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Abstract The understanding of key processes and signaling

mechanisms in lung development has been mainly demon-

strated through gain and loss of function studies in mice, while

human lung development remains largely unexplored due to

inaccessibility. Several recent reports have exploited the

identification of key signaling mechanisms that regulate

lineage commitment and restriction in mouse lung develop-

ment, to direct differentiation of both mouse and human plu-

ripotent stem cells towards lung epithelial cells. In this review,

we discuss the recent advances in the generation of respiratory

epithelia from pluripotent stem cells and the potential of these

engineered cells for novel scientific discoveries in lung dis-

eases and future translation into regenerative therapies.
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Introduction

Lung diseases such as cystic fibrosis (CF), chronic obstructive

pulmonary disease, and idiopathic pulmonary fibrosis are

major health issues for children and adults. Currently the

biological understanding of the etiology of many of these dis-

eases is still minimal. Therapeutic interventions are largely

based on treating symptoms, not addressing root causes. While

such therapies have improved outcomes and increased quality

of life, long-term outcomes are still poor. Presently, lung

transplantation is the treatment of choice for end-stage lung

disease. However, the shortage of donor lungs and the

increased risk of secondary complications such as graft rejec-

tion and failure [1–3] means that transplantation is a temporary

fix.

New strategies to use stem cells to regenerate or gen-

erate new lung epithelia have been of growing interest.

This review discusses some of the most recent advances in

generating lung epithelial cells from pluripotent stem cells

and how these newly engineered cells can be used to find

new therapies for lung diseases.

Embryonic Origins of the Lung

The lung is derived from the foregut endoderm. Several

patterning events cause separation from the gut tube and

other endodermal organs (e.g., liver, pancreas), ultimately

leading to the formation of the trachea and lung buds

[4, 5•]. Active reciprocal signaling between the developing

multipotent distal tip epithelium and surrounding mesen-

chyme are required for the stereotypical branching mor-

phogenesis of the lung buds, as well as early differentiation

events leading to different cell lineages. The proximal

epithelium forms first from proximal progenitors with the

emergence of neuroendocrine, basal, ciliated, and secretory

cells lining the maturing epithelium (Fig. 1). As branching

morphogenesis continues, the bronchioles eventually

branch into millions of terminal air sacs, or alveoli, where

gaseous exchange will take place after birth. Right before

birth, the respiratory epithelium is composed mainly of
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Type I alveolar epithelial cells for gas exchange and Type

II cells which secrete the surfactants required to promote

breathing at birth. Completion of lung maturation occurs

post-natally.

As the lung matures, cell turnover decreases [6] and is

very slow in the fully mature adult lung [7]. While studies

have shown some regenerative potential of the fetal and

adult lung following injury [8–12], failure of the lung to

repair itself often results in chronic inflammation, disease

progression and pathogenesis. Strategies to repair injured

lungs, by activating resident lung stem cells [13–16] or by

grafting bone marrow-derived stem cells [17–19] have

shown some success but need to be further validated. A

more direct approach based on driving differentiation of

pluripotent stem cells towards the different lung epithelial

cell types clearly holds promise. However, early efforts to

differentiate embryonic stem cells into pulmonary cells

showed limited success [20–23]. More recent studies have

taken a step-wise approach based on mimicking the stages

of normal lung development and have achieved more

promising results. Here we provide a brief overview of

these studies, and discuss the potential use of these cells for

regenerative medicine and drug discovery. For more

detailed descriptions of early endoderm and embryonic

lung development please refer to other reviews [5•, 24•,

26•, 27]

Comparative Lung Development

While the phases of lung development are similar between

mice and human, the timelines of lung development are

quite different. In the mouse, embryonic lung development

begins around embryonic day 9 and maturation of the lung

is complete about 30 days postnatally. In contrast, each

phase of fetal lung development in humans is measured in

weeks and complete maturation of the airways is not

Fig. 1 The lung at embryonic and adult stages. In the developing lung

(top panel), proximal progenitors expressing NKX2.1? SOX2? gives

rise to proximal cells lineages observed in the adult epithelium (bottom

panel). The distal tip progenitors marked by NKX2.1? FOXP2? or

NKX2.1? SOX9? contribute to stereotypical branching morphogen-

esis and eventually the respiratory epithelial cells
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achieved until up to 2 years post-natally [26•]. In addition,

there are clear differences in anatomical and regional dis-

tribution of the cell types from the large airways through to

the intralobar airway epithelium between mouse and

human [12, 28–33]. The current knowledge of lung

development is largely based on gain- and loss-of-function

studies in mice [5•, 25, 26•, 27, 34, 35]. This knowledge

has been the basis of attempts at directed differentiation of

stem cells to lung epithelium. Comparative studies of lung

differentiation from mouse and human pluripotent cells

have suggested that the general rules of differentiation are

similar. However, the fine details may differ in ways that

could have significance for the sought-for regenerative

outcomes. Careful study of the development of different

lung cell types from stem cells of mouse and human origin

may help reveal the underlying similarities and differences

in terms of timing, marker expression and potentially even

differentiation pathways.

Directed Differentiation of Pluripotent Stem Cells

to Lung Epithelial Cells

The first indication of the developing embryonic lung

endoderm is the expression of the transcription factor

Nkx2.1 (or TTF1), in the anterior foregut compartment.

The first hurdle, therefore, in generating lung epithelial

cells from pluripotent stem cells is to establish an Nkx2.1-

expressing embryonic lung endoderm from definitive

endoderm (Fig. 2). The first study to show directed dif-

ferentiation of human embryonic stem cells into anterior

foregut endoderm progenitors was published by Green

et al. [36••] in early 2011. Using a well established method

to generate definitive endoderm [37] with high concentra-

tion of Activin A, Green et al. [36••] demonstrated that

inhibition of both the BMP and TGF-b signaling pathway

using NOGGIN (a physiological inhibitor) and SB431452

(a pharmacological inhibitor), respectively, can induce

differentiation of definitive endoderm cells into anterior

foregut endoderm (AFE). Up-regulated expression of the

foregut marker SOX2 and a concomitant down-regulation

of the hindgut marker CDX2 were observed. Dorsoventral

patterning of the anterior foregut gives rise to the dorsal

esophagus and the ventral lungs and trachea. To specify the

lung from the AFE cells, the authors used a combination of

Wnt3a, FGF10, KGF, BMP4 and EGF to generate up to

37 % NKX2.1? lung cells. Addition of retinoic acid

induced expression of the classical Type II alveolar cell

marker surfactant protein-C (SFTPC) and the ciliated cell

marker FOXJ1. This was the first study to present a method

to enrich for AFE cells, which can then be directed to

differentiate into more mature AFE-derived lineages.

Using embryonic stem cells derived from a mouse line

carrying an Nkx2.1–GFP reporter, Longmire et al. [38••]

adopted the step-wise protocol from Green et al. [36••] to

generate ventral foregut endoderm with the exception that

they also included a high concentration of FGF2. Inter-

estingly, exposure of definitive endoderm cells to NOG-

GIN and SB431452 alone was sufficient to induce GFP

expression in up to 21 % of the cells. Gene expression

profiling of the sorted GFP? cells after treatment with

Wnt3a, FGF10, KGF, BMP4, EGF and FGF2 revealed up-

regulated expression of both lung and thyroid lineage

genes. Further differentiation of the cells with FGF2,

FGF10, and a mixture of KGF, dexamethasone, cAMP and

IBMX (also known as DCI and previously shown to induce

transcriptomic changes in fetal lung epithelial cells [39,

40]), resulted in down-regulation of Nkx2.1 in approxi-

mately half of the cells. Of the Nkx2.1-negative population,

up to 40 % expressed a marker associated with Type I

alveolar cells (Pdpn or T1a). Of the Nkx2.1-positive cells,

some cells expressed the pro-form of SFTPC, suggestive of

Type II cells. Recellularization of decellularized mouse

lungs with Nkx2.1–GFP? cells showed some engraftment

of these donor cells as Type I T1a-expressing cells in the

parenchyma.

Mou et al. [41••] used a slightly different approach to

generate multipotent lung and airway progenitors from

mouse and human pluripotent stem cells. Starting with a

monolayer method of differentiation, Mou et al. [42].

adapted a previously published method of generating

definitive endoderm with high efficiency. Unlike the

studies by Green et al., and Longmire et al., TGFb inhi-

bition with SB431452 alone was sufficient to induce

anterior patterning of the definitive endoderm cells. Fol-

lowing the addition of BMP4, FGF2 and a GSK3 inhibitor,

up to 10 and 30 % of Nkx2.1 expressing cells were

observed with mouse cells and human induced pluripotent

stem (iPS) cells, respectively. To generate airway progen-

itors from the Nkx2.1-expressing cells, a combination of

retinoic acid, BMP7, KGF, Wnt antagonism and MAPK/

ERK inhibition was used. This produced up to 18 %

Nkx2.1? Sox2? proximal progenitors in the population of

cells. Of the total Nkx2.1? population, a smaller percent-

age (1–4 %) also expressed p63, a marker associated with

conducting airway basal cells [29]. Interestingly, using an

in vivo model of differentiation with a mixed population of

lung endoderm cells in matrigel and injected subcutane-

ously in immunodeficient mice, epithelial spheres were

observed that contained Clara cell, ciliated cell, goblet

cell and basal cell lineages. The efficiency of differentia-

tion both in vivo and in vitro appears low and while

proximal cell lineages were established, distal lung

parenchymal epithelia characterized by Type I and Type II

cells were not generated even though Nkx2.1? Sox9? or

Nkx2.1? FoxP2? multipotent distal progenitor cells were

established.
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Two recent publications have bypassed the early step-

wise differentiation process and showed some success in

generating distal respiratory epithelial cell types.

Schmeckebier et al. [43] recently reported that KGF, a

known epithelial mitogen [44] that can promote maturation

of Type II fetal rat alveolar cells [45], can induce differ-

entiation and maturation of mouse ES and iPS-derived

Type II cells in combination with glucocorticoids, cAMP-

derivatives and compounds that elevate cAMP levels.

While Longmire et al., used DCI and KGF to induce

alveolar differentiation from lung endoderm progenitors,

Schmeckebier et al., added KGF early in the differentiation

process from embryoid bodies, followed by addition of

DCI and KGF at day 14. They report a 14-fold greater

expression of SP-C and fivefold greater expression of

aquaporin-5 (Type I alveolar cell marker) compared to

unstimulated controls within 10 days. Electron microscopy

revealed features of Type II alveolar cell structures such as

apical microvilli and electron-dense lamellar bodies.

Another study by Siti-Ismail et al. [46] reported an

impressive ability to generate Type II cells that does not

rely on addition of defined exogenous growth factors, but

rather on a bioengineering process utilizing encapsulation

of mES cells in hydrogels and culture in conditioned media

from an alveolar cancer cell line (A549) in a rotary bio-

reactor [47]. In as little as 5 days, up to 50 % of the cells

were reported to be Type II alveolar cells that under

electron microscopy exhibited ultrastructural features such

as microvilli and lamellar bodies. Furthermore, these cells

could be maintained in the bioreactor for 100 days and

plated onto 2D cultures without differentiating into Type I

cells. It would be interesting to know how well these

engineered Type II cells integrate and function in vivo in

respiratory epithelia and whether human pluripotent stem

Fig. 2 Differentiation strategies to generate pulmonary epithelial cell

lineages from pluripotent stem cells. Arrows demarcate the lineages

achieved from each step. The supplements used for the generation of

a particular cell lineage is demarcated by the same color-code. A new

color-code for the supplements used means the differentiation step

drives the generation of a separate reported cell population but the

preceding pathway(s) are the same as indicated
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cells can also be differentiated as efficiently using this

method.

Rather than focus on distal alveolar epithelium, we

recently outlined an in vitro differentiation protocol for

generating proximal airway epithelia from human pluripo-

tent stem cells, the cell population that is most affected in CF

patients. The cystic fibrosis transmembrane conductance

regulator (CFTR) protein channel [48••] is involved in

chloride and water transport across the airway epithelium.

Mutations in this gene lead to failure to maintain proper

mucociliary transport and clearance of pathogens. In our

step-wise differentiation process, pluripotent stem cells were

induced to differentiate progressively into definitive endo-

derm, anterior foregut endoderm, proximal epithelial pro-

genitors, followed by proliferation, maturation and

polarization of the proximal epithelia in an air–liquid inter-

face. The result was maturation of patches of tight junction-

coupled differentiated airway epithelial cells. These cells

showed up-regulated expression of several characteristic

proximal large airway markers, including the polarized

apical localization of the CFTR protein needed for proper

chloride transport. The CFTR transport functions were

active in the differentiated cells as demonstrated by

responsiveness to cAMP agonists and a CFTR potentiator in

a modified iodide efflux assay for CFTR activity. This study

also showed generation of mature airway epithelia from

human iPS cells, derived from CF patients. Analysis of these

cells shows great promise to study the role of unique genetic

modifiers in CFTR activity [49–51] especially since treat-

ment of the CF-iPS-derived airway epithelial cells with a

small molecule compound, C18, resulted in partial correc-

tion of the CFTR protein in the plasma membrane, sug-

gesting that these cells could be used to model CF in vitro.

It should be noted, however, that this protocol, while suc-

cessful in generating around 40–50 % CFTR? polarized lung

epithelial cells, still results in a heterogeneous mixture of other

endoderm cell types. To date, there has not been a lung dif-

ferentiation protocol reported that produces a homogeneous

cell type of interest. Future refinements, including sorting

appropriate cells at appropriate stages of the differentiation

protocol, will be needed to solve the heterogeneity issue. Fur-

thermore, while functional activity of CFTR showed levels

similar to control epithelial cell lines, future studies will also

need to determine the similarities between CFTR function from

iPS-derived cells compared to normal post-natal bronchial

primary epithelial cells.

Application of Engineered Lung Cells

Disease Modeling

Recent advances in generating airway and distal lung epi-

thelial cells and the ability to generate a renewable source

of these cells in vitro offers great hope in using these cells

to study lung diseases. Reprogramming of somatic cells

into induced pluripotent stem (iPS) cells has created a

powerful and unlimited source of patient-specific cells

bearing many pulmonary congenital defects [41••, 48••,

52]. These cells carry the mutation that causes or is asso-

ciated with the disease and can be used to model the dis-

ease in vitro. The ability to generate tissue-specific cells

from iPS cells offers great opportunities to model many

lung diseases in vitro, including the pathogenesis of lung

diseases caused by respiratory infections and other con-

genital defects such as surfactant protein deficiency [53].

For the latter, the lack of reliable methods to generate Type

II alveolar cells from human iPS cells remains an imped-

iment to progress towards an in vitro model of this lung

disease. A promising example of an application of iPS for

disease modeling is CF, which is the most common life

shortening congenital disease amongst Caucasians. The

disease affects epithelial tissues lining multiple organs

throughout the body, including the airways, skin, intestines,

pancreatic ducts, and reproductive organs. Lack of ion

transport across the airway epithelium leads to improper

airway fluid balance, mucous thickening and defective

mucociliary clearance, thereby creating a niche for chronic

bacterial infections in the airways. These infections are the

main cause of mortality in CF patients. Modeling CF has

been difficult. The traditional CF knockout mouse model

does not recapitulate the pulmonary aspect of the disease,

and the availability of patient-specific CF lung epithelium

is limiting for in vitro studies. Other animal models of CF,

such as swine [54] and ferret [55], display airway pheno-

types similar to humans and are useful surrogates for some

human studies. However, they cannot model the genetic

heterogeneity in disease outcome shown in humans.

Patients carrying the same CF mutation will have varying

degrees of disease progression and responses to therapy.

This is in part due to genetic modifiers that have been

shown to affect disease progression [49, 56, 57]. Genera-

tion of CF patient iPS cell-derived airway cells in vitro is

thus a critical tool for studying the molecular pathways, the

effects of environmental insults and the genetic modifiers

of CF pathogenesis.

Drug Screening

Patient-derived induced iPS cells hold great promise for

patient-specific drug discovery. The most common CF

mutation (*70 % of cases) in the CF gene is caused by a

trinucleotide in-frame deletion at position 508 (F508del) of

the peptide sequence [58]. Consequently the mutant CFTR

protein does not fold properly in the endoplasmic reticulum

and is rapidly targeted for degradation instead of translo-

cating to the cell membrane for chloride transport. Recent
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studies have shown that small molecules called ‘‘corrector’’

compounds are effective in rescuing some of the mutant

defects in protein processing and trafficking [59–61]. As a

proof-of-concept, we recently reported that CF-iPSC-

derived lung epithelial cells could be used to validate novel

CF corrector compounds. An active analog of the small

molecule VX-809 (vertex 809 currently in phase II clinical

trials) promoted plasma membrane accumulation of the

mature complex glycosylated form of CFTR protein (band

C) in F508del CF-iPS cell-derived lung epithelial cells

[48••]. The CF patient iPS cell-derived airway epithelial

cells therefore provide a novel platform for cell-based

patient-specific screens to find new treatments for CF and

other airway diseases [49, 56, 57]

Small molecule screening could also be used to identify

novel compounds that improve the directed differentiation

of iPS cells to lung epithelial cells. Current differentiation

methods use recombinant proteins from xenobiotic sources

(bacteria or insect cells) and have high batch to batch

variability. In addition, the cost of these recombinant pro-

teins can be astronomical if scale-up of the differentiation

process was needed for regenerative purposes. Small

molecules, therefore, can be used to improve and control

the cell differentiation process. Use of less economical, but

highly efficient and reproducible compounds, has been

previously shown by Borowiak et al. [62] in driving

definitive endoderm in mouse and human ESC and by

Chen et al. [63] in driving human ESC into pancreatic

progenitors. Small molecules can theoretically be used to

generate specific lung progenitor populations or direct

certain lung lineages over others.

Overall, the ability to generate a renewable source of

airway epithelial cells from pluripotent stem cells holds

great promise for high-content screens for therapy.

Lung Regeneration

Cell replacement strategies have shown some success in

several models of lung injury [64–66]. Regeneration by

extrapulmonary sources such as the bone marrow [18, 67–

69] and cord blood [70, 71] have identified these cells as

potential sources of stem cells for therapeutic strategies.

Bioengineering of lung organoids using simple biode-

gradable scaffolds seeded with fetal lung cells [72–74] is

also a promising new avenue for tissue replacement

approaches. However, use of these scaffolds to differentiate

and support non-lung-derived cells such as pluripotent stem

cells has yet to be determined. One of the limitations in

these organoid cultures is the importance of mechanical

stretch in activating pathways involved in epithelial dif-

ferentiation and proliferation [75–77].

Recent advances in the decellularization of the lung may

provide a more plausible system since most of the lung

extracellular matrices are preserved and allow initial binding of

the donor cells to the lung tissue [78–81]. In 2010, two seminal

papers by Ott et al. [82] and Petersen et al. [83] demonstrated

that cadaveric rat lungs could be safely decellularized leaving

most of the extracellular matrix intact and then using a biore-

actor, recellularized with epithelial and endothelial cells. Pet-

ersen et al. [83] showed that the engineered lungs had regional-

specific reorganization of the cells mechanical properties

similar to native lung tissue. Furthermore, both papers dem-

onstrated that when these engineered lungs were orthotopically

transplanted short-term into a recipient rat, the lungs partici-

pated in gas exchange. These two publications has since

spurred many publications demonstrating reconstitution of the

decellularized lung with a variety of cell types, including

mesenchymal stem cells [79, 80] and fetal lung cells [78]. The

use of pluripotent stem cell-derived cells in recellularizing the

lungs is promising since these cells offer an unlimited supply of

autologous cells for repopulation.

In the excitement around the decellularized lung model,

it is worth remembering that the adult lung is comprised of

at least 40 different cell types with specialized functions

including gas exchange, metabolism of xenobiotics, and

immunity to name a few. Therefore, to completely reca-

pitulate the cell lineages and functions of the lung in a

decellularized model and then use these lungs as replace-

ment organs in transplantation remains a distant horizon.

However, as more studies identify methods to generate

various mature lung cell types or early lung progenitor cells

that can potentially differentiate into several cell lineages

in vivo (Fig. 2), perhaps partial regeneration of the lung

can be accomplished.

The recent success of a main stem bronchus replacement

in 2008 with a decellularized human donor trachea re-

cellularized with the recipient’s own respiratory epithelial

and stem cell-derived chondrocytes [84] has caused much

excitement in engineering bioartificial airways as replace-

ment strategies for lung diseases. The same group recently

demonstrated the clinical success of transplanting a ‘‘bio-

artificial nanocomposite’’ seeded with the patient’s bone

marrow mononuclear cells that partly regenerated the tra-

cheobronchial airway with healthy epithelium after

5 months [85]. Long-term follow-up is yet unknown in

these patients and the mechanism of how these cells

regenerate remains unclear. A fuller understanding of this

process might provide clues as to how to promote endog-

enous repopulation of other more complex organs, based

around decellularized or artificial matrices.

Potential of Direct Conversion of Fibroblasts

to Epithelial Cells

There is some evidence for direct conversion of fibroblasts

into neurons [86], cardiomyocytes [87] and hematopoietic
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cells [88], based on the introduction of the four repro-

gramming transcription factors (OCT4, CMYC, SOX2,

KLF4) combined with microenvironmental cues to direct

lineage commitment. It is believed that the reprogramming

regimen resets the epigenetic fate map of the cells ren-

dering the cells in an epigenetically unstable state. This

then allows the influence of extracellular cues such as cell

culture conditions to select for or direct phenotypic chan-

ges of these cells in their new microenvironment. It has yet

to be shown that this direct conversion or ‘‘transdifferen-

tiation’’ of cells can be done using conditions that would

support airway or lung epithelial cell growth. This avenue

of research is certainly worth exploring as it could avoid

the long and complex process of maturing lung cell types

from embryonic precursors.

Conclusion

Current methods of generating lung epithelial cells from

pluripotent stem cells are not 100 % efficient and cultures

are often contaminated with other endodermal cell types,

making it difficult to use these cells for reliable high-con-

tent drug screens and tissue regeneration. Future efforts

will need to identify methods to isolate embryonic lung

progenitor cells from the differentiating cultures or identify

methods to generate postnatal stem cells that can differ-

entiate into all lung cell types in vitro. In addition, in vivo

assessment of the potential to functionally integrate with

native cells and generate mature lung epithelial cell lin-

eages should become the gold standard for validating any

lung cell populations generated in vitro.
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