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Abstract

Background: Mathematical and computational models showed to be a very important support tool for the
comprehension of the immune system response against pathogens. Models and simulations allowed to study
the immune system behavior, to test biological hypotheses about diseases and infection dynamics, and to
improve and optimize novel and existing drugs and vaccines.
Continuous models, mainly based on differential equations, usually allow to qualitatively study the system but lack in
description; conversely discrete models, such as agent based models and cellular automata, permit to describe in detail
entities properties at the cost of losing most qualitative analyses. Petri Nets (PN) are a graphical modeling tool developed
to model concurrency and synchronization in distributed systems. Their use has become increasingly marked also thanks
to the introduction in the years of many features and extensions which lead to the born of “high level” PN.

Results: We propose a novel methodological approach that is based on high level PN, and in particular on Colored Petri
Nets (CPN), that can be used to model the immune system response at the cellular scale. To demonstrate the potentiality
of the approach we provide a simple model of the humoral immune system response that is able of reproducing some
of the most complex well-known features of the adaptive response like memory and specificity features.

Conclusions: The methodology we present has advantages of both the two classical approaches based on
continuous and discrete models, since it allows to gain good level of granularity in the description of cells
behavior without losing the possibility of having a qualitative analysis. Furthermore, the presented methodology based
on CPN allows the adoption of the same graphical modeling technique well known to life scientists that use PN for the
modeling of signaling pathways. Finally, such an approach may open the floodgates to the realization of multi scale
models that integrate both signaling pathways (intra cellular) models and cellular (population) models built upon the
same technique and software.
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Background
The immune system (IS) is a highly distributed system
composed by cells and molecules whose scope is to
protect living organisms against diseases. The immune
system has various defense mechanisms whose complex-
ity is usually correlated to the host organism. In mam-
mals, among many defense mechanisms such as innate
immune response arm, the adaptive IS response, driven
by lymphocytes, represents a fundamental component.
The goal is of the adaptive IS response is to give the best
reaction against most dangerous viruses and bacteria.
Specificity, memory and discrimination between self

and non-self represent the most important peculiarities
of the adaptive IS response. In particular, the specificity
feature is the capability, shared only by lymphocytes and
antibodies, to recognize one specific epitope (also known
as antigenic determinant) of foreign pathogens [1].
Specific immune system lymphocytes can then recognize
billions of different antigens, but for each determinant, a
specific lymphocyte will be stimulated. There are as
many stimulated lymphocytes as determinants forming
the antigen.
Indeed, the memory feature represents the capability

of the immune system to remember previously encoun-
tered antigens. When an antigen appears for the first
time, the immune system produces a first (primary)
response against it. This stimulates the production of
long-lived memory lymphocytes that are specific for
each of the antigen epitopes. When the same antigen
comes again into contact with the immune system, the
memory lymphocytes are stimulated in order to produce
a faster and more effective immune system response
against it (secondary response).
Building a model (mathematical, physical or computa-

tional) of the immune system may lead to multiple bene-
fits, since researchers can use immune system simulation
in vaccine research, or to test biological hypotheses about
diseases and infection dynamics.
Many mathematical and computational techniques

have been applied to model the immune system re-
sponse; most of them bear on two main approaches: the
top-down approach and the bottom-up approach. If the
former mainly focuses on the behavior of a system as a
whole (i.e., mean behavior of involved cells), the latter
analyzes the system dynamics at a lower level (i.e., the
behavior of every cell is kept into account) and the
emergence of global properties is obtained as the sum of
local behaviors. Models based on the top-down approach
usually make use of differential equations like Ordinary
Differential Equations (ODE) [2–8]. These models are all
population-based, and the spatiality and topology which
both depend on individual interactions are, in general,
ignored. For very simple models it is possible to use
some powerful mathematical techniques to extract some

important system properties like analytical solutions,
steady states and asymptotic behavior. However, as the
biological description introduced into the model grows,
they become very complex and, in some cases, almost
intractable. Indeed, the application of Partial Differential
Equations (PDE), stochastic differential equations (SDE)
and delayed differential equations (DDE) can be intro-
duced to obtain some spatial description, stochastic
effects and temporal delays. However, this usually enti-
tles instability problems, a higher computational effort
and numerical simulations only.
Cellular automata and agent based models represent

the most famous bottom-up approaches. Since entities
are followed individually, they allow a much more rich
description of the biological background, and individual
cells properties like cell receptors, cell internal states
and individual life-times and behaviors are not a prob-
lem. Furthermore, spatial description, stochastic effects
and delays are intrinsic characteristics of these kind of
models. However, such techniques lack of tools and
mathematical techniques for analytical studies and they
usually require huge computational resources for large
scale simulations.
Petri Nets (PNs) represent a graphical and mathem-

atical modeling technique for the description of
distributed systems presented in 1962 by Carl Adam
Petri [8, 9]. During these last decades, Petri Net mod-
eling formalism has been extended in order to man-
age, among others, stochastic effects, continuous
quantities and scheduled events. Among PN extensions
there is the Colored Petri Nets (CPN) formalism [10].
Petri Nets and extensions have been successfully used

in bioinformatics for the modeling of intra-cellular bio-
chemical and metabolic pathways [11–18]. Park et al.
showed how it is possible to apply a particular extension
of PN (the Fuzzy continuous PN) for the modeling of
the Immune system response [19]. The approach had
several limitations; among them, it did not allow to dis-
cern between cells featuring different internal states, re-
ceptors, or a different position inside the simulation
space. Consequently, such an approach did not bring
any real additional advantage over up-down traditional
techniques such as ODE systems, and neither in respect
to ABMs.
Here we propose a novel methodological approach

that uses “high level” Petri Nets, and in particular
Colored Petri Nets to model cell specific properties
such as cell internal states and receptors. To this
end we present a proof-of-concept model of the
humoral part of the IS capable of reproducing the
most important features of the adaptive response,
and in particular the memory and specificity features.
The approach holds somewhere in the middle of top-
down and bottom-up approaches, since it allows to
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describe cell specific features and behaviors, but with
the possibility of using many standard PN analysis
tools that permit to study system properties and fea-
tures from a qualitative point of view. All of this
using a convenient graphical language that is already
known to life scientists that, as already stated, are
actually able to use PN for the modeling of signaling
pathways.
The paper starts with an introduction to Petri nets

and the colored extension used in this paper. Details of
the modeling approach are provided in Methods,
followed by results and discussion where we present the
application of the approach to a real scenario, ending
with our conclusions and final remarks.

Methods
Introduction to classical “low-level” Petri Nets
PNs is a set of particular graphical symbols called:
places, transitions, arcs and tokens. The places are
generally drawn as ellipses or circles and represent
states and/or conditions of the system modeled; each
place may be featured by a name (many times inside
the ellipses), which has not a formal meaning but in-
creases understanding of a Petri Net. Boxes or rect-
angular bars represent transitions which model events
that may occur in the system. Places usually contain
a discrete number of elements called tokens, drawn
by black dots. Arcs may connect places to transitions
and vice-versa, but they cannot connect transitions to
transitions or places to places. An arc connects a sin-
gle (input) place to a single transition; furthermore,
an arc may connect a transition to a single (output)
place. A transition may have several input and output
places. The tokens in the input places are fundamen-
tal for the firing (i.e., the enabling) of the transition;
the enabling of a transition models the occurrence of
a specific event. Firing of a transition may require the
presence of a different number of tokens for each in-
put place. Generally, the required number of tokens
for each input place is given by the multiplicity of
each arc connecting input places with the transition.
When a transition fires (i.e., there are sufficient to-
kens in all of its input places, according to the multi-
plicities of the arcs), it consumes the required
number of tokens from the input places, and creates
tokens in its output places. The number of tokens
put in each output place depends again by the multi-
plicity associated to each arc. A firing rule is atomic,
in the sense that it represents a single non-
interruptible action. Unless an execution policy is
defined, when multiple transitions can be enabled at
the same time anyone of them may fire (nondeter-
ministic execution).

Introduction to “high-level” Colored Petri Nets
A Colored Petri Net (CPN) extend the definition of Petri
Nets as it is a set of places, transitions, arcs and color
sets. Each place has an associated type determining the
kind of data that the place may contain (by convention
the type name is written in italics, next to the place).
Like PNs, during the execution of a CPN (i.e., the firing
of the transitions) each place will contain a varying num-
ber of tokens. Each of these tokens carries a data value
that belongs to the type associated with the place. For
historical reasons, token values are referred as token
colors and data types are referred as color sets. This is
a metaphoric picture where the tokens of “high-level”
CPN are considered to be distinguishable from each
other and hence “colored” – in contrast to ordinary
“low-level” Petri Nets which have “black” indistinguish-
able tokens. The types of a CPN can be arbitrarily com-
plex e.g., a record where one field is a real, another a
text string and a third a list of integers. Hence, it is
much more adequate to imagine a continuum of colors
(like in physics) instead of a few discrete color values
(like red, green and blue).
In CPNs, there are different types of expressions. An

expression is mainly made up by variables. It is not only
associated with a particular color set but also written in
terms of a predefined syntax. In the following, we denote
by EXP a set of expressions that comply with a prede-
fined syntax. An expression may be associated to a tran-
sition; in this case, it is called guard expression. An arc
may have an expression associated, too; it is called arc
expressions.
On the basis of what said until now, the formal def-

inition of colored Petri Nets will be given in the
following. It uses the concept of multiset, which can
be defined as a set in which there can be several
occurrences for the same element. The number of oc-
currences of an element is called coefficient or multi-
plicity. For example, an infinite number of multisets
exist which contain elements a and b, varying only by
multiplicity, such as: {a, b}, {a, a, b}, {a, a, a, b, b, b}.
In the following, given a generic set E, the collection

of all the multisets over E is denoted by EMS.
Definition: A Colored Petri Net is a tuple N = (S, P, T,

A, C, G, F, i) where:

� S is a finite non-empty set of types, called color sets.
� P is a finite non-empty set of places.
� T is a finite non-empty set of transitions.
� A is a finite set of direct arcs
� C is a color function that assigns to each place p∈P

a color set C(p)∈S. C: P→ S
� G is the set of g functions that assigns to each

transition t∈T a guard expression of the boolean
type. g: T→ EXP
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� F is the set of f function that assigns to each arc
a∈A an arc expression of a multiset type C(p)MS,
where p is the place connected to the arc a. f:
A→ EXP

� i is an initialization function that assigns to each
place p∈P an expression of a multiset type
C(p)MS. i: P→ EXP

According to the tokens distribution in the set p∈P,
the CPN may assume different states; each state is called
marking and is given by a particular token distribution
in each of the places p∈P. The initial marking is pro-
duced by the application of the initialization function i.
In the following the current token distribution in a par-
ticular place will be indicated by m(p), which is a func-
tion of a multiset type C(p)MS.
Given a particular a transition t ∈ T, let us consider

the set of variables present in the guard of t and in the
arc expressions of arcs connected to t; this set will be
denoted Var(t). Before the guard and arc expressions
relevant to the transition t ∈ T may be evaluated, the
variables must get assigned values; this process is called
binding. A binding b of a transition t ∈ T is a function
that maps each variable v ∈ Var(t) onto a value b(v) that
is of the same type as the variable. The set of all bind-
ings for a transition t is denoted B(t). A binding element
is a pair (t,b), with t ∈ T and b ∈ B(t).
The behavior of the CPN is based on a firing rule con-

sisting of a precondition and the effect of the occurrence
(firing) of a single transition. Whether or not a transition
can fire depends on the marking of its input places and
the arc expression on the input arcs. A transition is
enabled and is allowed to fire, if all the input places are
sufficiently marked; this occurs when the binding of the
variables that appear in the arc expressions of the arcs
from inputs places to transition, evaluates to a multiset
of token colors (i.e., of multiset type C(p)MS) that is
present on the corresponding input place. In this case,
the guard of the transition should evaluate to true for
the giving binding. If a transition has no input places, it
is always enabled. In a more formal way, it is possible to
say that the guard of the transition g(t) ∈ G evaluates to
true if m(p) ≥ f(p,t), ∀p ∈ •t, where f ∈ F and •t is the set
of input places for transition t. Due to the definition of
set F, f(p,t) denotes the value (of multiset type C(p)MS)
of the arc expression relevant to the arc going from p to
t, for the giving binding b.
If the guard of the transition evaluates to true (with a

given binding), the firing of a transition occurs. In this
case, a multiset of colored tokens are taken from each
input place and added to output places in accordance
with the values given by the arc expressions relevant to
the arcs connecting the transition to output places. This
means that the firing process lead to a change in the

current marking of the CPN. In particular, the current
marking m becomes the new marking m’, defined by
m’(p) = m(p) + f ’(t,p)-f(p,t), where f ’(t,p) ∈ F is evaluated
for ∀p ∈ t• (i.e., the set of output places for transition t)
and denotes the values of the arc expressions relevant to
the arcs going from p to t, for the giving binding b.
A binding element may occur concurrently to other

binding elements – iff there are so many tokens that
each binding element can get its “own share”.

The Colored Generalized Stochastic Petri Net framework
extension
Different CPN modeling paradigms have been defined
during years: colored qualitative Petri Nets (QPNC), col-
ored stochastic Petri Nets (SPNC), and colored continu-
ous Petri Nets (CPNC) [20, 21]. QPNC does not uses
tokens but it is only used for qualitative analysis of sys-
tems; SPNC takes into account discrete tokens and sto-
chastic transitions, and CPNC uses continuous quantities
rather than discrete tokens and continuous transition
rates instead of discrete transitions. QPNC is an abstrac-
tion of SPNC and CPNC, while SPNC can reproduce by
approximation CPNC and vice-versa. From our point of
view, the most interesting approach is represented by
SPNC. In brief, this colored PN extension uses a discrete
number of tokens on its places like in classical PNs
(cells, for example, are better represented by discrete
quantities rather than continuous quantities like in ODE
systems). Moreover, stochastic events and transitions
that are fundamental for simulating, for example, differ-
ent individuals, are flawlessly reproduced through the
use of stochastic transitions which fire after a probabilis-
tic delay determined by a random variable defined ac-
cording an exponential probability distribution.
For our purposes it is useful to consider a further ex-

tension of the SPNC framework, namely Colored Gener-
alized Stochastic Petri Nets, by considering, besides of
stochastic transitions, also some kinds of deterministic
transitions that we can identify as immediate, delayed,
and scheduled transitions.
All transitions become enabled if all the preplaces are

sufficiently marked. When a stochastic transition (repre-
sented in our model by a white box) is enabled, a given
time must be wait before the firing occurs. This waiting
time that determines the firing delay of the transition is
given by a random variable Xt that is distributed expo-
nentially with the following probability density function:

f Xt τð Þ ¼ λt mð Þ⋅e −λt mð Þ⋅τð Þ; τ≥0:

Where λt can be defined as an arbitrary mathematical
function which depends on the marking m of the pre-
places at time t (i.e. mass action law that depends on the
number of tokens in the preplaces).
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It should be noted that, even if there is a stochastic
time delay before the firing of the transition, the firing
itself does not consume any time.
Deterministic (delayed) transitions (represented by

black boxes) have a deterministic firing delay specified
by an integer number. The delay count starts just after
the transition becomes enabled. However, it must be said
that during this waiting time it can happen that the tran-
sition loses its enabled state (pre-emptive firing rule).
Immediate transitions (represented by black rectangles

as in the standard PN notation) can be seen as a special
case of Deterministic (delayed) transitions with a delay
time set to 0. In case of conflict between an immediate
transition and any other kind of transition, the former
will get firing priority.
Also Scheduled transitions (represented in by gray

boxes) can be seen as a special case of deterministic
transitions. The firing is deterministic and it occurs at
a previously defined absolute time of the simulation,
obviously only if the transition is enabled at that
time. Interested readers can find further details about
SPNC [22, 23].

Advantages of using Colored Petri Nets
Petri Nets represent a graphical modeling tool that al-
lows to describe in a simple and clear, but yet formally
correct and powerful manner, any kind of process. The
biggest problem of classical low-level Petri Nets is given
by the fact that they usually not scale. As the (biological)
process we want to describe grows, low-level Petri Nets
tend to grow quickly, and the designing, drawing, under-
standing and managing of the net becomes even more
and more difficult, thus increasing the developing time
and the risk of introducing modeling errors.
The introduction of “colors” allows to discern among

different tokens and to follow the individually, in a simi-
lar way as it is done by CA and ABM approaches. This
represents the most important feature of Colored Petri
Nets, and their greatest advantage in respect to low-level
PNs, but also in respect to all the differential equation
based models.
Just to give to the reader an idea of the practical ad-

vantage of CPNs, the proof-of-concept model that we
developed according to the approach described in the
next section required only 9 places, 27 transitions and
63 arcs. If a standard (non colored) PN approach would
have been used, it would have required approximately
4000 different places, 28,000 transitions and 84,000 arcs.
This means that the development of the model itself
would have been almost unfeasible. A similar scenario
holds, for example, if a standard ODE approach is used
(approx. 4000 equations to describe all the populations
and approx. 84,000 nonlinear interaction terms within
equations).

The biggest advantage of CPNs (and PNs in general)
in respect to classical bottom up approaches is given by
the availability of a large number of formal analysis
methods by which the important properties of the net
can be extrapolated, proved and analyzed. Liveness,
Boundedness, Place invariants, Circuits, T-Invariants
and so on [8], allow to study the net properties from a
qualitative point of view, making the PN approach more
similar to a differential equation based approach in this
sense. Furthermore, over classical simulation, it is pos-
sible to have interactive simulations with results drawn
directly and in real time on the CPN diagram, and it is
possible to act during these simulations by, for example,
introducing and modifying new and existing tokens. This
kind of interactive simulation allows to debug the model
behavior while it is developed, just like in a complete
programming language environment.
Indeed, novel simulation techniques that should

speedup and potentially allow large scale simulations as,
for example, simulations that use the “symbolic mark-
ing” of the net or “fluidification” techniques have now
been presented [24, 25] and their implementation in
present PN software is in due course.
Finally, CPNs (and PNs in general) have a graphical

representation. This graphical representation is very sim-
ple, intuitive, and very appealing, even for people who
are not very familiar with the formal details of CPN.
With only three kinds of graphical items (circles, boxes,
and arrows) it is possible to mostly describe any kind of
process and to obtain, for free, a very clear and qualita-
tive conceptual model of process itself. Arc and transi-
tions guards can include very simple first-order logic
rules, as well as more complex functions that can be de-
fined using look-up tables. Thus, nor a strong knowledge
of mathematics (as for differential equation based
models), neither a good knowledge of any programming
language (as for CA for ABM models) is required, and
this may represent a consistent leap ahead in respect to
classical approaches, since it could allow to life-scientists
to directly use CPNs with little or no effort at all.

How to use CPN to model the Immune system function:
a novel methodological approach
To develop the adaptive IS response model, we used
Colored Generalized Stochastic Petri Nets, in which, as
already described, the most common transition rules are
defined as stochastic processes. We used the SNOOPY
software [20, 21] for developing a proof-of-concept
model of the humoral response to an extracellular bac-
terium. The approach we present can be reassumed as
follows:

� Use places to identify cellular or molecular types, or
subpopulations types
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� Use transitions to model events, such as cellular and
molecular state changes, entity interactions,
duplication, differentiation, aging and death.

� Use tokens to represent entity instances, like cells
and molecules (two different tokes represent two
distinct entities).

� Use colors to define specific properties of cellular
and molecular entities. In particular, we defined two
distinct colorset types (one for cellular entities and
one for molecular entities) that include the following
colours: STATE, POSITION, LIFETIME and
RECEPTOR.

The STATE colorset is used to define internal cell
states that determine cells behavior and it is actively
used only for cellular types. In the present implementa-
tion its possible values are: “resting; active; presenting;
memory; plasma”. The LIFE colorset (0…10) is used to
define life-time of cellular and molecular entities entities.
The RECEPTOR colorset can be used for many func-
tions and its meaning depends on the cellular/molecular
entity and transition rule we are dealing with. It can
represent:

1. the cellular receptor that is used for the recognition
of specific targets by B or T cells;

2. the presented peptide sequence that is presented by
Antigen Presenting Cells (APC) like MP;

3. the epitope sequence presented bacteria or antigens
in general;

4. the IgG antibody specific binding structure.

The POSITION colorset can be used to model pos-
ition of cellular entities inside the space or to represent
different compartments, i.e. viral infection place and
lymph node.
By using this approach and Colored Petri Nets it will

be possible to describe in a very general way, with just
one transition, the behavior of all the entities that behave
similarly (according to some relevant subsets of colors),
forgetting about the properties (colors) that are not rele-
vant for the behavior. In other words it will be possible
to say, for example, with just only one transition: “All
the naive B cells that encounter in the same position
(check that the pathogen and the B have the same pos-
ition) and recognize with sufficient affinity (check that
the B receptor binds with the presented peptide se-
quence) a specific pathogen will be activated, no matter
what is the valule of their real exact position, their value
of their real exact receptor or peptide sequence, and
how much remaining life they have”. With this approach
we will gain a more grained description that introduces,
for example, cell receptors and allows to follow entities
individually, but at the same time we will obtain a very

easy but yet powerful and flexible way to define the gen-
eral rules that drive the dynamics of the model.
Of course, the definition of the used colors can be

adapted to the problem we are dealing with i.e., the
POSITION colorset can be removed if we are not inter-
ested in modeling space and/or different compartments.
On the contrary, we can consider two or tree different
position colors (say “X,Y,Z”) to describe two or three
dimensional environments.
In our proof-of-concept model we have taken into

account 7 different places that are used to represent bac-
teria, macrophages (MP), T helper cells (TH), B cells (B),
Plasma Cells (PB), immunoglobulins class M (IgM) and
Immunoglobulins class G (IgG).
As already stated, we defined two distinct product col-

orsets (multisets) types for all tokens, one type that is
mainly used for cellular entities and one type that is
used for molecular entities. This first product colorset is
composed by four colors: STATE, POSITION, LIFE-
TIME and RECEPTOR, and it is used by TH, B, PB, MP;
the second one is composed by three colors: POSITION,
LIFETIME, and RECEPTOR and it is used for IgM, IgG,
and bacteria. We note here that, even if bacteria are cells
and not molecules, we used the second colorset defin-
ition for such entities since we were not interested in
describing bacteria internal states.
It is worth nothing that in the present model imple-

mentation all cells and molecules have distinct product
colorsets (i.e. one colorset for TH cells, another one for
B cells etc.) in order to improve readability. However, it
must be noted all the cellular entities have the same
product colorset structure, and this also holds among
molecular types. Therefore, it would be possible to de-
fine an unique product colorset for all cells and another
one for all molecules, since the distinction among differ-
ent cell types (i.e. B or T cells) or different molecular
entities (i.e. IgM and IgG) depends on the context. In
fact, since places represent entity types, two identical
tokens (i.e., with the same color set and binding) may
represent two different kinds of cells if they hold in dif-
ferent places. The transition rules that are based on
well-known biological rules define the correct state
changes of the system and do not allow the erroneous
migration of tokens towards places that represent differ-
ent entity types.
It will be assumed that for any arc expression we can

either have a variable with of a given product colorset
type that will bind to any token with the same colorset,
or a more complex expression, always based on the
colorset definition that will select only tokens that will
satisfy some given particular requirements.
For example the arc expression 2’(“active”,p,l,4), with p

representing a variable whose type is POSITION and l a
variable whose type is LIFE, when placed on an input
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arc (before a transition) will only accept two tokens with
subset colors STATE=“active” and RECEPTOR=“4”. p
and l will bind to any POSITION and LIFE colors of the
incoming tokens. In other words, any token representing
a cell in the active STATE and RECEPTOR 4 will be
accepted by the arc expression, no matter what LIFE
and POSITION it will have.
The same arc expression when defined on an output

arc (after a transition) will produce two tokens with
colors STATE=“active”, RECEPTOR=“4”, and POS-
ITION and LIFE colors defined according to the p and l
values. If p and l binding already occurred, for example
on the input arcs of the transition, their value will be
already defined and assigned on the tokens that will be
produced; if no binding of p and l occurred on the input
arc expressions, their value will be chosen at random in-
side the set of the allowed POSITION and LIFE colorset
values. This example takes into account tokens which
represent cellular entities, however, if we remove the
STATE color set from the product color set definition, it
is also valid for molecular entities.
As already stated, the evolution of the system is driven

by transition rules that are defined upon well-known
biological rules. Generally, transitions can be used to
delineate all the biological scenarios that are needed to
describe the evolution of the system. Among such sce-
narios we recall the appearing of new entities and death
of old entities, cellular and molecular behavior changes
that include changes in the internal cell state, aging
(change in the life counter), processing and presentation
of antigenic sequences and movement. Such changes
can be the result of transitions that involve one or more
entities. Of course it is not possible to describe in detail
all the possible biological scenarios that may arise, so we
sketch out more explicitly the methodology by showing
the most relevant examples.

Introduction and death of new entities
The introduction and of new entities can be modeled as
presented in Fig. 1. Usually, new entities can be intro-
duced with stochastic transitions with an initial pre-
defined color. For example, as shown in Fig. 1, 10 TH

cells are introduced as “resting” cells, with an initial
life-time set to 10. Both the RECEPTOR and the
POSITION colors are not assigned (POSITION = p
and RECEPTOR = r, where p is defined as a variable
of type POSITION and r of type RECEPTOR), and
this translates into the generation of new cells with
random position and receptor, but with a predefined
life counter and initial internal state. As it also pos-
sible to note from Fig. 1, such kind of transitions
does not need any incoming token from a given place
to be enabled.
For some scenarios it is requested to model the intro-

duction of new entities at a given time, for example to
reproduce the injection of a given treatment or com-
pound. If such situation holds, it is possible to substitute
the simple (stochastic) transition with a scheduled tran-
sition that allows the definition of an initial time, period,
and final time of activation of the transition.
Death of entities will occur for all cells and/or mole-

cules that have ended their life cycle (LIFE = 0). This can
be achieved by using transitions with transition guards
on the value of the component element that refers to
the LIFE counter, as presented in the example shown in
Fig. 2. Here, any token can be potentially selected, in fact
any token coming from the TH place can bind to the
variable th, but the transition will fire only if the guard
condition [th:3 = 0] on the transition is satisfied, that is if
the third component of TH, representing the LIFE sub-
set color, is 0. If such holds, the input token will be con-
sumed by the transition, and no output tokens will be
produced (we have no output arcs).

Internal state changes
With the preposition “internal state changes”, we define
all the events that modify the binding of the components
of the product colorsets we have previously defined (i.e.,
changing in the value of the STATE or LIFE colorsets).
Such changes may hold from an immunological point of
view for multiple reasons.
A first example of this scenario can be represented by

entities aging. In this case the, LIFE component of
entities needs to be decreased to reflect aging. The

Fig. 1 Example of introduction of new entities into the system.
10 new TH cells are introduced at random times into the system
as resting cells (STATE = “resting”), with a random position (POSITION =
p, where p is defined as a variable of type POSITION), LIFE = 10, and a
random receptor (RECEPTOR = r, where r is defined as a variable of
type RECEPTOR)

Fig. 2 Example of the use of a stochastic transition to model the
dead of entities that have completed their life cycle. TH cells that
have completed their life cycle will be removed from the system.
The transition is enabled if and only if the guard condition on the
LIFE subset color holds, thus only if the binding on the TH variable
(of type TH) is done on a token whose third component element
(LIFE) of the product colorset TH is equal to zero (th:3 = 0)
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approach we followed uses stochastic transitions and it
is showed in Fig. 3, where we represent a case that
shows how TH cells aging can be characterized. Here
allow the binding of the variable th with any token with
a product colorset TH, we check that its life counter is
greater than 0 with the guard expression [th:3 > 0] and,
if such holds, we consume the input token and produce,
by using the arc expression 1’(th:1,th:2,th:3–1,th:4), a
new token that has the same STATE (th:1), the same
POSITION (th:2), the same RECEPTOR (th:4) of the in-
put token, but with a LIFE counter decreased by one
(th:3–1).
Interaction among two or three different entities rep-

resents another example of entity internal state changes.
As a result of the interaction of two or more other
entities, cells may change their internal state and behav-
ior, molecules like antigens may disappear from the sys-
tem, and new entities can be introduced. An example is
showed in Fig. 4, where we give a possible representation
of the interaction between primed TH cells and present-
ing B cells. Both cells must be in the right internal state
to interact; moreover receptor matching is needed to
make the interactions possible. As a result of a success-
ful interaction (i.e., availability of tokens in the selected
places that satisfy all the requirements in the transition
guard) we will obtain duplication of TH cells, and asym-
metrical division/differentiation of B cells that will pro-
duce a memory B cell and/or a new plasma B cell.
In particular, any token coming from the TH and B

places will be a potential candidate to be selected for the
binding of the th and b variables, respectively. However,
the transition will be enabled only if the guard condition
[b:1 = “presenting” & th:1 = “active” & b:4 = th:4] that im-
poses that: 1) the token representing the B cell is in the
“presenting” STATE; 2) the token representing the T
helper cell is in the “active” STATE and, 3) there is
matching within the involved receptors (b:4 = th:4) is
satisfied. As result of the firing of the transition: 1) the
input tokens will be consumed; 2) two newborn T helper
cells with the same STATE, POSITION and RECEPTOR
of the input T helper cell, but with an increased LIFE
will be produced (2’(th:1,th:2,10,th:4)) into the TH place;
3) A newborn plasma B cell token with the same
RECEPTOR and POSITION of its progenitor, but with

LIFE increased to the maximum value will be introduced
into the PB (plasma B) place (1’(“plasma”,b:2,10,b:4)); 4)
A newborn memory B cell token with the same POS-
ITION and RECEPTOR of the input B cell, but with
LIFE increased to the maximum value will be produced
into the B place (1’(“plasma”,b:2,10,b:4)).
One of the most important features of the adaptive

immune system response is given by the ability to
recognize specific targets and characteristics of potential
pathogens. This goal is achieved by IS cells using cell re-
ceptors that are able to recognize and/or capture specific
amino acidic sequences that are present on the surface
of infected cells and bacteria.
Such a recognition process can be introduced directly

inside transition guards and its definition depends on
the RECEPTOR color definition itself. In our example,
since we only used a limited set of integer numbers to
represent receptors, we supposed that a successful rec-
ognition could be achieved only if entities have the same
integer number inside the RECEPTOR color. Of course,
more complex models of both receptors and receptor
recognition functions, like those based on binary strings
and hamming distance implemented in the ABM models
presented in [2, 3, 6], can be achieved by using specific
function definitions based on look-up tables and more
complex guards.
Entity position and movement represents another

aspect that can be taken into account for modeling
IS. In some cases the presence of different compart-
ments or an accurate spatial description can be useful
to represent, for example, migration of IS cells to-
wards different compartments (i.e. lymph nodes),
tumor growth, and the spread of viral infection.
Spatial movement can be achieved as described earlier
for entity interactions by using stochastic transitions
and guards. In Fig. 5 we show an example on how to
implement random walk on two dimensions over a
square lattice by using two colorsets X and Y for pos-
ition. Of course more complex spatial descriptions,
like the one presented in [26] for describing reaction
diffusion systems, can be used.
We note here that in our proof-of-concept model,

even if we predisposed the presence of a POSITION col-
orset, we did not use it since we did not include any

Fig. 3 Example of the use of a stochastic transition to model entities aging. The guard on the stochastic transition randomly selects only tokens
that represent TH cells whose life is greater than 0 (th:3 > 0), and gives back to the starting place a new token that is identical to the previously
selected one, except for the fact that LIFE has been decremented by 1 (1’(th:1,th:2,th:3–1,th:4))
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spatial description. It must be highlighted that if space is
included inside the model, all transitions guards that are
used to model interactions must be revised accordingly
to include such an aspect (i.e. to also check that the
interacting cells/molecules hold in the same position/
compartment).
Delayed events may represent another event that may

be critical to represent. For some scenarios it would be
of major importance to represent events that require
some time to complete, such as antigen internalization
and processing by antigen presenting cells like macro-
phages. Such events can be represented making use of

delayed transitions that allow the definition of one or
more delay times for the activation of the considered
transition.

Biology implemented into the model
In order to demonstrate the feasibility of the modeling
approach, we developed a model of the adaptive immune
response whose goal is to reproduce two important IS
features: specificity and memory. These two well-known
features allow the immune system to recognize and
attack specifically a given pathogen thanks to the use o

Fig. 4 Example of the use of a stochastic transition to model interaction among entities. The guard on the stochastic transition randomly selects
only tokens that represent TH cells that are in the active state (th:1=“active”) and B cells that are in the presenting state (b:1=“presenting”).
Moreover the activation of the transition is achieved only if both the cells have the same receptor specificity (b:4 = th:4). As a result of the
activation of the transition we will obtain duplication of TH cells by giving back 2 identical TH cells to the TH place (2’th), a memory B cell with
the same position and specificity, but with renewed life (1’(“memory”,b:2,10,b:4))) and, as a result of a asymetrical division, a new plasma cell (PB)
with same receptor and characteristics of the progenitor B cells (1’(“plasma”,b:2,b:3,b:4))

Fig. 5 Example of the use of a stochastic transitions to represent 2D random walk over a square grid with toroidal geometry. In this example we
suppose that the place that represents TH entities contains tokens defined according the following product colorset: (STATE,LIFE,RECEPTOR, X, Y),
with X and Y defined as integer colorsets. Random 2D Movement is achieved by using stochastic transitions. The x_inc and x_dec transitions are
used to model movement under the x direction, whereas The y_inc and y_dec represent the movement on the y direction. The predecessor (−)
and successor (+) colorset functions are here used to decrement or increment the position indices
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specific cellular receptors (specificity), and to have an
enhanced secondary response against a previously en-
countered pathogen (memory).
In this paper we focused on the humoral immune re-

sponse, that is driven by B lymphocytes and whose final
outcome is represented by the production of antibodies.
We used SNOOPY [20, 21] to develop the stochastic
colored PN according to the approach described earlier.
The model is shown in Fig. 6 and is provided online (see
Availability of Data and Materials).
The biology implemented into the model can be reas-

sumed as follows. Let us have a given pathogen inside
the host i.e., an extracellular bacteria, that is able to rep-
licate. Of course bacteria, like the other cellular entities,
are exposed to aging and death. In order to test the pres-
ence of the memory and specificity features of the IS re-
sponse, we supposed two subsequent infection spreads
of two different bacterial papulations (with different re-
ceptors) into the system at given times using scheduled
transitions. Bacteria can be recognized a-specifically by
antigen presenting cells like macrophages (MP) through
the use of toll-like receptors or also specifically by

resting B cells. As a result of such interactions MP that
will phagocyte bacteria will be activated and will proceed
to process and then expose bacterial peptides complexed
with major histocompatibility complex class II peptides.
On the other hand, resting B cells that are able to specif-
ically recognize bacterial determinants will be activated
and release low affinity antibodies (IgM). Such anti-
bodies will bind with low affinity to bacterial surfaces.
However, such a response may be not sufficient to eradi-
cate bacteria. To this end other mechanisms of the IS re-
sponse are involved. Activated MP will present exposed
peptides to specific resting T helper cells (TH) that will
be primed; primed B cells that will encounter again bac-
terial antigens will be further stimulated and will become
ready to present bacterial antigens to primed TH cells.
When such interaction holds, TH will be duplicate, and
B cells will asymmetrically differentiate into plasma B
cells (PB) and/or memory B cells. PB will produce spe-
cific antibodies (IgG) that will bind with higher affinity
to bacterial surfaces, having as a result the death of bac-
teria (through, for example, activation of complement
mechanism). Memory B cells will indeed live longer and

Fig. 6 Model of the humoral immune system response. White circles represent Places (cellular or molecular families); white boxes represent
stochastic transitions; grayed boxes that represent scheduled transitions are used to introduce bacteria population at given times; the two black
boxes that represent delayed transitions are used here to mimic the time needed by macrophages (MP) and B cells to internalize, process and
expose antigenic peptides
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will be ready to directly differentiate into plasma cells if
future encounters with the same bacteria happen. All in-
teractions can be examined in depth by analyzing the
SNOOPY PN model we provided as supplementary ma-
terial (see Availability of Data and Materials).

Results and discussion
Immune responses are specific for distinct antigens that
are specifically recognized by individual lymphocytes.
The parts that the competent immune cells recognize
are called determinants or epitopes. This fine specificity
exists because individual lymphocytes express membrane
receptors that are able to distinguish elusive differences
in structure between different epitopes.
The repertoire represents the total number of anti-

genic specificities of the lymphocytes in an individual. It
is extremely large and it has been estimated that the im-
mune system of an individual can discriminate between
107 and 109 distinct antigenic determinants.
Exposure of the immune system to a foreign antigen

enhances its capacity to respond again to that antigen.
Responses to second and subsequent exposures to the
same antigen, called secondary immune responses, are
usually more rapid, larger, and often qualitatively differ-
ent from the first, or primary, immune response to that
antigen (see Fig. 7). Immunologic memory occurs

because each exposure to an antigen generates long-
lived memory cells specific for the antigen, which are
more numerous than the naive cells specific for the anti-
gen that exist before antigen exposure. In addition, these
memory cells have special characteristics that make
them more efficient at responding to and eliminating the
antigen than are naive lymphocytes that have not previ-
ously been exposed to the antigen. Figure 7 sketches
memory B lymphocytes that produce antibodies that
bind antigens with higher affinities than do antibodies
produced in primary immune responses. In such an ex-
ample antigen X is inoculated at the beginning. Immune
system competent cells recognize the epitopes of the
antigen X and mount the primary immune response,
producing specific antibodies against antigen X. More-
over, memory B cells are also produced. Later, another
administration is performed. This time, two different an-
tigens are administered, antigen X and Y. The presence
of immune memory is highlighted by a larger response.
The antigen X is rapidly cleared while the response to
the antigen Y is slower, as this is the first time that im-
mune competent cells face with its epitopes.
These features of adaptive immunity are necessary if

the immune system is to perform its normal function of
host defense. Specificity and memory enable the immune
system to mount heightened responses to persistent or

Fig. 7 Typical immune system primary and secondary response. Different antigens (X and Y) induce the stimulation of B cells with different
specificity, and thus entitle the production of different antibodies (a reflection of specificity). The secondary response to the antigen X is more
rapid and stronger than the primary response (underlying memory importance) and is different from the primary response to the antigen Y
(again reflecting specificity). Antibody levels decline with time after each immunization
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recurring exposure to the same antigen and thus to
combat infections that are prolonged or occur
repeatedly.
Our goal is to demonstrate how the proposed model-

ing approach based on CPNs can be useful for modeling
the IS response. To this end, we developed a proof-of-
concept model that is able to qualitatively reproduce the
typical primary and secondary IS response that is well
known in the literature [1], highlighting the presence of
memory and specificity.
While the typical behavior of the immune system re-

sponse described above is well known and represents
one of the hallmarks of immunology, to our best
knowledge there exists no specifically validated gold-
standard clinical dataset that can be used to quantita-
tively compare, in a numerical sense and in a precise
way, the outcomes of an in vivo/in silico experiment
about the general immune system response to a given
pathogen. This is due to the fact that the immune sys-
tem responses are influenced by multiple factors (i.e.
the kind of bacterial or viral infection) that can entitle
very high fluctuations even among different individ-
uals of the same experimental group. As a result of
this, mathematical and computational models are
usually tailored to the specific experiment they want
to reproduce, and experimental data is usually used to
fine-tune the model behavior. In this case, since our
goal is to demonstrate how high-level PNs can be
successfully applied to qualitatively reproduce specific
immune system features rather than numerically re-
produce a given experimental setup, we will show
how memory and specificity features are coherently
reproduced by qualitatively comparing PN based
simulation results with those obtained using the UISS
simulator, an Agent Based simulation framework that
has been developed for years and specialized to model
and predict the IS response to different pathologies
such as mammary carcinoma [27], lung mestastases
[28], melanoma [29], atherosclerosis [30], and to pre-
dict and to optimize candidate treatments and novel
adjuvants [31].
The time step of all the simulations is Δt = 8 h, as in

the ABM models presented in [2, 3, 6]. The total time of
all simulations is 600 (approx. 28 weeks). We recall here
that the typical adaptive immune system response re-
quires from 2 to 4 weeks.
We used the scheduled transitions to simulate the

appearing of bacteria at different times. Since the initial
marking of the PN has no tokens, before introducing
any bacteria token, we waited a minimal number of
time-steps (100 time-steps) to give time to let the PN
reach an equilibrium “homeostatic” level for the MP, TH
and B places (i.e., a minimal, stable, number of tokes in
these places). All the experiments we have done have

been repeated 100 times and mean values have been
taken into account.
As a first experiment we challenged the model to test

the induction of memory and compared these first re-
sults with those obtained with the UISS framework. To
this end we simulated the appearing of a given bacteria
(2000 tokens with the binding (0,10,3)) at two different
time-steps. We recall here that we did not include the
STATE colorset in the bacteria definition. The first
appearing of the bacteria (at time-step 100) is done to
induce a primary response, whereas the second one (at
time-step 400) is done to test the presence of a stronger
secondary response. As similar setup (i.e. injection of
2000 bacterial cells at the same time-steps) has been
used for the UISS framework also. Results are shown in
Figs. 8 and 9. Looking at these figures, it is possible to
see how the two modeling approaches show, from a
qualitative point of view, show a similar behavior in re-
producing the immune system response. In particular, it
appears clear that at the time of the second bacteria ad-
ministration, the total quantity of IgG is in both the
models (Figs. 8 (a) and (b)) much higher than the quan-
tity measured at the first injection. Another important
aspect is represented by the fact that, as a consequence
of the stronger immune response and of a higher peak
of IgG, the bacteria are killed more rapidly. Of course
some aspects like the total number of antibodies needed
and the (lower) time required to clear the second bacter-
ial infection are probably better reproduced by the UISS
framework that, after years of work, contains a lot more
of biological detail (i.e. all the cytotoxic branch, the pres-
ence and function of immunocomplexes, the presence
and role of cytokines and chemokines etc.) and a spatial
description that, at the present time, has not been en-
abled in the PN model.
Once that we have checked that the PN model

showed an IS response that is qualitatively in line
with the UISS framework, we tested the presence of
the specificity feature by injecting two different bac-
terial populations (identified by a different value in
the RECEPTOR subset color, 3 and 8). The first in-
jection of 1000 tokens with the binding (0,10,3) is
done at time 100, and then a second injection of
both the Bacteria populations (1000 tokens with
binding (0,10,3) and 1000 tokens with binding
(0,10,8), respectively) is done at time 400. In other
words, we reproduced the typical scenario of the im-
mune system response that we have already pre-
sented in Fig. 7. In Fig. 10 we show the results
obtained with the PN model. As expected, both spe-
cific plasma B cells and IgG are higher for the first
bacteria population (with binding (0,10,3)) at the
time of the second injection. Furthermore, the re-
sponse to the second bacteria population (with
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binding (0,10,8)) is comparable to the first population
at the first time injection. This highlights how the
first injection elicits the formation of memory B lym-
phocytes that are specific for the first bacteria popu-
lation only, and thus elicit a stronger immune
response for that specific bacteria only.

Conclusions
Traditional “low-level” PN represent a strong modelling
technique for the simulation of networks, concurrent
systems and distributed systems in general. Even if PN
have been initially used by computer science and en-
gineering theoreticians only, thanks to the introduc-
tion of many extensions of the PN framework (which
led to the born of “high-level” Petri Nets), PN have
also been successfully applied in many other fields,
e.g., for the modeling of biochemical pathways. Their
initial application to the modeling of the immune sys-
tem response has been taken into account. However,
such an approach did not make inroads, probably be-
cause it has not brought any real additional advantage
over traditional top-down approaches. For example,
the lack of granularity in the description of the bio-
logical phenomena may have represented an import-
ant missing feature.
Colored PN are a PN extension which may allow to

overcome this limit. To demonstrate this, we pro-
posed a methodology to realize detailed models of the
immune system response based on (generalized sto-
chastic) CPN, and, to validate our methodology, we
presented a model of the humoral adaptive IS re-
sponse against an extracellular bacteria that is able to
reproduce well-known important IS features such as
memory and specificity. The proposed methodology
has some advantages over classical methodologies. It
allows to come close to the granularity allowed by
agent based models, by letting the modeler to de-
scribe in depth, for example, internal cell states, re-
ceptors and complex interactions. At the same time
CPN benefit of many types of formal analysis that

Fig. 9 Detailed dynamics of specific memory B cells in the PN
model and in the UISS computational framework. Memory B cells
levels obtained with the PN model are in good agreement (from a
qualitative point of view) with the results obtained by using the UISS
framework. The drop in the number of memory B cells in the PN
model just after the second injection is caused by the fact that, after
the second injection of bacteria, all memory cells are temporarily
enrolled into the interaction with bacterial antigens, and rapidly move
inside the relative transition (AG_MEM_B transition in Fig. 6). This
leaves for a short time the relative place without memory cells. As a
result of this, since we actually plot only tokens that are in places, for
a very short time the relative curve goes down

a b

Fig. 8 Detailed dynamics of specific immune system entities in the PN model (a) and the UISS framework (b). At the time of the second bacteria
injection (timestep 400), the total level of IgG (dashed red line) is much higher in respect to the level measured at the time of the first injection.
As a result of this, bacteria (dotted green line) are cleared more rapidly at the time of the second injection. Both IgM (solid cyan line) and IgG
(dashed red line) levels obtained with the PN model (a) are in good agreement (from a qualitative point of view) with the results obtained by
using the UISS framework (b)
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may permit to analyze some fundamental properties
of the biological network under study such as reach-
ability, Liveness, Boundedness, Place invariants, Cir-
cuits, T-Invariants and so on [8], making them more
similar to differential equations models in this sense.
Furthermore, CPN represent a graphical modeling

technique that does not require a strong knowledge of
mathematics, like in differential equation based models,
or good programming skills, like for ABM models. Thus,
CPN based models are easy to design, pre-existing soft-
ware like SNOOPY or CPN Tools can be used, and life-
scientists that already demonstrated able to use PN tools
in general for the developing and analysis of many bio-
chemical signaling pathway models may use CPN with
little or no effort at all.
Indeed, an additional benefit of the use of CPN is rep-

resented by the possibility to realize multi scale models,
but with the advantage of using the same modeling tech-
nique and software to combine, using hierarchical Petri
Nets, intra cellular models (based on signal transduction
pathways) and system models (based on the presented
approach).
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