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Abstract

An approximate solution is given for the postbuckling of infinitely long and unsymmetrically laminated composite
plates. This solution is obtained by superposing a polynomial transverse displacement given by bending due to unsymmet-
ric laminate configurations and a simple functional representation for the buckling mode in conjunction with the Galerkin
method. Nondimensional parameters are used to express the approximate solution in a very simple and clear formulation.
The results given by this solution for axial compression in the longitudinal direction are compared with the results given by
the nonlinear finite element method (FEM) for finite length rectangular long plates. The influence of the boundary con-
ditions on postbuckling response is also studied. For the FEM analysis, two different simply supported boundary condi-
tions on the long edges of the plate are considered. It is found that these two sets of boundary conditions give different
results for the buckling and postbuckling finite element analysis. In most cases the FEM analysis overestimate and, respec-
tively, underestimate the approximate closed form solution, depending on the type of simply supported boundary condi-
tion considered. Thus, the approximate solution appears useful for design purposes as an averaged quantity between the
two FEM analyses. Also, it is found that the reduced bending stiffness method can be successfully used for determining the
approximate solution.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Laminated composites are increasingly used for aerospace structures. It is important to establish new mod-
eling and design methods in order to take advantage of their various layer angles and layer thicknesses for a
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Nomenclature

a, b length and width of plate
A1, A2, A terms defined by Eq. (23)
C1, C2, C3, C4 constants defined by Eq. (20)
A = (Aij) matrix of in-plane stiffnesses
B = (Bij) matrix of coupling stiffnesses
D = (Dij) matrix of out-of-plane stiffnesses
A� ¼ ðA�ijÞ matrix of in-plane flexibilities
B� ¼ ðB�ijÞ matrix of eccentricities
D� ¼ ðD�ijÞ matrix of reduced bending stiffnesses
Diso quasi-isotropic Young’s modulus of laminate material
E defined in Eq. (10)
E11, E22 longitudinal and transverse Young’s moduli of a unidirectional lamina
f, g transverse amplitudes
h plate thickness
KRS relative stiffness defined in Eq. (27)
n number of half-waves of w in y-direction
Nx;N x axial load and nondimensional axial load
Niso buckling load for quasi-isotropic laminate
N, M vectors of stress and moment resultants
N ;M nondimensional stress and moment resultants
u, v in-plane displacements in x, y-directions
u0, v0 in-plane displacements at reference plane in x, y-directions
uend, �uend end shortening and nondimensional end shortening
w, wmax transverse displacement and maximum transverse displacement in z-direction
�u;�v; �w; �w1; �w2 nondimensional displacements
x, y, z Cartesian coordinates
�x; �y;�z nondimensional Cartesian coordinates
aA, bA, cA, dA, gA in-plane nondimensional parameters
aD, bD, cD, dD, gD out-of-plane nondimensional parameters
aB, bB, cB, dB, gB, lB, qB, xB, mB, sB, hB, fB coupling nondimensional parameters
e0, j vectors of strains and curvatures
e strain given by the end shortening at buckling load for quasi-isotropic laminate
eiso strain given by the end shortening at buckling load for quasi-isotropic laminate
m12 Poisson’s ratio for a unidirectional lamina
k half-wavelength of buckling mode
s skew of the buckling pattern due to mechanical coupling (Fig. 1)
w middle surface force function
�w nondimensional middle surface force function
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wide range of structural configurations and loadings. Common structures include rectangular laminated
plates, subjected to in-plane compression loading.

It is well known that laminated composite plates subjected to axial compression are able to carry consid-
erable load beyond buckling. For laminated composite plates with unsymmetric laminate configurations
buckling and postbuckling events are complex phenomena and many studies have been undertaken. Turvey
and Wittrick (1973) found that, in the postbuckling regime, the symmetric and unsymmetric laminate con-
figurations show the same slope of the load shortening curves. Latter, Harris (1975) observed that stiffness
change after buckling is in most cases because of changes in the buckling mode. Chandra (1988) proposed a
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simple closed form solution for analyzing the postbuckling of cross-ply laminated composite plates. How-
ever, this solution does not represent out-of-plane bending of the plate in the prebuckling range. More accu-
rate postbuckling solutions were proposed using double sine series and/or multiple Fourier series techniques
for simply supported plates with angle-ply (Chia and Prabhakara, 1974), cross-ply (Prabhakara, 1976) or
general (Zhang, 1982) laminate configurations. These solutions are in most cases unable to give in-depth
insight in to the postbuckling phenomenon and to explain the predictions largely because of the relatively
large number of terms in the series. On the other hand, closed form solutions are in most situations approx-
imations of the buckling and postbuckling phenomena and can offer only inexact qualitative results. How-
ever, such solutions have the advantage of simplicity and allow one to study the influence of each term in
explaining the predictions and furthermore, provide rapid solutions in optimisation studies. Thus, Timo-
shenko (1913) proposed a simple closed form solution based on the skew of the buckling pattern for the
buckling of isotropic infinitely long plates subjected to shear loadings. Kromm and Marguerre (1937)
extended this solution to the postbuckling of isotropic infinitely long plates under shear and compressive
loading. Later, Weaver (2004, 2006) observed that the same buckling pattern is induced by anisotropy
and used the same solution for the buckling of infinitely long laminated composite plates subjected to com-
pression or shear loadings. In a recent paper, Diaconu and Weaver (2005) extended this solution for the post-
buckling of infinitely long laminated composite plates with laminate configurations that are symmetric with
respect to their middle plane.

The objective of this paper is to study the postbuckling of long laminated plates with nonorthotropic lam-
inate configurations that are also unsymmetric with respect to their middle plane. These plates are subjected to
in-plane axial compression on longitudinal direction. It is important to study this type of laminated plates
because they exhibit the most general type of anisotropy for laminated composites and also exhibit features
that allow one to understand the postbuckling phenomena. Also, no study has been found in the literature
for such plates. In order to exploit the response of the laminated plates subjected to compression, it is neces-
sary to model and understand their behavior. In a previous study, Diaconu and Weaver (2005) developed an
approximate solution for the postbuckling of symmetrically laminated plates. This solution is extended in the
present paper to unsymmetrically laminated plates. The assumed transverse displacement is made of two terms
corresponding to the bending due to zero moment boundary conditions and to the buckling mode, respec-
tively. The postbuckling analysis is formulated in terms of nondimensional buckling coefficients and load fac-
tors, and an approximate closed form solution is obtained. The analysis is carried out for infinitely long plates
with the two long edges simply supported. Postbuckling results for infinitely long plates are important because
they provide a practical estimation and useful information in explaining the postbuckling behavior of finite
length rectangular plates. In order to study and validate the approximate solution for postbuckling problem,
the results obtained by the approximate solution for infinitely long plates are compared with the results
obtained by finite element method (FEM) for finite length rectangular plates. The influence of the boundary
conditions on postbuckling response is also studied.
2. Nondimensional parameters for postbuckling of infinite plates

The postbuckling behavior of laminated plates can be examined using the nonlinear plate equations of von
Karman. Based on the von Karman assumptions, the large deflections plate equations can be derived in terms
of transverse deflection w and force function w. This approach is preferred because leads to a system of only
two differential equations. For deriving the equations in terms of transverse deflection and force function, the
constitutive equation is written in a partial inverse form as:
e0

M

� �
¼

A� B�

�ðB�ÞT D�

� �
N

j

� �
ð1Þ
where A* = A�1, B* = �A�1B, D* = D � BA�1B. The force function w is defined by the stress resultants in
vector N:
N x ¼ �w;yy ; Ny ¼ �w;xx; Nxy ¼ w;xy ð2Þ
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The vector of reference surface strains e0 at z = 0 and the vector of curvatures j are defined by
e0
x ¼ u0

;x þ 1
2
w2
;x; e0

y ¼ v0
;y þ 1

2
w2
;y ; e0

xy ¼ u0
;y þ v0

;x þ w;xw;y ; jx ¼ �w;xx; jy ¼ �w;yy ; jxy ¼ �2w;xy

ð3Þ
In the view of Eqs. (1)–(3), the bending moments in vector M can be written in the form:
Mx ¼ �B�11w;yy � B�21w;xx þ B�61w;xy � D�11w;xx � D�12w;yy � 2D�16w;xy

My ¼ �B�12w;yy � B�22w;xx þ B�62w;xy � D�12w;xx � D�22w;yy � 2D�26w;xy

Mxy ¼ �B�16w;yy � B�26w;xx þ B�66w;xy � D�16w;xx � D�26w;yy � 2D�66w;xy

ð4Þ
A Cartesian reference system is considered with the x and y axes oriented on the length and the width of the
plate, respectively. While the plate is considered to be infinite on the x-axis, the origin of y-axis is on one side
of the width of the plate as shown in Fig. 1. Thus, y takes values on the interval [0,b].

The differential equation of transverse motion that governs the postbuckling of laminated plates is
expressed in terms of w and w as:
D�11w;xxxx þ 4D�16w;xxxy þ 2 D�12 þ 2D�66

� �
w;xxyy þ 4D�26w;xyyy þ D�22w;yyyy þ B�21w;xxxx þ 2B�26 � B�61

� �
w;xxxy

þ B�11 þ B�22 � 2B�66

� �
w;xxyy þ 2B�16 � B�62

� �
w;xyyy þ B�12w;yyyy � ðw;xxw;yy þ w;yyw;xx � 2w;xyw;xyÞ ¼ 0 ð5Þ
The other expression that governs the postbuckling of laminated plates is the condition of compatibility and
can be expressed in terms of w and w as:
A�22w;xxxx � 2A�26w;xxxy þ 2A�12 þ A�66

� �
w;xxyy � 2A�16w;xyyy þ A�11w;yyyy � B�21w;xxxx � 2B�26 � B�61

� �
w;xxxy

� B�11 þ B�22 � 2B�66

� �
w;xxyy � 2B�16 � B�62

� �
w;xyyy � B�12w;yyyy ¼ w2

;xy � w;xxw;yy ð6Þ
Eqs. (5) and (6) constitute an eighth-order system of two equations for transverse deflection w and force
function w. Thus, the postbuckling problem consists in determining the displacement w and the stress function
w for Eqs. (5) and (6) in conjunction with the boundary conditions.

For a laminated composite plate, infinitely long and subjected to axial compression on x-axis, the simply
supported boundary conditions on lateral edges y = 0 and b are:
w ¼ N y ¼ Nxy ¼ My ¼ 0 ð7Þ
It is convenient to describe the postbuckling behavior in terms of nondimensional parameters in order to
cover a wide range of dimensions and material properties. Moreover, the nondimensionalization allows one to
analyze and clarify the relative importance of the terms appearing in the equations or in the final solution.
Using a similar procedure with that introduced by Stein (1983), the following nondimensionalization is per-
formed on the Cartesian coordinates x and y, on the force function w and on the displacements u, v, and w:
�x ¼ x
k
; �y ¼ y

b
; �w ¼ wffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D�11D�22

p ; �u ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�11A�22D�11D�22

p u; �v ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�11A�22D�11D�22

p v; �w ¼ wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�11A�22D�11D�22

4
p

ð8Þ
x

y

2

arctan( )

b xNxN Skewed
line

Buckle crests

λ
N

τ

Fig. 1. Infinite plate.
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and the following nondimensional parameters are introduced:
aA ¼
k
b

ffiffiffiffiffiffiffi
A�11

A�22

4

s
; bA ¼

2A�12 þ A�66

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A�11A�22

p ; cA ¼
A�16ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A�11

� �3
A�22

4

q ; dA ¼
A�26ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A�11 A�22

� �34

q ; gA ¼
A�12ffiffiffiffiffiffiffiffiffiffiffiffiffi
A�11A�22

p ð9aÞ

aD ¼
k
b

ffiffiffiffiffiffiffi
D�22

D�11

4

s
; bD ¼

D�12 þ 2D�66ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�11D�22

p ; cD ¼
D�16ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D�11

� �3
D�22

4

q ; dD ¼
D�26ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D�11 D�22

� �34

q ; gD ¼
D�12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�11D�22

p ð9bÞ

aB ¼
b2

k2

B�21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�11A�22D�11D�22

4
p ; bB ¼

B�11 þ B�22 � 2B�66ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�11A�22D�11D�22

4
p ; cB ¼

b
k

2B�26 � B�61ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�11A�22D�11D�22

4
p ; dB ¼

k
b

2B�16 � B�62ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�11A�22D�11D�22

4
p

ð9cÞ

gB ¼
k2

b2

B�12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�11A�22D�11D�22

4
p ; lB ¼

B�11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�11A�22D�11D�22

4
p ; qB ¼

B�22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�11A�22D�11D�22

4
p ; xB ¼

B�66ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�11A�22D�11D�22

4
p ð9dÞ

mB ¼
k
b

B�16ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�11A�22D�11D�22

4
p ; sB ¼

k
b

B�62ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�11A�22D�11D�22

4
p ; hB ¼

b
k

B�61ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�11A�22D�11D�22

4
p ; fB ¼

b
k

2B�26ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�11A�22D�11D�22

4
p

ð9eÞ
where subscripts A, B and D denote, respectively, in-plane, coupling, and out-of-plane nondimensional param-
eters. By introducing the terms from Eqs. (8) and (9) into Eq. (5), the equation of transverse motion can now
be written in terms of nondimensional parameters as:
E ¼ 1

a2
D

�w;�x�x�x�x þ 4
cD

aD
�w;�x�x�x�y þ 2bD �w;�x�x�y�y þ 4aDdD �w;�x�y�y�y þ a2

D �w;�y�y�y�y þ aB
�w;�x�x�x�x þ cB

�w;�x�x�x�y þ bB
�w;�x�x�y�y

þ dB
�w;�x�y�y�y þ gB

�w;�y�y�y�y � ð�w;�x�x
�w;�y�y þ �w;�y�y

�w;�x�x � 2�w;�x�y
�w;�x�yÞ ¼ 0 ð10Þ
Also, the condition of compatibility in Eq. (9) becomes:
1

a2
A

�w;�x�x�x�x � 2
dA

aA

�w;�x�x�x�y þ 2bA
�w;�x�x�y�y � 2aAcA

�w;�x�y�y�y þ a2
A
�w;�y�y�y�y

� ðaB �w;�x�x�x�x þ cB �w;�x�x�x�y þ bB �w;�x�x�y�y þ dB �w;�x�y�y�y þ gB �w;�y�y�y�yÞ ¼ �w2
;�x�y � �w;�x�x �w;�y�y ð11Þ
Eqs. (10) and (11) in conjunction with the boundary conditions allow one to calculate the nondimensional
transverse displacement �w and the nondimensional stress function �w for the postbuckling problem.

In order to determine the nondimensional in-plane displacements �u and �v, it is necessary to replace the ref-
erence surface strains in Eq. (3) and the stress resultants in Eq. (2) into the first three constitutive relations in
Eq. (1). By introducing also the nondimensional terms from Eqs. (8) and (9) into these three constitutive equa-
tions the following system is obtained:
�u;�x ¼ a2
A
�w;�y�y þ gA

�w;�x�x � aAcA
�w;�x�y � lB �w;�x�x � gB �w;�y�y � mB �w;�x�y � 1

2
�w2
;�x

�v;�y ¼ gA
�w;�y�y þ 1

a2
A

�w;�x�x � dA
aA

�w;�x�y � aB �w;�x�x � qB �w;�y�y � fB �w;�x�y � 1
2

�w2
;�y

�u;�y þ �v;�x ¼ aAcA
�w;�y�y þ dA

aA

�w;�x�x þ 2 gA � bAð Þ�w;�x�y � hB �w;�x�x � sB �w;�y�y � xB �w;�x�y � �w;�y �w;�x

8>><
>>: ð12Þ
One is able to determine the nondimensional in-plane displacements �u and �v by integrating this system. The
postbuckling problem for plates with nonsymmetric laminate configurations can now be solved in a similar
manner with the problem solved by Diaconu and Weaver (2005) for plates with symmetric laminate configu-
rations. One difference is that the coupling nondimensional parameters should be taken into consideration for
solving the postbuckling problem. The second difference is that the zero moment boundary condition in Eq.
(7) on the long edges of the plate at �y ¼ 0 and 1 is defined as
My ¼ �gB
�w;�y�y � qB

�w;�x�x þ sB
�w;�x�y � gD �w;�x�x � a2

D �w;�y�y � 2aDdD �w;�x�y ¼ 0 ð13Þ

which may induce transverse displacement into the plate prior to buckling.
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3. Approximate solution

It is well known that the unsymmetrically laminated composite plates under in-plane compression may
exhibit prebuckling transverse displacement. In order to obtain an approximate solution for the postbuckling
problem, we assume the nondimensional transverse displacement as being made of two terms:
�w ¼ �w1 þ �w2 ð14Þ

The first term �w1 denotes the nondimensional transverse displacement given by the zero moment boundary
conditions on the long edges of the plate and is defined as:
�w1 ¼ g�yð�y � 1Þ ð15Þ

where g denotes the amplitude due to zero moment boundary conditions. From the zero moment boundary
condition in Eq. (13) we are able to determine g:
g ¼ Nxp2

2a2
D

gB ð16Þ
where the axial load N x define the nondimensionalized compressive load on x-axis as follows:
Nx ¼
N xb

2

p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�11D�22

p ð17Þ
The second term �w2 denotes the nondimensional transverse displacement due to buckling and is obtained by
using a simple functional representation for the buckling mode in conjunction with the Galerkin method. The
nondimensionalized transverse displacement �w2 is assumed to be of the form introduced by Timoshenko
(1913) for isotropic plates subjected to in-plane shear:
�w2 ¼ f sin½pð�x� s�yÞ� sinðpn�yÞ ð18Þ

where f denotes the amplitude due to buckling, n denotes the half-wave number of the buckling pattern on y-
axis and s denotes the skew of the buckling pattern due to mechanical coupling. The expression (18) satisfies
the boundary condition �w ¼ 0 but not the exact zero moment boundary conditions on the long edges of the
plate. However, this expression enables an approximate determination of the actual relations occurring at the
boundary because the average zero moment boundary conditions are satisfied (Weaver, 2006).

The problem of determining �w2 is similar with the postbuckling problem solved by Diaconu and Weaver
(2005) for plates with symmetric laminate configurations with the difference that the reduced bending stiffness
(RBS) matrix D* replaces the bending stiffness matrix D. The second difference is that the coupling terms
should be also considered. From the condition of compatibility in Eq. (11) and the in-plane boundary condi-
tions, the nondimensional stress function is determined in the form:
�w ¼ Nxp2

2
�y2 þ f fC1 cos½p�x� pðs� nÞ�y� þ C2 cos½p�x� pðsþ nÞ�y�g þ f 2fC3 cos½2pð�x� s�yÞ� þ C4 cosð2pn�yÞg

ð19Þ

where the constants C1, C2, C3 and C4 are defined as:
C1 ¼ �
a2

A½aB � cBðs� nÞ þ bBðs� nÞ2 � dBðs� nÞ3 þ gBðs� nÞ4�
2½1þ 2dAaAðs� nÞ þ 2bAa

2
Aðs� nÞ2 þ 2cAa

3
Aðs� nÞ3 þ a4

Aðs� nÞ4�

C2 ¼
a2

A½aB � cBðsþ nÞ þ bBðsþ nÞ2 � dBðsþ nÞ3 þ gBðsþ nÞ4�
2½1þ 2dAaAðsþ nÞ þ 2bAa

2
Aðsþ nÞ2 þ 2cAa

3
Aðsþ nÞ3 þ a4

Aðsþ nÞ4�

C3 ¼
n2a2

A

32ð1þ 2dAaAsþ 2bAa
2
As2 þ 2cAa

3
As3 þ a4

As4Þ

C4 ¼
1

32a2
An2

ð20Þ
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Eq. (19) does not satisfy exactly the in-plane boundary conditions. However, we ignore the additional terms
required for satisfying the in-plane boundary conditions because they have small values (Kromm and Mar-
guerre, 1937).

The assumed nondimensional transverse displacement due to buckling �w2 in Eq. (18) and the nondimen-
sional stress function �w in Eq. (19) are introduced into Eq. (10) and the Galerkin method is applied:
Z 1

0

Z 2

0

E sin½pð�x� s�yÞ� sinðpn�yÞd�xd�y ¼ 0 ð21Þ
The result is a third order algebraic equation in f:
ðA1C1 þ A2C2 þ AÞf þ 2n2a2
DðC3 þ C4Þf 3 ¼ 0 ð22Þ
where
A1 ¼ �½aB � cBðs� nÞ þ bBðs� nÞ2 � dBðs� nÞ3 þ gBðs� nÞ4�a2
D

A2 ¼ ½aB � cBðsþ nÞ þ bBðsþ nÞ2 � dBðsþ nÞ3 þ gBðsþ nÞ4�a2
D

A ¼ 1� 4aDcDsþ 2a2
DbDðn2 þ s2Þ � 4dDa3

Dsð3n2 þ s2Þ þ a4
Dðn4 þ 6s2n2 þ s4Þ þ Nxa

2
D

ð23Þ
The amplitude f is obtained from Eq. (22) as:
f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1C1 þ A2C2 þ A
�2n2a2

DðC3 þ C4Þ

s
ð24Þ
In order to determine the amplitude f, the parameters k ,s and n describing the buckling pattern should be
determined first. It is assumed that the exact mode at the instant of buckling remains unchanged as the ampli-
tude increases. This approach is much less cumbersome than an analysis based on a completely general mode
of deformation (Pope, 1968) and whilst useful for initial postbuckling studies may not reflect true behavior if
mode-jumping occurs. The parameters k, s and n are determined from Eqs. (20) and (23) by minimizing Nx for
A1C1 + A2C2 + A = 0 when bifurcation occurs due to buckling. In the first approximation we can neglect the
coupling parameters and the problem reduces to A = 0. This problem is equivalent to the problem solved by
Weaver (2006) in which the RBS matrix D* replaces the bending stiffness matrix D. Also, the nondimensional
in-plane displacements �u and �v are determined by replacing Eqs. (16), (17) and (18), (19), respectively, into
Eq. (12) and integrating the system in Eq. (12):
�u ¼ pf 2
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�v ¼ pf 2

16
s 32 gA þ

dA

aAs
þ 1

a2
As2

	 

C3 �

1

s2
þ 1� cosð2pyÞ

� �
sin½2pð�x� s�yÞ� � 2p�yð1þ s2Þ

�

� 1� cos½2pð�x� s�yÞ� � s2 � gA

a2
A

	 
� �
sinð2p�yÞ

�
� gA �

qBgB

a2
D

	 

Nxp

2�y � ð2�y � 1Þ3

12
g2

þ pf
2

2C1ðs� 1Þ gA þ
dA

aAðs� 1Þ þ
1

a2
Aðs� 1Þ2

" #
þ aB

ðs� 1Þ � fB þ qBðs� 1Þ
( )

sin½px� pyðs� 1Þ�
(

þ 2C2ðsþ 1Þ gA þ
dA

aAðsþ 1Þ þ
1

a2
Aðsþ 1Þ2

" #
� aB

ðsþ 1Þ þ fB � qBðsþ 1Þ
( )

sin½px� pyðsþ 1Þ�
)
ð25bÞ
For structural engineers it is important to calculate the nondimensional end shortening �uend, which is the in-
plane displacement at the end of the plate in longitudinal direction when the plate is compressed. For infinitely
long plates the nondimensional end shortening �uend is calculated at the end of the half-wavelength as follows
�uend ¼ �
p2f 2

8
� a2

A þ
g2

B

a2
D

	 

Nxp

2 ð26Þ
The postbuckling behavior of laminated composite plates is often investigated by calculating the slope at
instant buckling of a curve relating the applied load and the end shortening, that is the deformation parallel
to the undeformed middle surface on �x-axis. This slope, called relative stiffness, represents the stiffness imme-
diately after buckling divided by the stiffness immediately before buckling (Harris, 1975) and allows one to
calculate the end shortening of the plate for given loads without a prior determination of the amplitude f.
For an infinitely long plate with unsymmetric laminate configurations and subjected to axial loads on �x-axis,
the relative stiffness is obtained in the form:
KRS ¼
16ðC3 þ C4Þða2

Aa
2
D þ g2

BÞ
a2

D þ 16ðC3 þ C4Þða2
Aa

2
D þ g2

BÞ
ð27Þ
Note in Eqs. (26) and (27) the nondimensional parameter gB that shows the influence on the approximate solu-
tion of the stiffness coupling term B�12 given by the nonsymmetric laminate configuration.

Another important quantity for structural engineers is the maximum nondimensional transverse displace-
ment of the plate that can be defined easily as:
�wmax ¼
jgj
4
þ jf j ð28Þ
where jgj/4 is given by maximum �w1 defined in Eq. (15) at �y ¼ 1=2.
The solution developed in this section is called approximate because the boundary conditions and the equa-

tion of motion are not satisfied exactly. Moreover, this solution depends on the parameters given by the solu-
tion for the buckling problem that are also obtained by an approximate procedure. We can make more
simplifications by employing RBS method (Ashton, 1969) for calculating the buckling load and the amplitude
f in Eq. (24).

Note that in the solution developed above the transverse displacement due to zero moment boundary con-
dition at the edges of the plate and the transverse displacement due to buckling are disconnected. This
approach is consistent with the results of Turvey and Wittrick (1973) that the coupling terms do not appear
to affect the postbuckled plate stiffness and they have influence mainly on the stress field within the plate and
less on the deflection due to buckling. Also, this solution is based on the condition that the unsymmetrically
laminated plates buckle under in-plane compression. Some studies (Lagace et al., 1986; Qatu and Leissa, 1993)
made on short length rectangular plates concluded that for cross-ply configurations the bifurcation does not
occur because the plates bend for any compressive load. However, no study was carried on long rectangular
plates. In order to verify the validity of the approximate solution developed above and to study the postbuck-
ling behavior of long laminated plates we will compare this approximate solution with the finite element
method (FEM).
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4. Comparison between the approximate solution and FEM

In this section, numerical results given by the approximate solution developed for postbuckling problem in
the previous section will be compared with the numerical results given by FEM. In the approximate solution,
the full analysis, that is the analysis taking into consideration all the coupling terms, and also the RBS anal-
ysis, that is, the simplified analysis employing RBS method, are both used for calculating the buckling load
and the amplitude f in Eq. (24). The numerical results given by FEM are obtained for a rectangular finite plate
with the aspect ratio 20. This aspect ratio is chosen in order to minimize the influence of the boundary con-
ditions at the two ends of the plate in the longitudinal direction. Also, in the FEM model we chose the width to
thickness ratio to be rather large, that is b/h = 100, to minimise transverse shear effects. The plate is modeled
with the commercial code ABAQUS using the quadratic shell element with eight nodes S8R and a mesh of
10 · 400 elements. Convergence studies on the mesh size were carried out in order to find out the accuracy
of the model and good results were obtained for this mesh. The compressive axial loads are distributed on
the nodes at the two ends of the plate on longitudinal direction. In order to obtain transverse displacement
with the FEM, we impose on the FEM model a small imperfection in the form of the first buckling mode
shape and of a magnitude of 1% of the plate thickness.

As a numerical example we consider a laminated graphite/epoxy plate having the following properties for a
unidirectional lamina:
E11=E22 ¼ 25; G12=E22 ¼ 0:5; m12 ¼ 0:25 ð29Þ
In order to understand the influence of coupling nondimensional parameters, i.e. the coupling parameters
with B subscripts, it is important to establish their range for the given material properties. Only the parameters
that contribute to the maximum transverse displacement wmax and to the end shortening uend will be analyzed.
When b = k = 1, the maximal absolute values for coupling nondimensional parameters are jaBj, jgBj 6 2,
jdBj, jcBj 6 5.49 and jbBj 6 4.36. These extreme theoretical values for the nondimensional parameters cannot
be reached in practice when the layer angles and thicknesses are restricted to a discrete set. The lay-ups chosen
for the study have large amounts of anisotropy and relatively large values of the coupling nondimensional
parameters as it can be seen in Table 1 for full analysis. For example, when b = k = 1, for a four layers lam-
inate with angles restricted to 0, 90 and 45 deg, the maximum jgBj = 1.645 is obtained for a [90/90/45/�45]
configuration. Note, that the number of layers is restricted to a maximum of four because those laminates with
more layers usually exhibit less amounts of anisotropy.

The plate is subjected to constant axial compression on x-axis. Two quantities are considered for compar-
ison between the approximate solution and the FEM solution. The first quantity is the maximum transverse
displacement wmax. The second quantity is the strain e given by the end shortening uend on x-direction. For the
finite plate modeled with FEM, the strain e is the ratio between the end shortening uend and the length of the
plate a, that is e = uend/a. For the infinite plate modeled by the approximate solution, the strain e is the ratio
between the end shortening uend and the half-wavelength k, that is:
e ¼ uend

k
ð30Þ
It is well known that the postbuckling problem is highly dependant of the boundary conditions of the plate.
The approximate solution was developed for infinitely long plates and does not contain information regarding
the loaded ends of a rectangular long plate. On the other hand, the FEM solution is obtained for rectangular
long plates with finite length. In order to compare the results given by the two solutions, it is important to
understand the influence of the boundary conditions at the two loaded ends of the plate in the longitudinal
direction for the FEM solution. In the first instance the FEM model is considered with all four boundaries
of the plate to be simply supported, with the lateral edges of the plate allowed to have periodic in-plane dis-
placements, that is, no straightness constraints are imposed on the edges. The loaded edges are restricted to
uniform in-plane displacements.

Fig. 2 shows the normalized maximum transverse displacement wmax/h function of the normalized axial
loads Nx/Ncr given by the approximate and the FEM solutions for plates with [0/90] laminate configuration.
The maximum transverse displacement wmax is normalized with respect to the plate thickness h and the axial



Table 1
Nondimensional parameters and half-wavelengths for laminate configurations using full analysis

Laminate configuration Nondimensional parameters Half-wavelength

aB bB cB dB gB k

[0/90/0/90] �0.0084 0 0 0 0.0084 1
[0/0/0/90] �0.0104 0 �1.0056 0 0.0422 1.4188
[0/90/90/90] �0.0420 0 1.0056 0 0.0104 0.7063
[0/90/90/0] 0 0 0 0 0 1.5313
[0/90] �0.0256 0 0 0 0.0256 1
[45/�45] 0 0 �0.0247 �0.0247 0 1
[0/45] �0.3390 1.6686 0.4219 0.6791 �0.0169 1.2687
[90/45] �0.0206 1.6686 0.7512 0.3814 �0.2770 0.7125
[67.5/�67.5] 0 0 0.6100 �1.0607 0 0.5750
[22.5/�22.5] 0 0 �1.0655 0.6072 0 1.7313
[67.5/22.5] 0.3904 0 1.0685 �0.9266 �0.2936 0.9313
[67.5/�22.5] 0.0094 0 �0.0194 �0.0209 �0.0108 1.0375
[0/0/45/�45] �1.0119 2.1740 0.2486 �0.5935 �0.0768 1.2750
[90/90/45/�45] �0.0673 2.1740 �0.5558 0.2654 �1.1538 0.8375
[0/90/45/�45] �0.3835 2.6321 �0.1806 �0.2573 �0.4716 1.1938
[90/0/45/�45] �0.5883 2.6321 �0.2874 �0.1617 �0.3074 0.7500
[0/45/�45/90] �0.3603 0 �0.2417 �0.2447 0.3694 1.0063
[45/0/90/�45] �0.1606 0 �0.9819 �1.0191 0.1730 1.0188
[45/0/�45/90] 0.0096 �1.6998 �0.7815 �0.3967 0.2851 0.7125
[45/90/�45/0] 0.4488 �1.6998 �0.4977 �0.6229 0.0061 1.1187

Fig. 2. Maximum transverse displacement wmax/h for an axially compressed [0/90] laminated plate.
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loads Nx are normalized with respect to the critical buckling load Ncr. The continuous line shows the results
obtained with the approximate solution for an infinitely long plate regardless of the analysis considered, that
is, the results are identical for the full analysis and for the RBS analysis. The dashed and dot-dashed lines show
the results obtained using FEM for the finite plate. The two lines obtained with FEM correspond to respec-
tively, (a) displacements near the longitudinal ends of the plate, and (b) displacements over the interior of the
plate. In Fig. 2, one can see that the approximate solution for infinite plates underpredicts the displacements
when compared with the FEM. Note that while the displacements near the ends of the plate are large for small
axial loads, in the rest of the plate bifurcation occurs and the prebuckling displacements are small. This buck-
ling pattern for the laminated plate can be also observed in Fig. 3 for three different axial loads. Fig. 3 shows
the transverse displacements at �y ¼ 1=2 for a plate with [0/90] laminate configuration axially compressed to
Nx = 0.5 · Ncr, Nx = 1.0 · Ncr and Nx = 1.1 · Ncr. As also observed in Fig. 2, for a load smaller than the crit-
ical buckling load Ncr, the displacement is large only near the simply supported loaded ends of the plate. In
effect, the amplified displacement near the loaded ends is analogous to the bending boundary layer effect in
cylindrical shells.



Fig. 3. Transverse displacements at �y ¼ 1=2 for an axially compressed [0/90] laminated plate.
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In Figs. 4–11, results given by the approximate solution and FEM analyses are compared for several lam-
inate configurations. Clamped loaded ends replace the simply supported loaded ends in the FEM model in
order to prevent the large prebuckling displacements due to the bending boundary layer effect observed in
Figs. 2 and 3 near the ends of the plate because such displacements are not considered in the approximate
solution. For the FEM analyses, two types of simply supported boundary conditions are considered on the
lateral unloaded edges of the plate. For both FEM analyses the simply supported lateral edges are allowed
to have in-plane displacements. The first FEM analysis is carried out for plates with the simply supported lat-
eral edges without any straightness constraint imposed on them, which lead to periodic in-plane displacements
of the lateral edges. In Figs. 4–11, the numerical results obtained with this analysis are noted with FEM 1 and
are depicted with dashed lines. The second FEM analysis is carried out for plates with the simply supported
Fig. 4. Normalized maximum transverse displacement wmax/h function of the normalized axial loads Nx/Niso for cross-ply laminates made
of four layers with 0, 90 deg fiber angles: (a) [0/90/0/90], (b) [0/0/0/90], (c) [0/90/90/90] and (d) [0/90/90/0].



Fig. 5. Normalized strain e/eiso function of the normalized axial loads Nx/Niso for cross-ply laminates made of four layers with 0, 90 deg
fiber angles: (a) [0/90/0/90], (b) [0/0/0/90], (c) [0/90/90/90] and (d) [0/90/90/0].
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lateral edges forced to remain straight and the numerical results obtained with this analysis are noted as FEM
2 and are depicted with dash-doted lines. It is important to consider these two analyses because no informa-
tion regarding the straightness of the lateral edges is included in the approximate solution. Also in the figures,
the continuous lines show the results obtained using the RBS analysis while the continuous lines with circles
show the results obtained using the full analysis in the approximate closed form solution.

Fig. 4 shows the normalized maximum transverse displacement wmax/h function of the normalized axial
load Nx/Niso. The maximum transverse displacement wmax is normalized with respect to the plate thickness
h and the axial loads Nx are normalized with respect to the critical buckling load for a quasi-isotropic laminate
Niso. Fig. 4 shows the results for four cross-ply laminates with four layers: [0/90/0/90], [0/0/0/90], [0/90/90/90]
and [0/90/90/0]. Regarding the initial buckling loads, note that for the antisymmetric laminate configuration
[0/90/0/90] in Fig. 4a the buckling load is larger than for the other four layered cross-ply configurations shown
in Fig. 4 including its symmetric counterpart [0/90/90/0] in Fig. 4d. This somewhat surprising result, that an
unsymmetrical laminate may have a larger buckling load than the equivalent symmetric counterpart, may be
understood by examining the results presented by Weaver (2006), where the nondimensional buckling load is
given by
N x

N iso

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�11D�22

p
Diso

ð1þ bDÞ
2

ð31Þ
for laminates without flexural/twist anisotropy. Note that the geometric mean of principal bending stiffnesses,
ðD�11D�22Þ

0:5 for [0/90/0/90] is larger than that for [0/90/90/0] and although bD is smaller in value for [0/90/0/90]
the combined effect is one that increases the buckling load for [0/90/0/90].

For these cross-ply configurations the results given by the approximate closed form solution are identical
for the full analysis and for the RBS analysis. One can see that for all cases the prebuckling displacement is
very small or nonexistent and the plates always buckle. By comparing FEM 1 and FEM 2 one can see that the



Fig. 6. Normalized maximum transverse displacement wmax/h function of the normalized axial loads Nx/Niso for laminates made of two
layers with 0, 90, 45 deg fiber angles: (a) [0/90], (b) [45/�45], (c) [0/45] and (d) [90/45].
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two types of simply supported boundary conditions lead to very different postbuckling behaviors for the
plates. Moreover, in Fig. 4b, for the [0/0/0/90] laminate configuration, the FEM 1 and FEM 2 results show
a large difference between the buckling loads. Also, buckling load and the initial postbuckling path given by
the approximate closed form solution are between the two values given by FEM analyses. Note that for [0/90/
0/90] and [0/90/90/90] laminate configurations in Fig. 4a and c, respectively, the initial postbuckling path for
the approximate solution match relatively well the FEM 2 results. Also, in Fig. 4d an excellent match exists
between the approximate solution and the FEM 2 because the laminate configuration [0/90/90/0] is symmetric.
However, Fig. 4d shows the largest difference between the FEM 1 and FEM 2 that suggests that the postbuck-
ling behavior of the plate is highly dependent on the boundary conditions, that is, the straightness constraint
imposed on the edges.

Fig. 5 shows the normalized strain e/eiso as a function of the normalized axial loads Nx/Niso for the same
laminate configurations as in Fig. 4. The strain e is normalized with respect to eiso, that is the strain given by
the end shortening at the buckling load for a quasi-isotropic laminate. As in Fig. 4, the results given by the
approximate closed form solution are identical for the full analysis and for the RBS analysis. Excellent agree-
ments can be observed for the prebuckling strain between the approximate solution and the FEM analyses.
Also, in Fig. 5a, c and d good agreements can be observed for the initial postbuckling strain between the
approximate solution and the FEM 2 analysis. For the [0/0/0/90] laminate configuration in Fig. 5b the initial
postbuckling strain given by the approximate solution lies between the strains given by FEM 1 and FEM 2.
Note the discrepancies for the postbuckling strain between FEM 1 and FEM 2. As in Fig. 4d, the largest dis-
crepancy can be observed for the symmetric laminate configuration [0/90/90/0] in Fig. 5d.

Fig. 6 shows the normalized maximum transverse displacement wmax/h function of the normalized axial
loads Nx/Niso for four laminates with two layers: [0/90], [45/�45], [0/45] and [90/45]. Note that the prebuckling
transverse displacement is small for [0/90] and [0/45] laminate configurations in Fig. 6a and c, respectively, and
zero for the [45/�45] laminate configuration in Fig. 6b. In Fig. 6d a large prebuckling transverse displacement
is observed for [90/45] laminate configuration due to a large value of gB, that is jgBj = 0.28 for full analysis.



Fig. 7. Normalized strain e/eiso function of the normalized axial loads Nx/Niso for laminates made of two layers with 0, 90, 45 deg fiber
angles: (a) [0/90], (b) [45/�45], (c) [0/45] and (d) [90/45].
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Note that the nondimensional parameter gB is associated with developing transverse curvature under axial
load and may be thought of as an anisotropic Poisson’s ratio. As such, plates with large values develop sig-
nificant transverse curvature and at the point of buckling are no longer flat and may be better described as
curved cylindrical panels. Thus, flat plate analysis is not necessarily the most appropriate modeling mecha-
nism. Whether it is appropriate or not depends on the assumptions of classical plate theory, and, in particular,
on the magnitude of transverse displacements, w. In this example, wmax/h � 0.37, at the point of buckling, and
as such, is small enough to be modeled as a flat plate. Regarding the approximate closed form solution, Fig. 6a
and b shows identical results while Fig. 6c and d shows small differences between the full analysis and the RBS
analysis. Moreover, note that in Fig. 6b for the angle-ply [45/�45] laminate configuration, for the postbuck-
ling transverse displacement, an excellent match is found between the approximate solution and the FEM 2.
This contradicts the results given by Ewing et al. (1988) regarding the RBS method and might be due to the
fact that in Ewing et al. (1988) not all of the possible buckling modes were considered for the RBS method.
Also, in Fig. 6a and c note the differences in the buckling loads between FEM 1 and FEM 2. In these figures,
for the initial postbuckling response, the postbuckling transverse displacement given by the approximate solu-
tion lies between the results given by the two FEM analyses. Also, in Fig. 6d, for the [90/45] laminate config-
uration, the postbuckling transverse displacements given by the approximate solution are close to an averaged
value of the results given by the two FEM analyses.

Fig. 7 shows the normalized strain e/eiso as a function of the normalized axial loads Nx/Niso for the same
laminate configurations as in Fig. 6. Comparing the results given by the full analysis and the RBS analysis for
the approximate solution, note, as in Fig. 6, identical results in Fig. 7a and b and small differences between
them in Fig. 7c and d. Excellent agreement between the approximate solution analyses and the FEM analyses
is observed for the prebuckling strain. Also, excellent agreement between the approximate solution analyses
and the FEM 2 can be observed for the postbuckling strain in Fig. 7b for the angle-ply [45/�45] laminate con-
figuration. In Fig. 7a and c, for [0/90] and [0/45] laminate configurations, respectively, the initial postbuck-
ling strains given by the approximate solution lie between the results given by the two FEM analyses. Note



6992 C.G. Diaconu, P.M. Weaver / International Journal of Solids and Structures 43 (2006) 6978–6997
however that in Fig. 7d the initial postbuckling strains given by the approximate solution match FEM 2 only.
Also, note the discrepancies for the postbuckling strain between the FEM 1 and FEM 2.

Fig. 8 shows the normalized maximum transverse displacement wmax/h as a function of the normalized axial
loads Nx/Niso for four laminates with two layers: [67.5/�67.5], [22.5/�22.5], [67.5/22.5] and [67.5/�22.5].
These layers are less used in practice but are nonetheless important for clarifying the validity of the approx-
imate solution. For all the configurations, small differences exist between the results given by the full analysis
and the RBS analysis for the approximate solution. In Fig. 8a and b, for the angle-ply laminate configurations
[67.5/�67.5] and [22.5/�22.5], respectively, there is no prebuckling transverse displacement. Moreover, for the
angle-ply laminate configurations, the approximate solution shows excellent agreement with FEM 2 for the
postbuckling transverse displacement. Note in Fig. 8c, there is a large prebuckling transverse displacement
for the [67.5/22.5] laminate configuration due to a large value of gB, that is jgBj = 0.29 for full analysis. Note
that, at the point of buckling, the normalized maximum transverse displacement is wmax/h � 0.37 and, as such,
flat plate analysis is appropriate. Furthermore, for this laminate configuration, the postbuckling transverse
displacements given by the approximate solution lie between the results given by FEM 1 and FEM 2. In
Fig. 8d, for the [67.5/�22.5] laminate configuration, the prebuckling transverse displacement is very small.
For this configuration, the approximate solution shows good agreements with FEM 2 but only for the initial
path of the postbuckling transverse displacement. For higher axial compressive loads, the postbuckling
transverse displacement given by FEM 2 is slightly larger than the transverse displacements given by the
approximate solution.

Fig. 9 shows the normalized strain e/eiso as a function of the normalized axial loads Nx/Niso for the same
laminate configurations as in Fig. 8. As expected, excellent agreements between the approximate solution and
the FEM analyses can be observed for the prebuckling strain. Also, for the initial path of the postbuckling
strain, good agreements are found between the approximate solution and FEM 2, in Fig. 9c and d, for the
[67.5/22.5] and [67.5/�22.5] laminate configurations, respectively. In these figures one can see very small dif-
ferences between the full analysis and the RBS analysis for the approximate solution. On the contrary, in
Fig. 8. Normalized maximum transverse displacement wmax/h function of the normalized axial loads Nx/Niso for laminates made of two
layers with 22.5 and 67.5 deg fiber angles: (a) [67.5/�67.5], (b) [22.5/�22.5], (c) [67.5/22.5] and (d) [67.5/�22.5].



Fig. 9. Normalized strain e/eiso function of the normalized axial loads Nx/Niso for laminates made of two layers with 22.5 and 67.5 deg
fiber angles: (a) [67.5/�67.5], (b) [22.5/�22.5], (c) [67.5/22.5] and (d) [67.5/�22.5].
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Fig. 9a and b, for the angle-ply configurations [67.5/�67.5] and [22.5/�22.5], respectively, the full analysis and
the RBS analysis for the approximate solution show relatively large differences for the postbuckling strain due
to different buckling wavelengths. However, the postbuckling strain given by the full analysis matches closely
the postbuckling strain given by FEM 2. As in previous figures, the postbuckling strain given by FEM 1 is
larger than the postbuckling strain given by FEM 2. Note in Fig. 9b that the postbuckling strain given by
the RBS analysis for the approximate solution lies between the results given by FEM 1 and FEM 2.

Fig. 10 shows the normalized maximum transverse displacement wmax/h as a function of the normalized
axial loads Nx/Niso for eight laminates with four layers as combinations of 0, 90, 45 and �45 deg. To enforce
a clear occurrence of buckling, a 2% imperfection was employed for FEM 2 in Fig. 10d for the [90/0/45/�45]
laminate configuration. Except for the [45/90/�45/0] laminate configuration in Fig. 10h, for all the other con-
figurations the prebuckling transverse displacement is large. Note in Fig. 10a, for the [0/0/45/�45] laminate
configuration, in case of FEM 2 the plate buckles at a much larger axial load than in the case of the approx-
imate solution or FEM 1. Also, the shape of the postbuckling transverse displacement given by FEM 2 sug-
gests a different buckling mode than that assumed for the approximate solution. However, the results given by
FEM 1 are much closer to the results given by the full analysis and by the RBS analysis for the approximate
solution. Excellent agreement between the RBS analysis for the approximate solution and FEM 1 is observed
for the postbuckling transverse displacement in Fig. 10b for the [90/90/45/�45] laminate configuration. Also,
good agreement between the RBS analysis for the approximate solution and FEM 1 is observed for the post-
buckling transverse displacement in Fig. 10d–g. In Fig. 10c, d and f, for the [0/90/45/�45], [90/0/45/�45] and
[45/0/90/�45] laminate configurations, respectively, the RBS analysis shows postbuckling transverse displace-
ments relatively larger than the full analysis for the approximate solution due to differences in the skew s of the
buckling pattern. For the other laminate configurations in Fig. 10, the differences between the postbuckling
transverse displacements given by the RBS analysis and the postbuckling transverse displacements given by
the full analysis are relatively small. One can see, in Fig. 10h, that for the [45/90/�45/0] laminate configura-
tion, the full analysis for the approximate solution is in good agreement with FEM 2 but only for the initial



Fig. 10. Normalized maximum transverse displacement wmax/h function of the normalized axial loads Nx/Niso for laminates made of
four layers with 0, 90, 45 deg fiber angles: (a) [0/0/45/�45], (b) [90/90/45/�45], (c) [0/90/45/�45], (d) [90/0/45/�45], (e) [0/45/�45/90],
(f) [45/0/90/�45], (g) [45/0/�45/90] and (h) [45/90/�45/0].
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path of the postbuckling transverse displacement. Note that, in Fig. 10b and c, for [90/90/45/�45] and [0/90/
45/�45] laminate configurations, plates do not buckle for the FEM 2 analysis. For these configurations, the



Fig. 11. Normalized strain e/eiso function of the normalized axial loads Nx/Niso for laminates made of four layers with 0, 90, 45 deg fiber
angles: (a) [0/0/45/�45], (b) [90/90/45/�45], (c) [0/90/45/�45], (d) [90/0/45/�45], (e) [0/45/�45/90], (f) [45/0/90/�45], (g) [45/0/�45/90]
and (h) [45/90/�45/0].
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nondimensional coupling parameter gB takes very large values, for full analysis these values are jgBj = 1.15
and jgBj = 0.47, respectively. Also, the normalized maximum transverse displacements are wmax/h � 0.84
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and wmax/h � 0.56, respectively, at the point of buckling in the RBS analysis. These plates have developed sig-
nificant transverse curvature and, in the case of straight longitudinal edges (i.e. FEM 2), have developed peri-
odic transverse direct stresses that appear to delay the onset of buckling.

Fig. 11 shows the normalized strain e/eiso as a function of the normalized axial loads Nx/Niso for the same
laminate configurations as in Fig. 10. In Fig. 11, the discrepancies between the postbuckling strain given by the
full analysis and the RBS analysis for the approximate solution are due to different buckling wavelengths. In
Fig. 11a–c, the postbuckling strains given by the full analysis and the RBS analysis lie between the results
given by FEM 1 and FEM 2 analyses. In Fig. 11d, for the [90/0/45/�45] laminate configuration, only the post-
buckling strain given by the RBS analysis lies between the results given by FEM 1 and FEM 2 analyses. The
postbuckling strain given by the full analysis matches the postbuckling strain given by FEM 2. In Fig. 11e–h,
the initial path of the postbuckling strains given by the RBS analysis for the approximate solution lie near the
results given by FEM 2 and do not match the results given by FEM 1. In Fig. 11f, for the [45/0/90/�45] lam-
inate configuration, the full analysis gives the smallest postbuckling strain in comparison with RBS analysis,
FEM 1 and FEM 2. In Fig. 11h, for the [45/90/�45/0] laminate configuration, the full analysis gives postbuck-
ling strain larger than RBS analysis and FEM 2. Note in Fig. 11b and c that the laminate fails to buckle with
FEM 2 analysis. Also, note in Fig. 11a for the [0/0/45/�45] laminate configuration, the very short path for the
postbuckling strain given by FEM 2. For this laminate configuration, due to the convergence criteria required
in the FEM postbuckling analysis, the FEM 2 analysis could not be pursued beyond the maximum load shown
in Fig. 11a (or indeed Fig. 10a).

5. Conclusions

Nondimensional parameters were used to express in a very simple and clear formulation the approximate
solution for the postbuckling of infinitely long unsymmetrically laminated composite plates. One can under-
stand and identify the importance of each of the nondimensional parameters for the postbuckling problem.
For unsymmetric laminate configurations an important coupling nondimensional parameter to be taken into
consideration is gB. Laminated plates with increasingly larger values of gB increasingly behave as curved cylin-
drical panels, and as a result, may have larger buckling loads depending on the nature of boundary conditions
on the longitudinal edges. For the postbuckling problem, the RBS method can be adopted in order to reduce
the complexity of the solution.

In order to study and validate the approximate solution for postbuckling problem, the results obtained by the
approximate solution for infinitely long plates are compared with the results obtained by FEM for finite length
rectangular plates of representative unsymmetric laminate configurations. The influence of the boundary condi-
tions on postbuckling response is also studied. For the FEM analysis, two different simply supported boundary
conditions on the long edges of the plate are considered. The first FEM analysis is carried out for plates with the
simply supported lateral edges without any straightness constraint imposed on them while the second FEM anal-
ysis is carried out for plates with the simply supported lateral edges forced to remain straight. These two sets of
boundary conditions give different results for the buckling and postbuckling finite element analyses.

The approximate solution using the full analysis also the RBS analysis, gives good results for unsymmet-
rically laminated angle-ply plates subjected to axial compression. These results are in excellent agreements
with the results given by the FEM analysis for plates with the simply supported lateral edges forced to remain
straight. For other laminate configurations, in most cases the two FEM analyses overestimate and, respec-
tively, underestimate the results given by the approximate closed form solution, depending on the type of sim-
ply supported boundary condition considered. Also, in many cases, the analysis employing RBS method
simplifications is very near or more conservative than the analysis taking into consideration all the coupling
terms. Thus, the approximate solution appears useful for initial design purposes as an averaged quantity
between the two FEM analyses.
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