞ ¼ argmin
uvðtÞ2X

fkW1ðuvðtÞ � usðtÞÞk2 þ kW2ðuvðtÞ � uvðt� TÞÞk2g

X ¼ argmin
uðtÞ6uvðtÞ6�uðtÞ

kWXðBuvðtÞ � vðtÞÞk

8><
>:

ð24Þ

where us(t) 2 Rm is the desired steady-state control input; W1,

W2 and WX are the square matrices of proper dimensions; ixi
denotes the Euclidean norm defined by kxk ¼

ffiffiffiffiffiffiffiffi
xTx
p

.

Lemma 1. (Ref.12)Let us remove the constraints of actuators,
then the closed form solution to Eq. (24) is

uvðkÞ ¼ EusðkÞ þ Fuvðk� 1Þ þ GvðkÞ ð25Þ

where

E ¼ ðI� GBÞW�2W2
1

F ¼ ðI� GBÞW�2W2
2

G ¼W�1ðBW�1Þy

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

1 þW2
2

q

8>>>>><
>>>>>:

ð26Þ

where I is the identity matrix, and the symbol ‘‘�’’ denotes the

pseudoinverse operator defined as A� = AT(AAT)�1.
In the steady-state, we assume the error v(k) =
DMd(k) � DM(k) is zero, therefore, the desired control input
us(k) = 0, and uv(k) = uv(k � 1).

Then, Eq. (25) reduces to

uvðkÞ ¼ ðI� FÞ�1GvðkÞ ð27Þ

The input of actuator u(k) in Fig. 1 is

uðkÞ ¼ uðk� 1Þ þ uvðkÞ ð28Þ
3. Stability for closed-loop dynamic control allocation

The stability for the closed-loop dynamic control allocation
system is of significant importance. In order to validate the sta-
bility, the input-output relation of closed-loop dynamic con-

trol allocation is given in the following text.
The actual moment increment DM(k) can be derived by

DMðkÞ ¼ BrðkÞuðkÞ ð29Þ

where Br(k) is the actual control effectiveness matrix, which is

changed with different flight conditions.
Substituting Eqs. (27) and (28) into Eq. (29), we have

DMðkÞ ¼ BrðkÞuðk� 1Þ þ BrðkÞðI� FÞ�1GvðkÞ ð30Þ

where the input of dynamic control allocation v(k) is given by

vðkÞ ¼ DMdðkÞ � DMðkÞ ð31Þ

The change of Br(k) is small during the sample time, we obtain

BrðkÞ ¼ Brðk� 1Þ ð32Þ

Then substituting Eqs. (29), (31) and (32) into Eq. (30), we
have

DMðkÞ ¼ DMðk� 1Þ þ VðkÞðDMdðkÞ � DMðkÞÞ ð33Þ

where

VðkÞ ¼ BrðkÞðI� FÞ�1G; V 2 Rl�l ð34Þ

The input–output relation of closed-loop dynamic control allo-

cation is obtained according to the z transform of Eq. (33):

DMðzÞ
DMdðzÞ

¼ zVðzÞ
zðIþ VðzÞÞ � I

ð35Þ
3.1. Stability in the absence of actuator failures

In this part, we consider the stability for closed-loop dynamic

allocation when the actuators are healthy.

Lemma 2 (Schur Lemma). Given A 2 Rn·n with eigenvalues k1,
k2, . . . ,kn in any prescribed order, there is an orthogonal matrix

P 2 En·n, where E is the set of orthogonal matrix. And we have

P�1AP ¼ B ¼

b11 b12 � � � b1n

0 b22 � � � b2n

..

. . .
. . .

. ..
.

0 � � � 0 bnn

2
66664

3
77775

is upper triangular, with diagonal entries bii = ki
(i = 1,2, . . . , n).
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Theorem 1. Let the closed form solution to Eq. (24) be defined in

Lemma 1, and the closed-loop dynamic control allocation system
is described as Eq. (35). And ki (i = 1,2, . . . , n) is the eigenvalue
of V(z). The closed-loop dynamic control allocation is stable

if j 1þ ki j > 1 is satisfied.

Proof. According to Eq. (35), the stability of the closed-loop
allocation system is determined by the locations of the
closed-loop poles or the roots of characteristic equation in

the z plane. The characteristic equation is

zðIþ VðzÞÞ � I ¼ 0 ð36Þ

And the system is stable if any of the closed-loop character-

istic roots lie inside the unit circle.

Considering Lemma 2, we obtain

VðzÞ ¼ P

k1 b12 � � � � � � b1n

0 k2 b22 � � � b2n

..

. . .
. . .

. ..
.

..

. . .
.

bn�1;n

0 0 � � � 0 kn

2
66666664

3
77777775
P�1 ð37Þ

Substituting Eq. (37) into Eq. (36), we have

zPP�1 þ zP

k1 b12 � � � � � � b1n

0 k2 b22 � � � b2n

..

. . .
. . .

. ..
.

..

. . .
.

bn�1;n

0 0 � � � 0 kn

2
66666664

3
77777775
P�1 � PP�1

¼ P zIþ z

k1 b12 � � � � � � b1n

0 k2 b22 � � � b2n

..

. . .
. . .

. ..
.

..

. . .
.

bn�1;n

0 0 � � � 0 kn

2
66666664

3
77777775
� I

0
BBBBBBB@

1
CCCCCCCA
P�1 ¼ 0

ð38Þ

The characteristic equation becomes

zi þ ziki � 1 ¼ 0 ði ¼ 1; 2; . . . ; nÞ ð39Þ

The roots of characteristic equation are found to be

zi ¼
1

1þ ki

ði ¼ 1; 2; . . . ; nÞ ð40Þ

If Œzi Œ < 1, then the system is stable and we obtain

j1þ kij > 1 ð41Þ

This completes the proof. h
3.2. Stability in the presence of actuator failures

The stability condition for closed-loop control allocation is gi-
ven in Theorem 1 when the actuators are healthy. However,
the actuators of an aircraft can be affected by many types of
failures in the flight missions. And there are two typical failures
which are the loss of effectiveness and lock-in-place failures.
Both of them are considered here.

Assumption 1. Two actuator failures do not happen

simultaneously.

The control signal d(t) (input to the plant, output of the

actuator) can be described as the following formula to
incorporate the actuator failures.

dðtÞ ¼ ðNþUuÞuðtÞ þUwwðtÞ
N ¼ diag d e

1 ; d
e
2 ; � � � ; d

e
m

� �
; 0 < d e

i 6 1

Uu ¼ diag d u
1 ; d

u
2 ; � � � ; d

u
m

� �
; d u

i ¼ f0; 1g
Uw ¼ diag dw

1 ; d
w
2 ; � � � ; d

w
m

� �
; dw

i ¼ f0; 1g
w ¼ w1 w2 � � � wm½ �T; di

min 6 wi 6 di
max

8>>>>>><
>>>>>>:

ð42Þ

where di
min and di

max present the ith element of dmin and dmax in
Eq. (22), respectively. And the actuator i has a loss of effective-
ness failure if 0 < de

i < 1; de
j ¼ 1; j–i and Uu ¼ Uw ¼ 0; the

actuator i is stuck at the degree wi if d
u
i ¼ 0; du

j ¼ 1; dw
i ¼ 1;

dw
j ¼ 0; j–i and N = 0.

In the presence of the actuator loss of effectiveness failure,
the actual moment increment DM(k) will be changed. Consid-
ering Eqs. (29) and (42), we have

DMðkÞ ¼ BrðkÞNuðkÞ ¼ BfðkÞuðkÞ ð43Þ

We can see from Eq. (43) the actuator failures change the
control effectiveness matrix. And the changed control effec-
tiveness matrix Bf can be written as

BfðkÞ ¼ B0
r ðkÞ þ DBrðkÞ ð44Þ

where B0
r ðkÞ is the control effectiveness matrix without failures,

and DBr(k) the control effectiveness matrix change produced
by the actuator loss of effectiveness failure. Substituting Eq.
(44) into Eq. (34), we have

VðkÞ ¼ B0
r ðkÞ þ DBrðkÞ

� �
ðI� FÞ�1G ¼ V0ðkÞ þ DVðkÞ ð45Þ

where V0ðkÞ ¼ B0
r ðkÞðI� FÞ�1G is the matrix without failures,

and the error caused by the actuator loss of effectiveness failure is

DVðkÞ ¼ DBrðkÞðI� FÞ�1G ð46Þ

Assumption 2. The V0(k) and DV(k) commute, and have eigen-

values k0
1; k0

2; . . . ; k0
n and kD

1 ; kD
2 ; . . . ; kD

n , respectively.

Corollary 1. The actuator loss of effectiveness failure happens.
Considering Eqs. (35), (45) and Assumption 2, if the eigenvalues
kD
i ði ¼ 1; 2; . . . ; nÞ of the error matrix DV(k) and the eigen-

values k0
i ði ¼ 1; 2; . . . ; nÞ of the matrix V0(k) satisfy the follow-

ing formula:

kD
i > �k0

i or kD
i < � k0

i þ 2
� �

ð47Þ

then the closed-loop dynamic control allocation is stable in the
presence of the actuator loss of effectiveness failure.

Proof. According to Assumption 2, the eigenvalues of

V0(k) + DV(k) are k0
i þ kD

i ði ¼ 1; 2; . . . ; nÞ.

The actual control effectiveness matrix changes in the

presence of the actuator loss of effectiveness failure; however,
the stability of the closed-loop system is desired.
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Considering Theorem 1, we obtain

kD
i þ k0

i þ 1
�� �� > 1) kD

i > �k0
i or kD

i < � k0
i þ 2

� �
ð48Þ

This completes the proof. h

In the presence of the actuator lock-in-place failure, the

actuator i is stuck at the degree wi. It is equivalent to adding
the disturbance to the actual moment increment DM(k). Con-
sidering Eqs. (29) and (42), we have

DMðkÞ ¼ BrðkÞðUuuðkÞ þUwwðkÞÞ ð49Þ

Corollary 2. The actuator lock-in-place failure happens. If the
eigenvalues ku

i of the matrix Vu(k)satisfy the following formula:

1þ ku
i

�� �� > 1 ði ¼ 1; 2; . . . ; nÞ ð50Þ

where

VuðkÞ ¼ BrðkÞUuðI� FÞ�1G ð51Þ

and the steady-state inputs of actuator u (1) satisfy

Brð1ÞðUuuð1Þ þUwwð1ÞÞ ¼ 0

ðdmin 6 uð1Þ;wð1Þ 6 dmaxÞ
ð52Þ

then the closed-loop dynamic control allocation is stable in the
presence of the actuator lock-in-place failure.

Proof. Substituting Eqs. (27) and (28) into Eq. (49), we have

DMðkÞ ¼ BrðkÞ½Uuðuðk� 1Þ þ ðI� FÞ�1GvðkÞÞ
þUwwðkÞ� ð53Þ

We derive w(k) = w(k � 1) because the actuator is stuck.
And according to Eqs. (32), (33), and (53), we have

DMðkÞ ¼ DMðk� 1Þ þ VuðkÞðDMdðkÞ � DMðkÞÞ ð54Þ

where the matrix Vu(k) is given in Eq. (51).
Considering Theorem 1, we obtain 1þ kui

�� �� > 1.

Otherwise, the steady-state moment increment
DM(1) = 0. According to Eq. (49), we have

Brð1ÞðUuuð1Þ þUwwð1ÞÞ ¼ 0 ð55Þ

and u(1) and w(1) must satisfy the following position limits
of the actuators:

dmin 6 uð1Þ;wð1Þ 6 dmax ð56Þ

which completes the proof. h
Table 2 Wing-planform and inertia parameters for the model.
4. Simulation results

In this section, we consider a canard rotor/wing (CRW) air-
craft model (see Refs.17,18 for more details) in the fixed-wing

mode. The simulation model includes the moment, force, kine-
matic and navigation equations in Eqs. (2)–(5). And the spe-
cific aerodynamic force and moment coefficients of the CRW

in the fixed-wing mode are given by

CL ¼ CL0 þ CLaaþ CLdcdc þ CLdede

CD ¼ CD1C
2
L þ CD2CL þ CD3

CY ¼ CYbbþ CYdrLdrL þ CYdrRdrR

8><
>: ð57Þ
Cl ¼ CldaLdaL þ CldaRdaR þ CldrLdrL þ CldrRdrR

þClbbþ Cl�p�pþ Cl�r�r

Cm ¼ Cm1C
2
L þ Cm2CL þ Cm3 þ Cmdcdc þ Cmdede

þCm�q�qþ Cm�_a
�_a

Cn ¼ CndaLdaL þ CndaRdaR þ CndrLdrL þ CndrRdrR

þCnbbþ Cn�p�pþ Cn�r�r

8>>>>>>>>>>><
>>>>>>>>>>>:

ð58Þ

where a,b and _a can be derived by

a ¼ arctanðVz=VxÞ

b ¼ arcsinðVy=VÞ

_a ¼ ½ðVx
_Vz � Vz

_VxÞ cos a�=V2
x

8>><
>>:

ð59Þ

where the flight velocity V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

x þ V2
y þ V2

z

q
. In addition, we

can derive �_a according to Eqs. (12) and (59). In addition, the
thrust coefficient of this aircraft in the fixed-wing mode is

CP = 2487.
The aerodynamic parameters are shown in Table 1, while

the wing-planform and inertia parameters are shown in Ta-
ble 2. These parameters are derived from both Ref.19 and

aerodynamic computing in terms of the aircraft geometry
figuration.

The control inputs consist of the deflections for the left aile-

ron daL, the right aileron daR, the left rudder drL and the right
rudder drR in the lateral direction. And the canard dc and ele-



Fig. 2 CRW aircraft in the fixed wing mode.

Fig. 3 Responses of attitude without failure.

Fig. 4 Actuator deflections without failure.
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vator de with different frequency characteristics are available

for pitch control in the longitudinal direction. Fig. 2 shows
the configuration of the CRW aircraft.20

The actuator dynamic is simplified to produce a simple

first-order lag filter. The aileron, rudder, canard and elevator
dynamics used in the simulation are described as

daL ¼ 10
sþ10 uaL; drL ¼ 10

sþ10 urL

daR ¼ 10
sþ10 uaR; drR ¼ 10

sþ10 urR

dc ¼ 20
sþ20 uc; de ¼ 10

sþ10 ue

jdaLðRÞj 6 25�; jdrLðRÞj 6 25�; jdcj 6 15�; jdej 6 25�

8>>>>><
>>>>>:

ð60Þ

where s denotes differential operator, daL(R) denotes daL or daR,
drL(R) is similar to daL(R), (uaL,uaR,urL,urR,uc,ue) and (daL, -
daR,drL,drR,dc,de) are the input and output of the actuators,

respectively. The canard actuator is faster than the elevator,
whereas it is beneficial not to deflecting the canard at all to
achieve low drag at trimmed flight. Thus, the canard is used

to achieve the fast initial aircraft response, while the elevator
is used solely at the trimmed flight. And we select the following
constant matrix:

W1 ¼ diagð0:5; 0:5; 0:1; 0:1; 60; 37Þ
W2 ¼ diagð0:4; 0:4; 0:8; 0:8; 0; 100Þ

�
ð61Þ

The actual control effectiveness matrix without failures is given

by

Br ¼ 10�4
2:50 �2:50 0 0 0 0

0:09 �0:09 �9:65 �9:65 0 0

0 0 0 0 790 �356

2
64

3
75
ð62Þ

The design matrix is B = Br whether the actuators are healthy

or fail. However, the actual control effectiveness matrix Br

changes when the actuator failures happen. The attitude con-
troller parameters are x/ = 1.2, xh = 5, xw = 1.2,

xp = 4.5, xq = 10, xr = 4.5, and the sample time is
T = 0.02 s.

In the following simulations, the initial altitude and velocity
are 3000 m and 110 m/s, and the initial attitude angles and

angular rates including a, b, /, h, w, p, q and r are zeros. In
addition, the throttle setting dP = 0.2, while all the initial actu-
ator deflections are zero.
4.1. No actuator failures

Considering Eqs. (26), (34), (61) and (62), the eigenvalues of
the matrix V(k) are k1 = k2 = k3 = 1. According to Theo-
rem 1, the designed closed-loop dynamic control allocation is

stable. Figs. 3 and 4 show the attitude responses and actuator
deflections using dynamic control allocation and closed-loop
dynamic control allocation.

The two methods have the similar attitude tracking perfor-

mance and actuator responses when there are no actuator fail-
ures. And the canard deflections are zero in steady state for



Fig. 6 Deflections of longitudinal actuators with elevator

effectiveness loss.
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two methods in Fig. 4. However, there is shorter rise time in
the yaw response, and there is smaller effect on the roll re-
sponse when the yaw angle changes using the closed-loop dy-

namic control allocation method in Fig. 3. And there are
smaller overshot and shorter settling time in the pitch response
for the closed-loop dynamic control allocation.

4.2. Actuator failures

Two failure cases are considered; however, there is no fault

detection subsystem to identify the actuator failures in this re-
search. We suppose the longitudinal- and lateral-directional
equations are decoupled, and there is only one actuator which

has only one type failure in one simulation. Therefore, the sim-
ulations of the different types of actuator failures in longitudi-
nal direction and those in lateral direction are performed
respectively.

The actual control effectiveness matrices, Br_lon 2 R
1·2 and

Br_lat 2 R2·4, change while the design matrix, Blon 2 R1·2 and
Blat 2 R2·4, maintain constant after the actuator failure hap-

pens. And the weighting Wi_lat 2 R
4·4, Wi_lon 2 R

2·2

(i= 1,2) and design matrix are derived by Eqs. (61) and (62)
using block matrix method.

W1 ¼ diagðW1 lat;W1 lonÞ
W2 ¼ diagðW2 lat;W2 lonÞ

Br ¼
Blat 02�2

01�2 Blon

� �
8>>><
>>>:

ð63Þ
4.2.1. Failure Case I: the loss of effectiveness failure

(1) Longitudinal actuator failure

The actuator failure is the loss of effectiveness failure of the
elevator deflection in the pitch channel, while the canard is

healthy. The elevator maintains only 50% of its effectiveness
after 4 s, and we have the following formula according to
Eq. (42).

dc

de

� �
¼

1 0

0 0:5

� �
uc

ue

� �
ðt P 4 sÞ ð64Þ

Both longitudinal attitude tracking and actuator deflections
are shown in Figs. 5 and 6.

Figs. 5 and 6 show that the dynamic control allocation
method does not exactly distribute the desired pitch moment
between canard and elevator after the failure happens. How-
ever, the closed-loop dynamic control allocation maintains
Fig. 5 Responses of pitch with elevator effectiveness loss.
the attitude tracking with little degradation, because there is
a feedback from moment increment in the proposed approach,
and the error between the desired and actual moment can be
enforced to zero. To eliminate this error, the canard is used

to compensate the elevator effectiveness loss. And the eigen-
values of V0(k) and DV(k) are k0

1 ¼ 1 and kD
1 ¼ �0:17. Accord-

ing to Corollary 1, the closed-loop dynamic control allocation

system is stable.

(2) Lateral actuator failure

The actuator failure is the loss of effectiveness failure of the
right rudder deflection in the yaw channel, while the left rudder

and ailerons are healthy. The right rudder maintains only 50%
of its effectiveness after 12 s, and we have the following for-
mula according to Eq. (42):

daL

daR

drL

drR

2
6664

3
7775 ¼

1

1

1

0:5

2
6664

3
7775

uaL

uaR

urL

urR

2
6664

3
7775 ðt P 12 sÞ ð65Þ

Both lateral attitude tracking and actuator deflections are
shown in Figs. 7 and 8.

Fig. 7 shows that the desired lateral attitude commands,
especially the yaw command, can be tracked by the proposed
method after the failure happens. In Fig. 8, the deflections of

all lateral actuators increase to derive the desired roll and
yaw moments when the right rudder loses its effectiveness
Fig. 7 Responses of lateral attitude with right rudder effective-

ness loss.



Fig. 10 Deflections of longitudinal actuators with elevator stuck.

Fig. 8 Deflections of lateral actuators with right rudder effec-

tiveness loss.
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using the proposed method. And the eigenvalues of V0(k) and
DV(k) are k0

1 ¼ 1; kD
1 ¼ �0:25; k0

2 ¼ 1 and kD
2 ¼ 0. According

to Corollary 1, the closed-loop dynamic control allocation sys-
tem is stable.

4.2.2. Failure Case II: lock-in-place failure

(1) Longitudinal actuator failure

The actuator failure is the lock-in-place failure of the eleva-
tor in the pitch channel, while the canard is healthy. The eleva-

tor is stuck at �3� after 4 s, and we have the following formula
according to Eq. (42).

dc

de

� �
¼

1 0

0 0

� �
uc

ue

� �
þ

0 0

0 1

� �
0

�3

� �
ðt P 4 sÞ ð66Þ

Both longitudinal attitude tracking and actuator deflections
are shown in Figs. 9 and 10.

Fig. 9 shows that the dynamic control allocation method

does not track the pitch command after the elevator is stuck
at �3�, and the attitude control system is unstable gradually.
However, the proposed closed-loop dynamic control allocation
maintains stability and attitude tracking after the failure hap-
Fig. 9 Responses of pitch with elevator stuck.
pens. We can see the canard in the two methods deflects to
counteract the disturbance from the locked elevator in

Fig. 10. However, the magnitude of canard deflection is larger
and the response is faster in the proposed method. And the
existence of feedback loop forces the moment increments

error to zero. The eigenvalue of Vu(k) is 0.65, and
u(1) = [1.35� � 3�]T. According to Corollary 2, the closed-
loop dynamic control allocation system is stable.

(2) Lateral actuator failure

The actuator failure is the lock-in-place failure of the left

aileron in the roll channel, while the right aileron and rudders
are healthy. The left aileron is stuck at 10� after 12 s, and we
have the following equation according to Eq. (42):

daL

daR

drL

drR

2
6664

3
7775 ¼

0

1

1

1

2
6664

3
7775

uaL

uaR

urL

urR

2
6664

3
7775þ

1

0

0

0

2
6664

3
7775

10

0

0

0

2
6664

3
7775 ðt P 12 sÞ

ð67Þ

Both lateral attitude tracking and actuator deflections are
shown in Figs. 11 and 12.

Fig. 11 shows that the desired lateral attitude commands,
especially the roll command, cannot be tracked by the dynamic
control allocation method after the failure happens. In Fig. 12,

we can see the right aileron deflects to counteract the distur-
bance from the locked left aileron and derive the desired roll
moment using the proposed method. Meanwhile, the left and

right rudders deflect to derive the desired yaw moment and
Fig. 11 Responses of lateral attitude with left aileron stuck.



Fig. 14 Frequency responses of closed-loop dynamic control

allocation in two failure cases in lateral direction.

Fig. 12 Deflections of lateral actuators with left aileron stuck.

Fig. 13 Frequency responses of closed-loop dynamic control

allocation in two failure cases in longitudinal direction.
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counteract the disturbance from the roll channel. And the
eigenvalues of Vu(k) are ku

1 ¼ 1 and ku
2 ¼ 0:5, and

u(1) = [10� 10� �0.005�
�0.005�]T. According to Corollary 2, the closed-loop dynamic
control allocation system is stable. The actuator deflections in
Fig. 12 are very close to the u(1) when the simulation time ex-

tends to 80 s.
Figs. 13 and 14 show the open-loop frequency responses of

closed-loop dynamic control allocation system in two cases in

both longitudinal and lateral directions. We can see the pro-
posed method has enough gain and phase margins before los-
ing stability.

5. Conclusions

In this paper, a closed-loop control allocation approach is pro-

posed for aircraft with multiple actuators. By combining
closed-loop configuration with dynamic control allocation,
the proposed method guarantees that the closed-loop system
is stable in the absence or presence actuator failures, and the

actuators work in the respective frequency domain. The
CRW aircraft model example demonstrates the effectiveness
of the proposed approach.

The actuator dynamics presented here does not contain
actuator saturation. Therefore, the closed-loop dynamic con-
trol allocation approach with actuator saturation is our future

research.
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