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Abstract

Let Mi be a von Neumann algebra, and Bi be a maximal injective von Neumann subalgebra of Mi ,
i = 1,2. If M1 has separable predual and the center of B1 is atomic, e.g., B1 is a factor, then B1 ⊗̄ B2 is
a maximal injective von Neumann subalgebra of M1 ⊗̄M2. This partly answers a question of Popa.
© 2006 Elsevier Inc. All rights reserved.
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0. Introduction

F.J. Murray and J.von Neumann [9–11,19,20] introduced and studied certain algebras of
Hilbert space operators. Those algebras are now called von Neumann algebras. They are strong-
operator closed self-adjoint subalgebras of all bounded linear transformations on a Hilbert space.
Factors are von Neumann algebras whose centers consist of scalar multiples of the identity.
Every von Neumann algebra is a direct sum (or “direct integral”) of factors. Thus factors are the
building blocks for all von Neumann algebras.

Murray and von Neumann [9] classified factors by means of a relative dimension function.
Finite factors are those for which this dimension function has range the closed interval [0, c]
for some positive c. For finite factors, this dimension function gives rise to a (unique, when
normalized) tracial state. In general, a von Neumann algebra admitting a faithful normal trace is
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said to be finite. Finite-dimensional “finite factors” are full matrix algebras Mn(C), n = 1,2, . . . .
Infinite-dimensional “finite factors” are called factors of type II1. Infinite factors are those for
which the range of the dimension function includes ∞.

In [11], Murray and von Neumann introduced and studied a family of factors of type II1 very
closely related to matrix algebras. Murray and von Neumann called these factors approximately
finite since they are the ultraweak closure of the ascending union of a family of finite-dimensional
self-adjoint subalgebras. They proved that all “approximately finite” factors of type II1 are
∗-isomorphic. Since these factors are finite, J. Dixmier [2] considered the term “approximately
finite” inappropriate and called them hyperfinite. However, for infinite factors possessing the
same property, the term “hyperfinite” is also inappropriate. So later on the name approximately
finite-dimensional (AFD) were introduced for these factors.

A von Neumann algebra B acting on a Hilbert space H is called injective if there is a norm
one projection from B(H), the algebra of all bounded linear operators on H, onto B. Since the
intersection of a decreasing sequence of injective algebras is injective, and the commutant of
an injective algebra is injective, every AFD factor is injective. In [1], A. Connes proved that
a separable injective von Neumann algebra (von Neumann algebra with separable predual) is
approximately finite-dimensional. As a corollary, this shows that the hyperfinite type II1 factor R
is the unique separable injective factor of type II1. The proof of Connes’ result is so deep and
rich in ideas and techniques that it remains a basic resource in the subject.

Compare with injective factors, non-injective factors (even non-injective type II1 factors) are
far from being understood. A standard method of investigation in the study of general factors
is to study the injective von Neumann subalgebras of these factors. Along this line, we have
R. Kadison’s question [7, Problem 7]: Does each self-adjoint operator in a II1 factor lie in some
hyperfinite subfactor? Since every separable abelian von Neumann algebra is generated by a
single self-adjoint operator, Kadison’s question has an equivalent form: Is each separable abelian
von Neumann algebra of a II1 factor contained in some hyperfinite subfactor?

Let M be a type II1 factor with a faithful normal trace τ . If T = T ∗ = ∑n
k=1 λkEk is a self-

adjoint operator in M such that
∑n

k=1 Ek = I and τ(Ek) = 1/n for 1 � k � n, then T is in a
type In subfactor Mn of M which has E1,E2, . . . ,En as diagonals. Since the set S = {T : T =
T ∗ = ∑n

k=1 λkEk such that
∑n

k=1 Ek = I and τ(E1) = · · · = τ(En) = 1
n

, n = 1,2, . . .} is dense
in the set of self-adjoint operators in M relative to the strong-operator topology, for each self-
adjoint operator T in M we can choose a sequence {Tn}∞n=1 ⊆ S such that Tn converges to T in
the strong operator topology. So one may expect that the answer to Kadison’s question could be
affirmative if one very carefully constructs Tn and Mn for each n.

Out of expectation, this problem was answered in the negative in a remarkable paper [13]
by S. Popa. In [13], Popa showed that if L(Fn) is the type II1 factor associated with the left
regular representation λ of the free group Fn on n generators, 2 � n � ∞, and a is one of the
generators of Fn, then the abelian von Neumann subalgebra generated by the unitary λ(a) is a
maximal injective von Neumann subalgebra of L(Fn). So quite surprisingly, a diffuse abelian
von Neumann algebra can be embedded in a type II1 factor as a maximal injective von Neumann
subalgebra!

By considering actions of free groups on non-atomic probability spaces, Popa constructed
more examples of maximal injective von Neumann subalgebras in factors of type II1. In [4],
L. Ge showed that every non-atomic injective von Neumann algebra with separable predual is
maximal injective in its free product with any von Neumann algebra associated with a countable
discrete group. Popa raised the following question in [13]: If M1,M2 are type II1 factors and
B1 ⊆ M1,B2 ⊆ M2 are maximal injective von Neumann subalgebras, is B1 ⊗̄ B2 maximal
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injective in M1 ⊗̄ M2? He also asked if this is true when we assume that B1 = M1 is the
hyperfinite II1 factor. This question, if answered in the affirmative, would considerably enlarge
our class of examples.

The first break of Popa’s question was obtained by Ge and Kadison [4,5]. By applying their
remarkable “splitting theorem,” Ge and Kadison answered the second part of Popa’s question
affirmatively. Precisely, Ge and Kadison proved that if M1 is an injective factor, and B2 is
a maximal injective von Neumann subalgebra of M2, then M1 ⊗̄ B2 is maximal injective in
M1 ⊗̄ M2. In [16], S. Strǎtilǎ and L. Zsidó improved Ge–Kadison’s result by removing the
factor condition of M1: if M1 is an injective von Neumann algebra and M2 is a von Neumann
algebra with separable predual, and B2 is a maximal injective von Neumann subalgebra of M2,
then M1 ⊗̄ B2 is maximal injective in M1 ⊗̄M2.

In this paper we answer Popa’s question affirmatively in a more general setting. Our main
result is the following. Let Mi be a von Neumann algebra, and Bi be a maximal injective von
Neumann subalgebra of Mi , i = 1,2. If M1 has separable predual and the center of B1 is
atomic, e.g., B1 is a factor, then B1 ⊗̄ B2 is maximal injective in M1 ⊗̄M2.

The paper is divided into six sections. Section 1 contains some preliminaries and one key
lemma. Another key lemma is proved in Section 2. Some direct applications are also given. In
Section 3, we prove our main result in the special case when B1 is a factor. The main result is
proved in Section 4. In Section 5, we consider the question: If M1,M2 are factors, and R1,R2
are maximal injective subfactors of M1,M2, respectively, is R1 ⊗̄R2 a maximal injective sub-
factor of M1 ⊗̄ M2? We prove the following result. Let M1,M2 be factors, and R1,R2 be
maximal injective subfactors of M1,M2, respectively. If R′

1 ∩ M1 � C
N (1 � N � ∞) and

R′
2 ∩ M2 = CI , then R1 ⊗̄ R2 is a maximal injective subfactor of M1 ⊗̄ M2. In the last sec-

tion, we mention some questions related to Popa’s question.
For the general theory of von Neumann algebras, we refer to [2,8,15].

1. Preliminaries

There are five topics in this section: injective von Neumann algebras, maximal injective von
Neumann subalgebras, minimal injective von Neumann algebra extensions, maximal injective
subfactors, and two basic theorems on tensor products of von Neumann algebras: Ge–Kadison’s
splitting theorem and Tomiyama’s slice mapping theorem. Lemma 1.2 is one of two key lemmas.

1.1. Injective von Neumann algebras

A conditional expectation E from a von Neumann algebra M onto a von Neumann subalgebra
N is a positive, linear mapping such that E(S1T S2) = S1E(T )S2 for all S1, S2 in N and all T

in M. J. Tomiyama [17] showed that an idempotent of norm 1 from M onto N is a conditional
expectation. A von Neumann algebra B acting on a Hilbert space H is called injective if there
is a conditional expectation from B(H) onto B. If B is a von Neumann subalgebra of a von
Neumann algebra M and B is injective, there is a conditional expectation from M onto B.

Let B be a von Neumann algebra acting on a Hilbert space H. Then B is injective if and only
if the commutant B′ of B is injective. Recall that if E is a projection in B, then the reduced
von Neumann algebra of B with respect to E is the algebra BE � EBE. If B is injective and
E is a conditional expectation from B(H) onto B, then E induces a conditional expectation EE

from B(EH) onto BE by EE(T ) = E(ET E) for any T ∈ B(EH). Thus BE is an injective von
Neumann algebra.
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1.2. Maximal injective von Neumann subalgebras

Let M be a von Neumann algebra. A von Neumann subalgebra B of M is called maximal
injective if it is injective and if it is maximal with respect to inclusion in the set of all injective
von Neumann subalgebras of M. If {Bα} is a family of injective von Neumann subalgebras
of M which is inductively ordered by inclusion, then the weak operator closure of

⋃
α Bα is

an injective von Neumann subalgebra of M which contains all Bα . By Zorn’s lemma, M has
maximal injective von Neumann subalgebras.

If M is a separable type II1 factor, then M contains a hyperfinite subfactor R such that
R′ ∩ M = CI [12, Corollary 4.1]. If B is a maximal injective von Neumann subalgebra of M
which contains R, then B′ ∩M ⊆ R′ ∩M = CI. In particular, B is an injective factor. By [1],
B is hyperfinite. So every separable type II1 factor contains a hyperfinite subfactor as a maximal
injective von Neumann subalgebra.

In [13], Popa exhibited concrete examples of maximal injective von Neumann subalgebras
of type II1 factors. Popa showed that if L(Fn) is the type II1 factor associated with the left
regular representation λ of the free group Fn on n (2 � n � ∞) generators, and if a is one
of the generators of Fn, then the abelian von Neumann algebra generated by the unitary λ(a)

is a maximal injective von Neumann subalgebra of L(Fn). In [4], Ge showed that each non-
atomic injective von Neumann algebra with separable predual is maximal injective in its free
product with any von Neumann algebra associated with a countable discrete group. Note that
any maximal injective von Neumann subalgebra of a type II1 factor must be non-atomic.

If B is a maximal injective von Neumann subalgebra of M, then B is singular in M, i.e.,
its normalizers in M are unitary elements in B. Indeed, if U is a unitary element in M and
UBU∗ = B, then the von Neumann subalgebra of M generated by B and U is also injective.
Since B is maximal injective in M, U ∈ B. In particular, it follows that B′ ∩ M ⊆ B. Let Z
be the center of B. We have Z ⊆ B′ ∩M ⊆ B′ ∩ B = Z , which implies that Z = B′ ∩M. We
summarize these facts in the following lemma.

Lemma 1.1. Let B be a maximal injective von Neumann subalgebra of M. Then B is singular
in M. In particular, Z = B′ ∩ B = B′ ∩M.

1.3. Minimal injective von Neumann algebra extensions

Let N be a von Neumann algebra. An injective von Neumann algebra A is called a minimal
injective von Neumann algebra extension of N if A ⊇ N and if it is minimal with respect to
inclusion in the set of all injective von Neumann algebras which contain N .

Let M be a von Neumann algebra acting on a Hilbert space H and B be a maximal injective
von Neumann subalgebra of M. Then B′, the commutant of B, is a minimal injective von
Neumann algebra extension of M′. Indeed, if L′ is an injective von Neumann algebra such that
M′ ⊆ L′ ⊆ B′, then L = (L′)′ is an injective von Neumann algebra such that B ⊆ L ⊆ M.
Since B is a maximal injective von Neumann subalgebra of M, B = L. By von Neumann’s
double commutant theorem [19], B′ = L′.

Let A be a minimal injective von Neumann algebra extension of a von Neumann algebra N .
Let ϕ be a faithful normal representation of A on a Hilbert space H. Then (ϕ(A))′ is a max-
imal injective von Neumann algebra of (ϕ(N ))′. Indeed, if L is an injective von Neumann
algebra such that (ϕ(A))′ ⊆ L′ ⊆ (ϕ(N ))′, then ϕ(N ) ⊆ L ⊆ ϕ(A) and L is injective. Thus
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N ⊆ ϕ−1(L) ⊆ A and ϕ−1(L) is injective. Since A is a minimal injective von Neumann algebra
extension of N , ϕ−1(L) = A. Hence L= ϕ(A) and L′ = (ϕ(A))′.

In [6], U. Haagerup proved that any von Neumann algebra is ∗-isomorphic to a von Neumann
algebra M on a Hilbert space H, such that there is a conjugate linear, isometric involution J of
H and a self-dual cone P in H with the properties:

1. JMJ = M′.
2. JZJ = Z∗ for Z in the center of M.
3. Jξ = ξ , ξ ∈P .
4. XJXJ(P) ⊆ P for all X ∈M.

A quadruple (M,H, J,P) satisfying the conditions 1–4 is called a standard form of the von
Neumann algebra M. Recall that a von Neumann algebra M acting on a Hilbert space H is said
to be standard if there exists a conjugation J :H → H, such that the mapping X → JX∗J is a
∗-anti-isomorphism from M onto M′. If M is standard on H, we can choose J and P in H,
such that (M,H, J,P) is a standard form (cf. [6, Theorem 1.1]). Let M be standard on H, and
θ be a *-automorphism of M, then there is a unitary operator U on H such that θ(X) = UXU∗
for all X ∈ M (cf. [6, Theorem 3.2]).

The following lemma, which has an independent interest, is a key lemma.

Lemma 1.2. Let N be a von Neumann algebra and A be a minimal injective von Neumann
algebra extension of N . If θ ∈ Aut(A) (the group of all ∗-automorphisms of A) satisfies θ(X) = X

for all X ∈N . Then θ(Y ) = Y for all Y ∈ A.

Proof. We can assume that A is standard on a Hilbert space H. Then there is a unitary op-
erator U ∈ B(H) such that θ(Y ) = UYU∗ for all Y ∈ A. Since for all X ∈ N we have
θ(X) = X, UXU∗ = X. Thus, U ∈ N ′. Define θ ′(Y ′) = UY ′U∗ for Y ′ ∈ A′. Note that for all
Y ∈ A, Y ′ ∈ A′, θ ′(Y ′)θ(Y ) = θ(Y )θ ′(Y ′). Since θ(A) = A, θ ′(Y ′) ∈ A′ for all Y ′ ∈ A′, i.e.,
UA′U∗ ⊆ A′. Note that θ−1(Y ) = U∗YU is also a *-isomorphism of A. Same arguments as
above show that U∗A′U ⊆ A′. So UA′U∗ = A′. This implies that U ∈ N ′ is in the normalizer
of A′. Note that A′ is maximal injective in N ′. By Lemma 1.1, U ∈ A′. So θ(Y ) = UYU∗ = Y

for all Y ∈ A. �
Lemma 1.3. If A is a minimal injective von Neumann algebra extension of a von Neumann
algebra N , and P,Q are non-zero central projections in A such that PQ = 0, then there does
not exist a *-isomorphism φ from AP onto AQ such that φ(PX) = QX for all X ∈N .

Proof. Otherwise, assume φ is a *-isomorphism from AP onto AQ such that φ(PX) = QX

for all X ∈ N . For any Y ∈ A, Y = PY + QY + (I − P − Q)Y . Define θ from A to A by
θ(Y ) = φ(PY) + φ−1(QY) + (I − P − Q)Y . Since P,Q are mutually orthogonal central pro-
jections in A and φ is a ∗-isomorphism from AP onto AQ, θ ∈ Aut(A). Note that for any X ∈ N ,
θ(X) = φ(PX) + φ−1(QX) + (I − P − Q)X = QX + PX + (I − P − Q)X = X. Since A is a
minimal injective von Neumann algebra extension of N , by Lemma 1.2, θ(Y ) = Y for all Y ∈ A.
Therefore, P = θ(P ) = φ(P ) = Q. Now we have P = PQ = 0. It contradicts to the assumption
that P �= 0. �
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Corollary 1.4. Let A be a minimal injective von Neumann algebra extension of a von Neumann
algebra N , and P,Q be central projections in A. If there is a ∗-isomorphism φ from AP onto
AQ such that φ(PX) = QX for all X ∈N , then P = Q and φ(PY) = PY for all Y ∈ A.

Proof. Suppose P �= Q. Let R = PQ. Without loss of generality, we can assume that P1 =
P −R > 0. Let Q1 = θ(P1) � Q. Then P1,Q1 are non-zero central projections in A and P1Q1 =
Q1P1 = 0. Since φ is a ∗-isomorphism from AP onto AQ, φ induces a ∗-isomorphism ψ from
AP1 onto AQ1 such that ψ(P1Y) = φ(P1Y) for all Y ∈ A. Since for any X ∈ N , ψ(P1X) =
φ(P1X) = φ(P1)φ(PX) = Q1QX = Q1X. It contradicts to Lemma 1.3. Thus P = Q. Define
θ(Y ) = φ(PY)+ (I −P)Y , then θ ∈ Aut(A) and θ(X) = X for any X ∈ N . Since A is a minimal
injective von Neumann algebra extension of N , by Lemma 1.2, θ(Y ) = Y for all Y ∈ A. Hence,
PY = θ(PY ) = φ(PY) for all Y ∈ A. �
1.4. Maximal injective subfactors

In [3], Fuglede and Kadison established the existence of maximal hyperfinite subfactors of a
type II1 factor. Since a separable type II1 factor is injective if and only if it is hyperfinite, a sub-
factor of a separable type II1 factor is a maximal injective subfactor if and only if it is a maximal
hyperfinite subfactor. So every separable type II1 factor has maximal injective subfactors.

In [3], Fuglede and Kadison also asked if each maximal hyperfinite subfactor of a II1 factor
has a trivial relative commutant (that is, only the scalars in the factor commute with the sub-
factor). In [13], Popa answered this question negatively. Indeed, Popa constructed examples of
maximal hyperfinite II1 subfactors with relative commutant isomorphism to C

n for any n � 1
and hyperfinite II1 subfactors with noncommutative relative commutant. In [4], Ge constructed
a maximal hyperfinite II1 subfactor of a II1 factor with a non-injective relative commutant!

The following lemmas show the relation between maximal injective von Neumann subalge-
bras and maximal injective subfactors.

Lemma 1.5. If M is a factor and R is a maximal injective subfactor of M, then R is a maximal
injective von Neumann subalgebra of M if and only if R is irreducible in M, i.e, R′ ∩M= CI .

Proof. If R is a maximal injective von Neumann subalgebra of M, then by Lemma 1.1, the
center Z of R is R′ ∩M. Since R is a factor, R′ ∩M= CI . Conversely, suppose R′ ∩M = CI .
For any injective von Neumann algebra B such that R ⊆ B ⊆ M, we have B′ ∩ B ⊆ R′ ∩
M = CI . Therefore, B is an injective subfactor of M. Since R is a maximal injective subfactor
of M, R = B. �
Lemma 1.6. Let M be a factor and B be a maximal injective von Neumann subalgebra of M.
Let Z be the center of B. If Z is atomic and P1,P2, . . . , are minimal projections in Z such that∑

Pi = I . Then Bi = BPi
is a maximal injective subfactor of MPi

such that B′
i ∩MPi

= CPi

for all i.

Proof. Since Z is atomic and P1,P2, . . . , are minimal projections in Z , Bi is a subfactor
of MPi

. Since B is injective, Bi is injective. If Li is an injective von Neumann algebra such that
Bi ⊆ Li ⊆ MPi

, then B1 ⊕ · · · ⊕Li ⊕ · · · is an injective von Neumann subalgebra of M such
that B ⊆ B1 ⊕ · · · ⊕ Li ⊕ · · · ⊆ M. Since B is a maximal injective von Neumann subalgebra
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of M, B = B1 ⊕ · · · ⊕ Li ⊕ · · · . This implies that Bi = Li . So Bi is a maximal injective von
Neumann subalgebra of MPi

. Since Bi is a factor, Bi is irreducible in MPi
by Lemma 1.5. �

1.5. On tensor products of von Neumann algebras

In [5], Ge and Kadison proved the following basic theorem for tensor products of von Neu-
mann algebras.

Ge–Kadison’s Splitting Theorem. If M1 is a factor and M2 is a von Neumann algebra, and
M is a von Neumann subalgebra of M1 ⊗̄M2 which contains M1 ⊗̄ CI , then M = M1 ⊗̄N2
for some N2, a von Neumann subalgebra of M2.

Slice-map technique of Tomiyama [18] plays a key role in the proof of Ge–Kadison’s splitting
theorem. Let M1 and M2 be von Neumann algebras. With ρ in (M1)# (the predual of M1),
σ in (M2)# and T ∈ M1 ⊗̄ M2, the mapping σ → (ρ ⊗̄ σ)(T ) is a bounded linear functional
on (M2)#, hence, an element Ψρ(T ) in M2. Symmetrically, we construct an operator Φσ (T )

in M1. The mappings Ψρ and Φσ are referred to as slice mappings (of M1 ⊗̄M2 onto M2 and
M1 corresponding to ρ and σ , respectively). Tomiyama’s slice mapping theorem [18] says that if
N1 and N2 are von Neumann subalgebras of M1 and M2, respectively, and T ∈M1 ⊗̄M2, then
T ∈ N1 ⊗̄N2 if and only if Φσ (T ) ∈ N1 and Ψρ(T ) ∈ N2 for each σ ∈ (M2)# and ρ ∈ (M1)#.
For a generalization of Ge–Kadison’s splitting theorem, we refer to [16].

The following lemma is well known. For the sake of completeness, we include the proof here.

Lemma 1.7. If M1,N1 are von Neumann algebras acting on a Hilbert space H, and M2,N2
are von Neumann algebras acting on a Hilbert space K, then (M1 ⊗̄ M2) ∩ (N ′

1 ⊗̄ N ′
2) =

(M1 ∩N ′
1) ⊗̄ (M2 ∩N ′

2).

Proof. It is obvious that (M1 ∩ N ′
1) ⊗̄ (M2 ∩ N ′

2) ⊆ (M1 ⊗̄ M2) ∩ (N ′
1 ⊗̄ N ′

2). Conversely,
if T ∈ (M1 ⊗̄ M2) ∩ (N ′

1 ⊗̄ N ′
2), then Φσ (T ) ∈ M1 and Φσ (T ) ∈ N ′

1 for any σ ∈ B(K)# by
Tomiyama’s slice-mapping theorem. Thus Φσ (T ) ∈ M1 ∩ N ′

1. Similarly, for any ρ ∈ B(H)#,
Ψρ(T ) ∈ M2 ∩ N ′

2. By Tomiyama’s slice-mapping theorem, T ∈ (M1 ∩ N ′
1) ⊗̄ (M2 ∩ N ′

2).
Therefore, (M1 ⊗̄M2) ∩ (N ′

1 ⊗̄N ′
2) = (M1 ∩N ′

1) ⊗̄ (M2 ∩N ′
2). �

2. Induced conditional expectations

Lemma 2.1. Let M be a von Neumann algebra and L, N be von Neumann subalgebras of M
such that L⊆ N . If E is a conditional expectation from M onto N , then E induces a conditional
expectation from L′ ∩M onto L′ ∩N .

Proof. ∀S ∈ L′ ∩M and T ∈ L, ST = T S. Apply the conditional expectation E to both sides of
ST = T S and note that L⊆ N . We have E(S)T = T E(S). Thus E(S) ∈ L′ ∩N . Since L′ ∩N ⊆
L′ ∩ M, E is a conditional expectation from L′ ∩ M onto L′ ∩ N when E is restricted on
L′ ∩M. �

The following is another key lemma.

Lemma 2.2. Let Ai be a von Neumann algebra acting on a Hilbert space Hi , and Ni be a von
Neumann subalgebra of Ai , i = 1,2. Let A be a von Neumann algebra such that N1 ⊗̄ N2 ⊆
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A ⊆ A1 ⊗̄ A2. If there is a conditional expectation E from A1 ⊗̄ A2 onto A, then E induces a
conditional expectation from (N ′

1 ∩ A1) ⊗̄ A2 onto ((N ′
1 ∩ A1) ⊗̄ A2) ∩ A.

Proof. By Lemma 1.7, (A1 ⊗̄ A2) ∩ (N1 ⊗̄ CI )′ = (A1 ⊗̄ A2) ∩ (N ′
1 ⊗̄ B(K)) = (N ′

1 ∩
A1) ⊗̄ A2. By Lemma 2.1, E induces a conditional expectation from (N ′

1 ∩ A1) ⊗̄ A2 onto
((N ′

1 ∩ A1) ⊗̄ A2) ∩ A. �
Corollary 2.3. Assume the conditions of Lemma 2.2 and N ′

1 ∩ A1 = CI . Let L2 = {T ∈ A2: I ⊗
T ∈ A}. Then E induces a conditional expectation from A2 onto L2.

As an application of Lemma 2.2 and Corollary 2.3, we give a new proof of Ge–Kadison’s
splitting theorem in the case when M1 and M2 are finite. Let N be a von Neumann algebra
such that M1 ⊗̄ CI ⊆ N ⊆ M1 ⊗̄M2. Then there is a normal conditional expectation E from
M1 ⊗̄M2 onto N . By Corollary 2.3, E induces a conditional expectation, denoted by E2, from
M2 onto N2 � {T ∈M2: I ⊗T ∈ N }. Now for any S ∈ M1, T ∈M2, we have E(S⊗T ) = S⊗
E2(T ) ∈ M1 ⊗̄N2. Since E is normal, N = E(M1 ⊗̄M2) ⊆ M1 ⊗̄N2. Since N ⊇ M1 ⊗̄N2,
N = M1 ⊗̄N2.

As another application of Lemma 2.2 and Corollary 2.3, we give a new proof of [16, Theo-
rem 6.7].

Lemma 2.4. Let A be an abelian von Neumann algebra, and A2 be a minimal injective von
Neumann algebra extension of a von Neumann algebra N . Suppose A2 has separable predual.
If A is an injective von Neumann algebra such that A ⊗̄N ⊆ A ⊆ A ⊗̄ A2, then A = A ⊗̄ A2.

Proof. We can assume that A and A2 are von Neumann algebras acting on Hilbert spaces H
and K, respectively, in standard form. Then A′ = A and K is a separable Hilbert space. By
A ⊗̄ N ⊆ A ⊆ A ⊗̄ A2, we have A ⊗̄ A′

2 ⊆ A′ ⊆ A ⊗̄ N ′. Note that A′
2 is a maximal injective

von Neumann subalgebra of N ′. By [16, Lemma 6.6], A′ = A⊗̄N ′. Therefore, A = A⊗̄A2. �
Lemma 2.4 is almost obvious in the case when A is atomic. If A is diffuse, it is natural to

consider direct integrals. The proof of [16, Lemma 6.6] is based on direct integrals. It would be
interesting if there is a “global proof” of Lemma 2.4. Is Lemma 2.4 true without the assumption
that A2 has separable predual?

Theorem 2.5. Let M1 be an injective von Neumann algebra and M2 be a von Neumann algebra
with separable predual. If B2 is a maximal injective von Neumann subalgebra of M2, then
M1 ⊗̄ B2 is a maximal injective von Neumann subalgebra of M1 ⊗̄M2.

Proof. We can assume that M1 and M2 are von Neumann algebras acting on Hilbert spaces H
and K, respectively. Then K is a separable Hilbert space. Let A be the center of M1. Suppose B

is an injective von Neumann algebra such that M1 ⊗̄B2 ⊆ B ⊆ M1 ⊗̄M2. Then we have M′
1 ⊗̄

B′
2 ⊇ B′ ⊇ M′

1 ⊗̄ M′
2. Since B′ is an injective von Neumann subalgebra of M′

1 ⊗̄ B′
2, there

is a conditional expectation E from M′
1 ⊗̄ B′

2 onto B′. By Lemma 2.2, E induces a conditional
expectation from A ⊗̄ B′

2 onto A � (A ⊗̄ B′
2) ∩ B′. So A is an injective von Neumann algebra

such that A ⊗̄ B′
2 ⊇ A ⊇ A ⊗̄ M′

2. Since B2 is a maximal injective von Neumann subalgebra
of M2, B′

2 is a minimal injective von Neumann algebra extension of M′
2. By Lemma 2.4,

A = A ⊗̄ B′
2. Thus CI ⊗̄ B′

2 ⊆ A ⊆ B′. So B′ = M′
1 ⊗̄ B′

2 and B = M1 ⊗̄ B2. �
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3. Popa’s question in the case when B1 is a factor

Theorem 3.1. Let Mi be a von Neumann algebra, and Bi be a maximal injective von Neumann
subalgebra of Mi , i = 1,2. If M1 has separable predual and B1 is a factor, then B1 ⊗̄ B2 is a
maximal injective von Neumann subalgebra of M1 ⊗̄M2.

Proof. Let B be an injective von Neumann algebra such that B1 ⊗̄ B2 ⊆ B ⊆ M1 ⊗̄ M2. To
prove the theorem, we need to show that B = B1 ⊗̄ B2. We can assume that M1 and M2 are
von Neumann algebras acting on Hilbert spaces H and K, respectively. So we have B′

1 ⊗̄ B′
2 ⊇

B′ ⊇ M′
1 ⊗̄M′

2. Since B1,B2,B are injective, B′
1,B

′
2,B

′ are injective. Since Bi is a maximal
injective von Neumann algebra of Mi , B′

i is a minimal injective von Neumann algebra extension
of M′

i , i = 1,2.

Since B′ is an injective von Neumann subalgebra of B′
1 ⊗̄ B′

2, there is a conditional ex-
pectation E from B′

1 ⊗̄ B′
2 onto B′. Let L2 = {T ∈ B′

2: 1 ⊗ T ∈ B′}. Then L2 ⊆ B′
2. By

Lemma 1.1, (M′
1)

′ ∩ B′
1 = B′

1 ∩ M1 = B′
1 ∩ B1 = CI . By Corollary 2.3, E induces a condi-

tional expectation from B′
2 onto L2. Thus L2 is injective. Since M′

2 ⊆ L2 ⊆ B′
2 and B′

2 is a
minimal injective von Neumann algebra extension of M′

2, L2 = B′
2. So CI ⊗̄ B′

2 ⊆ B′. This
implies that B′

1 ⊗̄B′
2 ⊇ B′ ⊇ M′

1 ⊗̄B′
2 and hence B1 ⊗̄B2 ⊆ B ⊆ M1 ⊗̄B2. By Theorem 2.5,

B = B1 ⊗̄ B2. �
4. Popa’s question in the case when the center of B1 is atomic

The following is the main result of this paper.

Theorem 4.1. Let Mi be a von Neumann algebra, and Bi be a maximal injective von Neumann
subalgebra of Mi , i = 1,2. If M1 has separable predual and the center of B1 is atomic, then
B1 ⊗̄ B2 is maximal injective in M1 ⊗̄M2.

Proof. Let B be an injective von Neumann algebra such that B1 ⊗̄ B2 ⊆ B ⊆ M1 ⊗̄M2. We
can assume that M1 and M2 are von Neumann algebras acting on Hilbert spaces H and K,
respectively. To prove the theorem, we need to show that B = B1 ⊗̄ B2. Using Theorem 2.5, it
is sufficient to prove that B ⊆ M1 ⊗̄ B2 and so, it is sufficient to prove that CI ⊗̄ B′

2 ⊆ B′.
Denote A = B1 ∩ B′

1 = M1 ∩ B′
1, which is atomic, with the set of minimal projections

{Pn: n = 1,2, . . .}. Set A = B′ ∩ (A ⊗̄ B′
2) = B′ ∩ (M′

1 ⊗̄ CI )′. As in Section 2 of the paper,
A is injective and

CI ⊗̄M′
2 ⊆ A ⊆ A ⊗̄ B′

2.

Note that Pn ⊗ I ∈ A′ for every n. Since B′
2 is a minimal injective von Neumann algebra exten-

sion of M′
2, we have A(Pn ⊗ I ) = Pn ⊗B′

2 for every n. Denote by Zn the smallest projection in
Z(A) satisfying Pn ⊗ I � Zn. We get ∗-isomorphisms θn :B′

2 → AZn uniquely determined by
the formula

θn(Y )(Pn ⊗ I ) = Pn ⊗ Y for all Y ∈ B′
2.

Since CI ⊗̄M′ ⊆ A, it follows that θn(X) = (I ⊗ X)Zn for all X ∈M′ .
2 2



286 J. Fang / Journal of Functional Analysis 244 (2007) 277–288
So, for every n,m and all X ∈ M′
2, we have θn(X)Zm = θm(X)Zn. Since B′

2 is a minimal
injective von Neumann algebra extension of M′

2, by Corollary 1.4, the same formula holds for all
Y ∈ B′

2 and all n,m. This compatibility formula yields for every Y ∈ B′
2 an element A ∈ A such

that AZn = θn(Y ) for all n. In particular, A(Pn ⊗I ) = Pn ⊗Y , i.e., A = I ⊗Y . So, CI ⊗̄B′
2 ⊆ A,

ending the proof. �
Replacing the use of the minimal projections Pn by a careful analysis of “infinitesimal pro-

jections” (i.e. using direct integral techniques), the same kind of idea maybe allows to prove the
general case, not assuming Z(B1) to be atomic.

5. A result on maximal injective subfactor of tensor products of von Neumann algebras

Theorem 5.1. Let Mi be a factor, and Ri be a maximal injective subfactor of Mi , i = 1,2.
If R′

1 ∩ M1 � C
N (1 � N � ∞) and R′

2 ∩ M2 = CI , then R1 ⊗̄ R2 is a maximal injective
subfactor of M1 ⊗̄M2.

Proof. Consider an injective factor R such that R1 ⊗̄R2 ⊆ R ⊆ M1 ⊗̄M2. We need to show
that R = R1 ⊗̄ R2. We can assume that M1 and M2 are von Neumann algebras acting on
Hilbert spaces H and K, respectively. So we have R′

1 ⊗̄R′
2 ⊇ R′ ⊇ M′

1 ⊗̄M′
2. By Lemma 1.5,

R2 is a maximal injective von Neumann subalgebra of M2 and thus R′
2 is a minimal injective

von Neumann algebra extension of M′
2. By assumption, R′

2 ∩M2 = R′
2 ∩R2 = CI .

Let E be a conditional expectation from R′
1 ⊗̄ R′

2 onto R′, and A = R′
1 ∩ M1 � C

N . By
Lemma 2.2, E induces a conditional expectation from A ⊗̄R′

2 onto B � (A ⊗̄R′
2)∩R′. There-

fore, B is an injective von Neumann algebra such that R′ ⊇ B ⊇ (A ⊗̄ R′
2) ∩ (M′

1 ⊗̄ M′
2) =

CI ⊗̄M′
2.

Similar arguments as the proof of Theorem 4.1 show that B ⊇ CI ⊗̄R′
2. So R′ ⊇ CI ⊗̄R′

2.
By Ge–Kadison’s splitting theorem (see 1.4), R′ = N ′ ⊗̄R′

2 for some von Neumann subalgebra
N ′ of R′

1. Therefore R = N ⊗̄R2. Since R is an injective factor, N is an injective factor such
that R1 ⊆ N ⊆ M1. Since R1 is a maximal injective subfactor of M1, N = R1. Therefore,
R= R1 ⊗̄R2. �
Corollary 5.2. Let Mi be a factor and Ri be an irreducible, maximal injective subfactor of Mi ,
i = 1,2. Then R1 ⊗̄R2 is an irreducible, maximal injective subfactor of M1 ⊗̄M2.

6. Concluding remarks

6.1. Let Mi be a von Neumann algebra and Bi be a maximal injective von Neumann
subalgebra of Mi , i = 1,2. Suppose M1 is a type II1 von Neumann algebra with separa-
ble predual and B1 is an maximal injective von Neumann subalgebra of M1. By [1], B1 =
(A ⊗̄R) ⊕ ⊕∞

n=1(An ⊗̄ Mn(C)), where A,A1,A2, . . . , are abelian von Neumann algebras and
R is the hyperfinite type II1 factor. By Theorem 4.1, if B1 = A ⊗̄R is type II1 and A is atomic,
then B1 ⊗̄B2 is a maximal injective von Neumann subalgebra of M1 ⊗̄M2. Popa’s question re-
mains open for all other cases of B1, e.g., B1 is abelian. It is still not known that a diffuse abelian
von Neumann algebra with separable predual can be embedded into any non hyperfinite separa-
ble type II1 factor as a maximal injective von Neumann subalgebra or not. Recently, J. Shen [14]
proved that {L(a)}′′ ⊗̄ {L(a)}′′ is a maximal injective von Neumann algebra of L(Fn) ⊗̄L(Fn).
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J. Shen also provided the first example of a Mcduff II1 factor which contains an abelian von
Neumann algebra as a maximal injective von Neumann subalgebra.

6.2. Let Mi be a von Neumann algebra acting on a Hilbert space Hi , and Bi be a maximal
injective von Neumann subalgebra of Mi , i = 1,2. Suppose B is an injective von Neumann
algebra such that B1 ⊗̄ B2 ⊆ B ⊆ M1 ⊗̄M2. Then we have B′

1 ⊗̄ B′
2 ⊇ B′ ⊇ M′

1 ⊗̄M′
2. Let

E be a conditional expectation from B′
1 ⊗̄ B′

2 onto B′. By Lemma 2.2, E induces a conditional
expectation from Z ⊗̄ B′

2 onto A � (Z ⊗̄ B′
2) ∩ B′, where Z = B′

1 ∩ B1 = B′
1 ∩ M1. Note

that Z ⊗̄ B′
2 ⊇ A ⊇ CI ⊗̄M′

2. This leads to the following question:

Question 1. Suppose A is an abelian von Neumann algebra and A2 is a minimal injective von
Neumann algebra extension of a von Neumann algebra N2. If A is an injective von Neumann
algebra such that A ⊗̄ A2 ⊇ A ⊇ CI ⊗̄N2, is A ⊇ CI ⊗̄ A2?

An affirmative answer to Question 1 would give rise to an affirmative answer to Popa’s
question (with assumption that M1 has separable predual). Indeed, if A ⊇ CI ⊗̄ B′

2, then
B′ ⊇ A ⊇ CI ⊗̄B′

2. Therefore, B′
1 ⊗̄B′

2 ⊇ B′ ⊇ M′
1 ⊗̄B′

2. Hence, B1 ⊗̄B2 ⊆ B ⊆ M1 ⊗̄B2.
Apply Theorem 2.5, B = B1 ⊗̄B2. So B1 ⊗̄B2 is a maximal injective von Neumann subalgebra
of M1 ⊗̄M2.

In Question 1, we may assume that A and A2 are von Neumann algebras acting on Hilbert
spaces H and K, respectively, in standard form. Then A is a maximal abelian von Neumann
subalgebra of B(H), i.e., A′ = A. Consider the commutant of A ⊗̄A2, A, CI ⊗̄N2, respectively,
Question 1 is equivalent to the following question.

Question 1′. Suppose A is a maximal abelian von Neumann algebra and B2 is a maximal injec-
tive von Neumann subalgebra of a von Neumann algebra M2. If B is an injective von Neumann
algebra such that A ⊗̄ B2 ⊆ B ⊆ B(H) ⊗̄M2, is B ⊆ B(H) ⊗̄ B2?

By the proof of Theorem 4.1, if A is atomic, then the answer to Question 1 is affirmative and
thus to Question 1′ is affirmative.
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