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This work considers homogeneous isotropic micropolar plates adopting a power series
expansion method in the thickness coordinate. Variationally consistent equations of
motion and end boundary conditions are derived in a systematic fashion up to arbitrary
order for extensional and flexural displacement cases. The plate equations are asympto-

the present method, other approximate theories as well as the exact three dimensional
theory. The results illustrate that the present approach may render benchmark solutions
provided higher order truncations are used, and act as engineering plate equations using
low order truncation.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Micropolar elasticity introduces dependency on the microstructure of a continuum within the framework of classical
continuum theory. Extending the classical continuum model is relevant for materials where internal or microscale
characteristics drastically alters the response behavior. Such materials can range from granular to fibrous material and
even composites can fall under the category of micropolar theory, since microstructure defines mechanical properties.
Hence, micropolar elasticity theory is an extension of classical elasticity theory. This extension entails that, unlike classical
elasticity theory where only three translational degrees of freedom are assigned to each material point within a body;
micropolar elasticity theory also introduces three rotational degrees of freedom to each material point. In effect, each
material point is considered to be a rigid body. As a consequence, two types of stresses are experienced by a material point
during external loading, the extension of the Cauchy stress in micropolar elasticity theory and a new stress denoted couple
stress. Both these stresses are in the general case nonsymmetric.

Since the development of the micropolar theory due to Cosserat [1] several alternative versions have evolved, most
notably the theory by Eringen [2]. There exists many works where micropolar theories have been applied to structure
elements such as for plates, see for example the review paper by Altenbach et al. [3]. Among these works, the study of
Kirchhoff and Mindlin type plate theories has been developed by several authors [4–13]. In addition, different types of
micropolar plate equations based on asymptotic expansion theories have been studied by Green and Naghdi [5], Achenbach
[14] and Erbay [15].

The purpose of the present work is to derive a hierarchy of theories for plates based on the micropolar continuum theory
developed by Eringen [2]. This results in plate equations and pertinent sets of edge conditions developed in a consistent and
systematic fashion up to arbitrary order. The present approach differs to the previous work on approximate micropolar plate
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theories in several important ways such as the series expansion procedure, the way of collecting terms and the truncation
process as a whole. The used method is mainly based on the works on isotropic plates by Boström et al. [16] and anisotropic
plates by Mauritsson et al. [17]. This particular method has also been employed for functionally graded plates [18], porous
plates [19], shells [20], rods [21,22] and beams [23].

In short, the present plate equations for homogenous isotropic micropolar plates are derived by employing a systematic
power series expansion approach. Displacement and micro-rotation fields are expanded in a power series in the thickness
coordinate of the plate. From the expanded displacements and micro-rotations, the stress and couple stress are obtained on
power series form in terms of the expansion functions of the displacements and micro-rotations. Furthermore, by using the
equations of motion for micropolar elasticity, recursion relations are constructed. These are used to express all expansion
functions in terms of the lowest order expansion functions. Thus all fields can be expressed in these lowest order expansion
functions without performing any truncations. Subsequently boundary conditions on the upper and lower surface of the
plate are stated on power series form. These boundary conditions represent a set of scalar equations, written in terms of the
lowest order expansion functions. The scalar equations constitute the complete set of partial differential plate equations for
extensional and flexural motion, which may also be decoupled if necessary. Using variational calculus, the edge boundary
conditions for each edge surface are obtained in an equally systematic manner. The resulting sets of plate equations may be
truncated to any order, where each studied order is asymptotically correct.

In order to validate the hierarchy of plate theories, numerical results for dispersion curves, eigenfrequencies and cross
sectional fields are presented using different truncation orders. Comparisons are made to the exact three dimensional
theory as well as to the approximate theories due to Eringen [4] and Sargsyan and Sargsyan [10].

2. Theory of linear micropolar elasticity

Consider a micropolar continuumwhere the field variables are expressed in Cartesian coordinates. In the absence of body
forces and body couples, the equations of balance of momentum and moment of momentum are written as [2]

tkl;k ¼ ρ €ul; (1)

mkl;kþϵlkmtkm ¼ ρjlk €ϕk; (2)

where tkl is the stress tensor, mkl is the couple stress tensor, ul is the displacement vector, ϕk is the micro-rotation vector, ρ is
the density, jlk is the microinertia tensor and ϵlkm is the permutation symbol. Indices that follow a comma indicate partial
differentiation. The tractions are defined in accordance to

tl ¼ tklnk; (3)

ml ¼mklnk; (4)

where nk is an outward pointing normal.
Supplementing the equations of motion, two constitutive relations for the stress and couple stress are needed. For a

homogenous and isotropic material the constitutive relations are given by

tkl ¼ λεmmδklþðμþκÞεklþμεlk; (5)

mkl ¼ αγmmδklþβγklþγγlk; (6)

where δkl is the Kronecker delta, λ and μ are Lamé parameters while α, β, γ and κ are micropolar elastic moduli. For spin-
isotropic materials the microinertia reduces to a scalar quantity, jkl ¼ jδkl. Moreover the micropolar strain tensors εkl and γkl
are defined by

εkl ¼ ul;kþϵlkmϕm; (7)

γkl ¼ϕk;l: (8)

3. Series expansion and recursion relations

The governing equations for a micropolar continuum as described in Section 2 are to be applied to a homogenous
isotropic plate of thickness 2h. A Cartesian coordinate system fx; y; zg is used, where the in plane x- and y-axes are along the
middle plate plane at z¼0. The components of the displacement field and micro-rotation field are denoted fu1;u2;u3g and
fϕ1;ϕ2;ϕ3g respectively. The derivation procedure of the plate equations is based on the assumption that each component
of the displacement field and micro-rotation field can be expanded in a power series in the thickness coordinate z accord-
ing to

ulðx; y; z; tÞ ¼
X1
n ¼ 0

znuðnÞ
l ðx; y; tÞ; (9)
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ϕlðx; y; z; tÞ ¼
X1
n ¼ 0

znϕðnÞ
l ðx; y; tÞ: (10)

Before proceeding with the derivation of the plate equations, an operator Lk is defined to simplify calculations. Lk operates
on the displacement and micro-rotation fields in the following manner:

Lkf
ðnÞ
l ¼

∂xf
ðnÞ
l if k¼ 1;

∂yf
ðnÞ
l if k¼ 2;

ðnþ1Þf ðnþ1Þ
l if k¼ 3;

8>>><
>>>:

(11)

i.e. Lk for k¼3 increases the index of f ðnÞl and multiplies with the new index, in this case nþ1. Here the shorthand form ∂x
and ∂y are used to denote partial derivatives with respect to x and y. Using the assumptions in Eqs. (9) and (10), the
constitutive equations (5) and (6), as well as the deformation relation equations (7) and (8), it is possible to express all the
stress and couple stress components in power series form

tkl ¼
X1
n ¼ 0

zntðnÞkl ; (12)

mkl ¼
X1
n ¼ 0

znmðnÞ
kl ; (13)

where

tðnÞkl ¼ λLiu
ðnÞ
i δklþμðLluðnÞ

k þLku
ðnÞ
l ÞþκðLkuðnÞ

l þϵlkmϕ
ðnÞ
m Þ; (14)

mðnÞ
kl ¼ αLiϕ

ðnÞ
i δklþβLlϕ

ðnÞ
k þγLkϕ

ðnÞ
l : (15)

By inserting the expanded displacement and micro-rotation fields (Eqs. (9) and (10)), together with the expanded stress and
couple stress tensors (Eqs. (12) and (13)) into the equations of motion, Eqs. (1) and (2), and collecting terms of equal power
in z one can obtain recursion formulas for each displacement and micro-rotation field. The recursion formulas are essential
for the derivation of the plate equations since the number of expansion functions for each field can be reduced from an
infinite amount to a finite amount. By using the recursion formulas it is possible to express all expansion functions uðnÞ

l and
ϕðnÞ

l with n¼ f2;3;…g in terms of the lowest order ones with n¼ f0;1g. The recursion formulas are obtained as

ðμþκÞðnþ2Þðnþ1Þuðnþ2Þ
l þðλþμÞðnþ2Þðnþ1Þuðnþ2Þ

3 δ3l

¼ ρ €uðnÞ
l �ðμþκÞð∂2x þ∂2yÞuðnÞ

l �ðλþμÞLlð∂xuðnÞ
1 þ∂yuðnÞ

2

þðnþ1Þuðnþ1Þ
3 ð1�δ3lÞÞ�κδliϵijkLjϕ

ðnÞ
k ; n¼ 0;1;…; (16)

γðnþ2Þðnþ1Þϕðnþ2Þ
l þðαþβÞðnþ2Þðnþ1Þϕðnþ2Þ

3 δ3l

¼ ρj €ϕ
ðnÞ
l �γð∂2x þ∂2y ÞϕðnÞ

l �ðαþβÞLlð∂xϕðnÞ
1 þ∂yϕ

ðnÞ
2

þðnþ1Þϕðnþ1Þ
3 ð1�δ3lÞÞ�κðδliϵijkLjuðnÞ

k �2ϕðnÞ
l Þ; n¼ 0;1;…; (17)

for l¼1, 2, 3. Note that these coupled six recursion formulas do not involve any approximations since they stem from the
equations of motion, Eqs. (1) and (2), and the power series expansion of the displacement and micro-rotation fields, Eqs. (9)
and (10). Furthermore, the power series have not been truncated which is essential for the present method.

4. Dynamic plate equations

On the surfaces at z¼7h, either the tractions or the displacements and micro-rotation are to be prescribed. These given
fields are denoted fT7

l ;M7
l ;U7

l ;Φ7
l g, where 7 indicates the upper surface z¼h and the lower surface z¼�h, respectively.

Hence one field from each pair ft3l;ulg and fm3l;ϕlg is prescribed, resulting in six boundary conditions for each surface. For
prescribed stresses, the boundary condition is obtained by truncating Eqs. (12) and (13) at an order N40, which gives

XN
n ¼ 0

ð7hÞntðnÞ3l ðx; y; tÞ ¼ T7
l ðx; y; tÞ;

XN
n ¼ 0

ð7hÞnmðnÞ
3l ðx; y; tÞ ¼M7

l ðx; y; tÞ: (18)

Similarly boundary conditions for displacements and micro-rotations are obtained from Eqs. (9) and (10),

XNþ1

n ¼ 0

ð7hÞuðnÞ
l ðx; y; tÞ ¼U7

l ðx; y; tÞ;
XNþ1

n ¼ 0

ð7hÞnϕðnÞ
l ðx; y; tÞ ¼Φ7

l ðx; y; tÞ: (19)
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The conditions for the displacements and micro-rotations are truncated at a one order higher compared to the stresses. This
is due to that stresses include spatial derivatives of one order higher than displacements and micro-rotations, therefore an
extra term is added to these latter conditions in order to obtain consistent plate equations.

The boundary conditions obtained from combinations of Eqs. (18) and (19) constitute the hyperbolic set of twelve partial
differential equations for a micropolar plate. Using the recursion relations, Eqs. (16) and (17), these plate equations may be
written in terms of the twelve lowest order expansion functions fuðnÞ

l ;ϕðnÞ
l g for n¼ f0;1g. These surface boundary conditions

are always fulfilled regardless of the expansion order N. Each of the twelve boundary conditions, Eqs. (18) and (19), contain
spatial derivatives of order Nþ1 for fuð0Þ

l ;ϕð0Þ
l g and spatial derivatives of order N for fuð1Þ

l ;ϕð1Þ
l g. Although any combination of

boundary conditions may be treated, consider from here on plates where either only tractions or only displacements and
micro-rotations are prescribed at the surfaces z¼7h. Hereby, the resulting system of twelve plate equations will have a
differential order of 12N. This is seen by reducing the twelve plate equations to a single equation in any of the scalar fields
fuðnÞ

l ;ϕðnÞ
l g for n¼ f0;1g. Consequently 6N boundary conditions must be selected for each edge of the plate.

In practice it is more convenient to decouple the plate equations into equations for symmetric motion and equations for
antisymmetric motion. This is achieved by adding and subtracting the conditions, Eqs. (18) and (19), thereby obtaining
conditions only containing even or odd expansions in h according to

XN
n even

hntðnÞ3l ¼ 1
2

T þ
l þT �

l

� �
;

X
n odd

NhntðnÞ3l ¼ 1
2

T þ
l �T �

l

� �
; (20)

XN
n even

hnmðnÞ
3l ¼ 1

2
Mþ

l þM�
l

� �
;

X
n odd

NhnmðnÞ
3l ¼ 1

2
Mþ

l �M�
l

� �
; (21)

XNþ1

n even
hnuðnÞ

l ¼ 1
2

Uþ
l þU�

l

� �
;

X
n odd

Nþ1hnuðnÞ
l ¼ 1

2
Uþ

l �U�
l

� �
(22)

XNþ1

n even
hnϕðnÞ

l ¼ 1
2
Φþ

l þΦ�
l

� �
;

XNþ1

n odd

hnϕðnÞ
l ¼ 1

2
Φþ

l �Φ�
l

� �
; (23)

Consequently for a plate where only tractions are prescribed at the surfaces z¼ 7h, antisymmetric motion is obtained by
selecting the first (even) sum of Eq. (20) for l¼1, 2 and the second (odd) sum of Eq. (20) for l¼3, as well as the second sum of
Eq. (21) for l¼1, 2 and the first sum of Eq. (21) for l¼3. The complementary set is used for symmetric motion. For a plate
where only displacements and micro-rotations are prescribed at the surfaces z¼7h, the antisymmetric motion is obtained
by selecting the second sum of Eqs. (22) for l¼1, 2 and (23) for l¼3, as well as the first sum of Eqs. (22) for l¼3, and (23) for
l¼1, 2. Symmetric motion is obtained by using the complementary set. By adopting the recursion relations the

antisymmetric motion only involves the six expansion functions fuð1Þ
1 ;uð1Þ

2 ;uð0Þ
3 ;ϕð0Þ

1 ;ϕð0Þ
2 ;ϕð1Þ

3 g, while the symmetric motion

involves the complementary set fuð0Þ
1 ;uð0Þ

2 ;uð1Þ
3 ;ϕð1Þ

1 ;ϕð1Þ
2 ;ϕð0Þ

3 g. The decoupled plate equations are each of differential order 6N,
resulting in 3N boundary conditions along each edge of the plate.

Furthermore, these uncoupled set of plate equations may be analytically compared to the exact solution for infinite
plates. By expanding the displacements and micro-rotations for some branch of the exact micropolar dispersion spectrum in
a Taylor series around z¼0, identical terms are obtained as from the present hyperbolic set for each studied truncation order
N. Hence, this indicates that the present method renders asymptotically correct equations to arbitrary order N. Similar
results are reported for flexural elastic plates [16,24] when using a series expansion approach. Note that odd N results in
asymptotically correct equations to that specific order, while even N renders equations that are asymptotically correct to the
nearest lower odd order [17]. Therefore only odd N are chosen in this work.

These sets of plate equations, Eqs. (20)–(23), may also be obtained using variational calculus. This is accomplished by
following the general procedure illustrated in [22,23] adopting a generalized Hamilton's principle where stresses, couple
stresses, displacements and micro-rotations are varied simultaneously and independently. In addition pertinent edge
boundary is obtained in a variationally consistent manner as described below.
5. Edge conditions

Consider a rectangular plate where �arxra and �bryrb. At each edge x¼ 7a and y¼ 7b one field from each pair

ftαl;ulg and fmαl;ϕlg is to be prescribed for all zA ½�h;h�, here α¼ f1;2g. The given fields are denoted fT f7a;7bg
l ;Uf7a;7bg

l g
and fMf7a;7bg

l ;Φf7a;7bg
l g for each edge. These prescribed edge boundary fields may be time dependent as well as having

varying properties over the thickness and along each edge. The boundary conditions for each edge are constructed in a
systematic manner by adopting a generalized Hamilton's principle [17,22,23]. Since all boundary conditions are constructed
in the same manner, the procedure is only presented for a prescribed stress at x¼a.
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The variationally consistent edge boundary condition is then expressed asZ h

�h
T þa
l ðy; z; tÞ�

XM
n ¼ 0

zntðnÞ1l ða; y; tÞ
 !

zk dz¼ 0; k¼ 0;1;…;M; (24)

by using Eq. (12) and truncating at an order M. The Mþ1 integrals in Eq. (24) constitute a system of equations which
solution renders the Mþ1 terms tðnÞ1l ða; y; tÞ for n¼ 0;1;…;M. This representation of the boundary condition in power series
form is identical to the expansion of the given function T þa

l in terms of Legendre polynomials Pnðz=hÞ of order M, i.e.

T þa
l ðy; z; tÞ �

XM
n ¼ 0

anðy; tÞPnðz=hÞ ¼
XM
n ¼ 0

znT þaðnÞ
l ðy; tÞ; (25)

hence tðnÞ1l ða; y; tÞ ¼ T þaðnÞ
l ðy; tÞ. Note that the stress free case T þa

l ¼ 0 results in tðnÞ1l ¼ 0 for all n at the edge. By using Eq. (14)
each edge boundary stress term tðnÞ1l ða; y; tÞ is expressed in terms of displacements and micro-rotations. Adopting the
recursions formulas, Eqs. (16) and (17), the boundary stresses are written as partial differential equations in terms of the
lowest order fields fuðnÞ

l ;ϕðnÞ
l g for n¼ f0;1g.

The prescribed edge fields are thus expanded in both even and odd powers of z in the general case, as indicated in Eq.
(25). As noted before, the corresponding 6N edge conditions may be divided in 3N symmetric and 3N antisymmetric edge
conditions using decoupled symmetric/antisymmetric plate equations.

6. Numerical results

The present micropolar partial differential plate equations using different truncation orders are to be studied numerically
for the antisymmetric case with free upper and lower plate surfaces. This comprises investigating dispersion relations for
time harmonic waves in a infinite plate and by investigating stress, displacement and micro-rotation distributions. Also,
eigenfrequencies are calculated for finite square plates that are simply supported at all edges, as well as for two opposite
edges that are simply supported and the other edges are clamped or free. All numerical results are compared with the
approximate plate theories due to Eringen [4] and Sargsyan and Sargsyan [10] and when possible to the exact three
dimensional theory. These approximate theories [4,10] mainly differ mutually concerning the micro-rotation around the
axis perpendicular to the median plane. In Eringen's theory this degree of freedom is neglected while for Sargsyan's theory
this quantity is varying linearly with respect to the thickness coordinate.

The studied plate material is aluminium, where the material parameters are E¼70.85 GPa, ν¼0.33, ρ¼ 2800 kg=m3,
j¼ 0:325� 10�7, κ ¼ 1:31549� 10�5 GPa, α¼ 1:23552 kN, β¼ 0:1585 kN, γ ¼ 0:59664 kN [25]. Consider time harmonic
conditions with the time factor e� iωt using the non-dimensional frequency Ω¼ωh=c2, where c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþκÞ=ρ

p
. Since only

the antisymmetric case is studied, the lowest truncation of the plate equations is N¼3 as the lower N¼1 case does not
correctly account for flexural effects. The used N¼3 equations are presented in Appendix A.

6.1. Dispersion curves

Consider time harmonic waves propagating in the direction of the x-axis with wavenumber k. The first three flexural
modes are obtained and compared between the theories. In Fig. 1 the three first modes are presented, where the non-
dimensional frequency Ω is plotted against kh. For the present theory, the N¼3, N¼5 and N¼7 truncations are used to
effectively show the difference between truncations and the convergence of the solution to the exact theory.

The first curve, being the first flexural mode, is approximated quite well for small wavenumbers by all theories. The
Sargsyan theory begins to divert from the exact solution at kh� 0:7, while the solutions of all other theories only degenerate
slightly. The plate theory due to Eringen approximates the first flexural mode marginally better than the present N¼3
theory while N¼5 and N¼7 are indistinguishable from the exact curve. For the second curve, the Sargsyan theory diverts at
kh� 0:1, while the Eringen and N¼3 theories render accurate approximations. Note that the Sargsyan solution for the
Fig. 1. Dispersion curves: —— Exact, - - - N¼3, - � - N¼5, – � � – N¼7,– – � – – Eringen, � � � Sargsyan.



Fig. 2. Displacement in x-direction (b) and z-direction (a) for the first mode: —— Exact, - - - N¼3, - � - N¼5, – � � – N¼7, – – � – – Eringen, � � � Sargsyan.

Fig. 3. Micro-rotation in y-direction (a) and couple stress m12 (b) for the first mode: —— Exact, - - - N¼3, - � - N¼5, – � � – N¼7, – – � – – Eringen, � � �
Sargsyan.
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second mode follows the curve of the first flexural mode for kh≳0:7, being on top of the Eringen curve. Concerning the third
flexural mode, it is noted that Eringen's and Sargsyan's theories give the same solution, which results in a solution that is
substantially larger than the exact solution. For the N¼3 theory the opposite behavior is seen where the frequencies are
lower than the exact solution and for kh� 1:1 the solution diverts from the exact theory. Note that at kh≳1:1 the fourth
mode (not illustrated) continues along the path of the third mode for kh≲1:1, similar to the behavior of the Sargsyan
solution of the first and second mode around kh� 0:7. Concerning the higher order approximations for the third mode, the
N¼5 theory is able to approximate the exact solution fairly accurately, although the approximation deteriorates as the
wavenumber is increased, while the results for N¼7 are indistinguishable from the exact curve.

6.2. Distributions over cross section

Consider a time harmonic wave traveling in the x-direction with the non-dimensional wavenumber kh¼1, see Fig. 1.
Here only the first and third mode are regarded, as the second mode behaves in a similar manner as the first mode. The
obtained fields, stresses, couple stresses, displacements and micro-rotations are either real or imaginary, where the
imaginary part is denoted by Im. Furthermore, all fields are either symmetric or antisymmetric with respect to the
z-direction, hence only the upper half 0rzrh is shown. Distributions are plotted as functions of the non-dimensional
thickness coordinate z/h. To simplify comparisons between different theories, the fields are normalized so that the vertical
displacement in the middle of the plate equals unity, u3ðz¼ 0Þ ¼ 1.

In Figs. 2–4 various fields are presented for the first mode. Fig. 2 shows the displacements in the x- and z-directions, u1
and u3, respectively. Here the present N¼3 theory renders superior results compared to Eringen and Sargsyan. Notice that
for the displacement in the z-direction, Eringen's and Sargsyan's theories give a constant field and for the displacement in x-
direction both these theories present a linear variation over the cross section. The results for N¼5 and N¼7
are indistinguishable from the exact solution. Fig. 3(a) and (b) presents the micro-rotation around the y-axis and the
couple stress, respectively. Here Sargsyan's theory is not presented since this theory gives results that are unreasonably large
compared to the exact solution. The present N¼3 theory and Eringen's theory render approximations of the same modest
accuracy, while the higher order theories N¼5 and N¼7 give superior results. In Fig. 3(b) the curve for the N¼7 theory is
indistinguishable from the exact solution. The normal and shear stress distributions are presented in Fig. 4, where the N¼3
theory is superior compared to the linearly varying normal stresses and constant shear stresses according to Eringen and
Sargsyan. The N¼5 and N¼7 theories are on top of the exact curve. Note that the present theory for all orders fulfills the
boundary condition for the shear stress at the free surface in Fig. 4(b).



Fig. 4. Normal stress in x-direction (a) and stress t31 (b) for the first mode: —— Exact, - - - N¼3, - � - N¼5, – � � – N¼7, – – � – – Eringen, � � � Sargsyan.

Fig. 5. Displacement in x-direction (a) and z-direction (b) for the third mode: —— Exact, - - - N¼3, - � - N¼5, – � � – N¼7, – – � – – Eringen, � � �
Sargsyan.

Fig. 6. Micro-rotation in y-direction (a) and couple stress m12 (b) for the third mode: —— Exact, - - - N¼3, - � - N¼5, – � � – N¼7, – – � – – Eringen, � � �
Sargsyan.

Fig. 7. Normal stress in x-direction (a) and normal stress in z-direction (b) for the third mode: —— Exact, - - - N¼3, - � - N¼5, – � � – N¼7, – – � – –

Eringen, � � � Sargsyan.
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Fig. 8. Stress t31 (a) and couple stress m32 (b) for the third mode: —— Exact, - - - N¼3, - � - N¼5, – � � – N¼7, – – � – – Eringen, � � � Sargsyan.

Table 1
Simply supported plate: the eigenfrequencies Ωmn for exact theory and the approximate theories: Eringen, Sargsyan, N¼3, N¼5, N¼7 and N¼33.

m n Exact Eringen Sargsyan N¼3 N¼5 N¼7 N¼33

1 1 0.01220 0.01221 0.01221 0.01218 0.01220 0.01220 0.01220
2 1 0.03010 0.03016 0.03016 0.03001 0.03010 0.03010 0.03010
2 2 0.04756 0.04770 0.04770 0.04735 0.04756 0.04756 0.04756
3 1 0.05897 0.05919 0.05919 0.05864 0.05897 0.05897 0.05897

Table 2
Clamped/simply supported plate: the eigenfrequencies Ωmn for approximate theories: Eringen, Sargsyan, N¼3, N¼5, N¼7, N¼9 and N¼33.

m n Eringen Sargsyan N¼3 N¼5 N¼7 N¼9 N¼33

1 1 0.01782 0.01770 0.01756 0.01763 0.01764 0.01765 0.01767
1 2 0.03335 0.03320 0.03293 0.03308 0.03309 0.03310 0.03312
2 1 0.04201 0.04151 0.04094 0.04125 0.04128 0.04130 0.04136
2 2 0.05673 0.05615 0.05532 0.05578 0.05581 0.05584 0.05589
3 1 0.07651 0.07530 0.07373 0.07460 0.07467 0.07471 0.07483
1 3 0.06118 0.06102 0.06035 0.06074 0.06075 0.06075 0.06077
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For the third antisymmetric mode, the computed fields are presented in Figs. 5–8. Displacements are shown in Fig. 5,
micro-rotation in Fig. 6(a) and stresses and couple stresses in the remaining figures. Generally, all the presented theories
produce inferior approximations for the third mode compared to the first mode. Especially the lowest order theories N¼3,
Eringen and Sargsyan render less accurate results, although the N¼3 theory is generally superior compared to the other two
lower order theories. The highest order theory presented, N¼7, models the fields very accurately. For the displacement in x-
direction the Eringen and Sargsyan theories render linear distributions and for the displacement in z-direction these two
theories give constant distributions. In contrast, the present theories render results similar to the exact solution, although
the accuracy differers among different truncations. This effect is more pronounced for the micro-rotation, stresses and
couple stresses. In Fig. 6(a) the micro-rotation for both Eringen's and Sargsyan's theories is equal and smaller than the exact
theory, contrary to the N¼3 theory that produces values larger than the exact solution. This behavior is also true for the
couple stress m12 in Fig. 6(b) which is solely dependent on the micro-rotation ϕ2. For the other stresses and couple stress
m32 a similar behavior is seen, where the approximate theories due to Eringen and Sargsyan produce linear, constant or non-
existent results. Note that the stresses t33 in Fig. 7(b), t31 in Fig. 8(a) and the couple stress m32 in Fig. 8 for the present theory
fulfill the stated boundary condition at z¼h, contrary to the theories of Eringen and Sargsyan.

6.3. Eigenfrequencies

In this section, eigenfrequencies for a square plate, a=h¼ b=h¼ 20 are calculated. The normalized eigenfrequencies for
each mode are denoted Ωmn, where m and n refer to the mode numbers in the x and y directions, respectively. The studied
cases include a simply supported plate, and two cases where two opposite edges are simply supported while the other are
either clamped or free. The edges in y-direction are simply supported for all cases.

Firstly, consider the simply supported case. Here it is possible to obtain exact analytical results, which are used as a
benchmark for the approximate theories. Table 1 presents the eigenfrequencies for various modes. It is clear that the
approximate theories due to Eringen, Sargsyan and the present N¼3 theory render reasonably accurate results, even though
the results for the N¼3 theory are slightly less accurate. As expected, the accuracies for all these approximate theories
decrease as the mode numbers increase. For higher truncation orders, the results for the present theory converge rapidly to
the exact eigenfrequencies. Note also that for a simply supported plate Ωmn ¼Ωnm.



Table 3
Free/simply supported plate: the eigenfrequencies Ωmn for approximate theories: Eringen, Sargsyan, N¼3, N¼5, N¼7, N¼9 and N¼33.

m n Eringen Sargsyan N¼3 N¼5 N¼7 N¼9 N¼33

1 1 0.006500 0.005936 0.005928 0.005933 0.005933 0.005968 0.005918
1 2 0.02493 0.02377 0.02367 0.02373 0.02373 0.02373 0.02373
2 1 0.01221 0.009757 0.009720 0.009741 0.009742 0.009847 0.009689
2 2 0.03172 0.02819 0.02802 0.02812 0.02812 0.02812 0.02812
3 1 0.02538 0.02215 0.02204 0.02211 0.02211 0.02222 0.02205
1 3 0.05447 0.05274 0.05227 0.05255 0.05255 0.05255 0.05255
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Next, consider the case where two opposite edges are simply supported and the other two are clamped. For this case an
exact analytical solution cannot be obtained. Therefore a higher order truncation of the present theory, N¼33, is used as a
benchmark solution. Based on the fact that the presented high order eigenfrequencies seem to have converged already at a
much lower truncation order, it is assumed that these results coincide with the exact solution. The eigenfrequencies for this
case are presented in Table 2. It is noted that the convergence of the present theory is now slower compared to the simply
supported plate. Comparing the different theories, it is seen that Sargsyan's theory is generally more accurate than the N¼3
theory, which in turn is more accurate than Eringen's theory. The Sargsyan theory is slightly less accurate than the N¼5
theory, especially for the higher modes.

Lastly, consider the case where two opposite edges are simply supported and the other two are free. As before the N¼33
theory is used as a benchmark and the eigenfrequencies are presented in Table 3. For this case the Eringen's theory renders
the least accurate eigenfrequencies while Sargsyan's theory and the N¼3 theory have approximately equal accuracy. Note
that the convergence of modes for the present theory differ to the clamped/simply supported plate, Table 2. Now some
modes converge quite fast and other modes initially show a deteriorating convergence effect where the accuracies seem to
decrease as the truncation order is increased. The reason for this latter behavior is so far unclear. However, this peculiar
effect is only seen for low order truncations. The results are stabilized for higher truncations, where the errors reduce for
each truncation step starting from N¼11.

7. Conclusion

This work presents partial differential plate equations and corresponding edge conditions for an isotropic micropolar
plate using a systematic power series expansion approach. Systems of plate equations are developed to arbitrary order for
general boundary conditions in a variationally consistent manner. For the lower order approximations, the N¼3 theory may
be regarded as a generalized plate theory of Mindlin type while the N¼5 theory resembles a generalized plate theory of
Reddy type [26]. All orders of plate equations are asymptotically correct to all studied orders. Numerical comparisons for
dispersion and cross sectional fields (stress, couple stress, displacement and micro-rotation) are made between the present
plate theory of different orders, Eringen's theory, Sargsyan's theory and exact three dimensional theory. Eigenfrequencies
are compared between these theories for a simply supported plate, and two plates where two opposing edges are simply
supported and the other two are clamped or free. The numerical results illustrate the accuracies of the different
approximations. It is seen that the present lower order approximations can be used as refined engineering plate equations
when compared to the Eringen and Sargsyan theories. This is particularly the case for the field distributions over the cross
section. Higher order approximations may here act as benchmark solutions for simple geometries where the presented
numerics indicate that the results for exact theory are obtained.

One important application of the derived set of plate theories is to implement these in finite element codes. Based on the
given numerical examples, improved results compared to using traditional plate theories may be obtained from the present
lower order approximations in a finite element context. Moreover, it is believed that results similar to what could be
calculated adopting three dimensional theory may be obtained in an efficient way by increasing the truncation order within
the present theory; at least for not too complicated thin plate geometries in the lower frequency range. Hereby one benefits
from the accurate results using one of the present theories, and at the same time the number of elements can be heavily
reduced compared to using three dimensional elements.

Another issue is to develop a hierarchy of theories for structures of more complicated material configurations, such as for
functionally graded materials. Related work based on power series expansion and recursion relations have previously been
carried out on functionally graded [18] and porous [19] plates, and is currently directed towards functionally graded
micropolar plates and cylinders.

Appendix A. Plate equations

Here traction free plate equations for the antisymmetric case of order N¼3 are presented. Using the first sum of Eq. (20)
for l¼1, 2 and the second sum of Eq. (20) for l¼3 together with Eq. (14) gives for the stresses

ðκþμÞuð1Þ
1 ðx; y; tÞþμ∂xuð0Þ

3 ðx; y; tÞ�κϕð0Þ
2 ðx; y; tÞ
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þh2ð3ðκþμÞuð3Þ
1 ðx; y; tÞþμ∂xuð2Þ

3 ðx; y; tÞ�κϕð2Þ
2 ðx; y; tÞÞþOðh4Þ ¼ 0; (A.1)

ðκþμÞuð1Þ
2 ðx; y; tÞþμ∂yuð0Þ

3 ðx; y; tÞþκϕð0Þ
1 ðx; y; tÞ

þh2ð3ðκþμÞuð3Þ
2 ðx; y; tÞþμ∂yuð2Þ

3 ðx; y; tÞþκϕð2Þ
1 ðx; y; tÞÞþOðh4Þ ¼ 0; (A.2)

λ∂xuð1Þ
1 ðx; y; tÞþλ∂yuð1Þ

2 ðx; y; tÞþ2ðκþλþ2μÞuð2Þ
3 ðx; y; tÞ

þh2ðλ∂xuð3Þ
1 ðx; y; tÞþλ∂yuð3Þ

2 ðx; y; tÞþ4ðκþλþ2μÞuð4Þ
3 ðx; y; tÞÞþOðh4Þ ¼ 0: (A.3)

For the couple stresses using the second sum of Eq. (21) for l¼1, 2 and the first sum of Eq. (21) for l¼3 together with Eq.
(15), the equations become

2γϕð2Þ
1 ðx; y; tÞþβ∂xϕ

ð1Þ
3 ðx; y; tÞ

þh2ð4γϕð4Þ
1 ðx; y; tÞþβ∂xϕ

ð3Þ
3 ðx; y; tÞÞþOðh4Þ ¼ 0; (A.4)

2γϕð2Þ
2 ðx; y; tÞþβ∂yϕ

ð1Þ
3 ðx; y; tÞ

þh2ð4γϕð4Þ
2 ðx; y; tÞþβ∂yϕ

ð3Þ
3 ðx; y; tÞÞþOðh4Þ ¼ 0; (A.5)

α∂xϕ
ð0Þ
1 ðx; y; tÞþα∂yϕ

ð0Þ
2 ðx; y; tÞþðαþβþγÞϕð1Þ

3 ðx; y; tÞ
þh2ðα∂xϕð2Þ

1 ðx; y; tÞþα∂yϕ
ð2Þ
2 ðx; y; tÞþ3ðαþβþγÞϕð3Þ

3 ðx; y; tÞÞþOðh4Þ ¼ 0: (A.6)

By using the recursion relations, Eqs. (16) and (17), these six plate equations may thus be expressed in terms of the six lowest
order expansion functions fuð1Þ

1 ;uð1Þ
2 ;uð0Þ

3 ;ϕð0Þ
1 ;ϕð0Þ

2 ;ϕð1Þ
3 g rendering partial differential equations with respect to x, y and t.
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