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where m,n > 1, and p, is the homomorphism which corresponds geometrically to
forgetting the last m strings. This problem is equivalent to that of the existence of a section
for the associated fibration p: Fpyn (M) — F,(M) of configuration spaces, defined by
p((X1, ..oy Xn,y Xnt1s -« - s Xntm)) = (X1, ..., Xy). We show that p and p, admit a section
if and only if n = 1. Together with previous results, this completes the resolution of the
splitting problem for surface pure braid groups.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Braid groups of the plane were defined by Artin in 1925 [1], and further studied in [2,3]. Braid groups of surfaces were
studied by Zariski [4], and were later generalised using the following definition due to Fox [5]. Let M be a compact, connected
surface, and let n € N. We denote the set of all ordered n-tuples of distinct points of M, known as the nth configuration space
of M, by:

Fo(M) = {(p1, ..., pn) | pi € M and p; # p; if i # j}.

Configuration spaces play an important role in several branches of mathematics and have been extensively studied, see [6,
7] for example.

The symmetric group S, on n letters acts freely on F,(M) by permuting coordinates. The corresponding quotient space
will be denoted by D,(M). Notice that F,(M) is a regular covering of D,,(M). The nth pure braid group P,,(M) (respectively
the nth braid group B,(M)) is defined to be the fundamental group of F,(M) (respectively of D,(M)). If m € N, then we
may define a homomorphism p,: Pyimm(M) —> P,(M) induced by the projection p: F;1 (M) —> F,(M) defined by
P((X1,y - oy Xny Xna1s - - - Xnam)) = (X1, ..., X,). Representing P, (M) geometrically as a collection of n 4+ m strings, p,
corresponds to forgetting the last m strings. We adopt the convention, that unless explicitly stated, all homomorphisms
Pyim(M) — P,(M) in the text will be this one. If M is the 2-disc (or the plane R?), B,(M) and P,(M) are respectively the
classical Artin braid group B, and pure braid group P, [8].

If M is without boundary, Fadell and Neuwirth study the map p, and show [9, Theorem 3] that it is a locally-trivial fibration.
The fibre over a point (xq, ..., x,) of the base space is F;,,(M \ {x1, ..., x,}) which we interpret as a subspace of the total
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space via the map i: F,(M \ {x1, ..., Xp}) —> F,(M) defined by

(Y1, Ym) = (e, oo X0, Y1, -5 Ym)-

Applying the associated long exact sequence in homotopy, we obtain the pure braid group short exact sequence of Fadell and
Neuwirth:

1= Pu M\ {X1s -+ s Xa)) — Pasm(M) 255 Po(M) —> 1, (PBS)

where n > 3if M is the sphere S? [10,8], n > 2 if M is the real projective plane RP? [11],and n > 1 otherwise [9], and where
i, and p, are the homomorphisms induced by the maps i and p respectively. The short exact sequence (PBS) has been widely
studied, and may be employed for example to determine presentations of P,(M) (see Section 2), its centre, and possible
torsion. It was also used in recent work on the structure of the mapping class groups [12] and on Vassiliev invariants for
surface braids [13].

In the case of P,, and taking m = 1, Ker (p,) is a free group of rank n. The short exact sequence (PBS) splits foralln > 1,
and so P, may be described as a repeated semi-direct product of free groups. This decomposition, known as the ‘combing’
operation, is the principal result of Artin’s classical theory of braid groups [2], and yields normal forms and a solution to
the word problem in B,,. More recently, it was used by Falk and Randell to study the lower central series and the residual
nilpotence of P, [14], and by Rolfsen and Zhu to prove that P, is bi-orderable [15].

The problem of deciding whether such a decomposition exists for braid groups of surfaces is thus fundamental. This was
indeed a recurrent and central question during the foundation of the theory and its subsequent development during the
1960’s [10,9,8,11,16]. If the fibre of the fibration is an Eilenberg-MacLane space then the existence of a section for p, is
equivalent to that of a cross-section for p [17,18] (cf. [ 19]). But with the exception of the construction of sections in certain
cases (for S? [10] and the 2-torus T2 [16]), no progress on the possible splitting of (PBS) was recorded for nearly forty years. In
the case of orientable surfaces without boundary of genus at least two, the question of the splitting of (PBS) which was posed
explicitly by Birman in 1969 [16], was finally resolved by the authors, the answer being positive if and only if n = 1 [20].

As for the non-orientable case, the braid groups of RP? were first studied by Van Buskirk [11], and more recently by
Wang [21] and the authors [19,22,23]. For n = 1, we have P; (RP?) = B;(RP?) = Z,. Van Buskirk showed that for alln > 2,
neither the fibration p: F,(RP?) — F;(RP?) nor the homomorphism p,.: P,(RP?) — P;(RP?) admit a cross-section (for
p, this is a manifestation of the fixed point property of RP?), but that the fibration p: F3(RP?) — F,(RP?) admits a cross-
section, and hence so does the corresponding homomorphism p,. Using coincidence theory, we showed that forn = 2,3
and m > 4 — n, neither the fibration nor the short exact sequence (PBS) admit a section [19]. In [22], we gave a complete
answer to the splitting problem for RP?: if m, n € N, the homomorphism p,: P, (RP?) — P,(RP?) and the fibration
p: Foym(RP?) — F,(RP?) admit a section if and only if n = 2 and m = 1. In other words, Van Buskirk’s values (n = 2 and
m = 1) are the only ones for which a section exists (both on the geometric and the algebraic level).

In this paper, we study the splitting problem for compact, connected non-orientable surfaces without boundary and of
genus g > 3 (every non-orientable compact surface M without boundary is homeomorphic to the connected sum of g copies
of RP?, g e N being the genus of M). In the case of the Klein bottle K? (g = 2), the existence of a non-vanishing vector field
implies that there always exists a section, both geometric and algebraic (cf. [9]). Our main result is:

Theorem 1. Let M be a compact, connected, non-orientable surface without boundary of genus g > 3, and let m, n € N. Then
the homomorphism p: Ppym(M) —> P, (M) and the fibration p: F, (M) —> F,(M) admit a section if and only if n = 1.

Applying Theorem 1 and the results of [20,22], we may solve completely the splitting problem for surface pure braid
groups:

Theorem 2. Let m,n € Nandr > 0. Let N be a compact, connected surface possibly with boundary, let {x1, ...x;} be a finite
subset in the interior of N, let M = N \ {1, ...x,}, and let p,: Ppy;m (M) —> P,(M) be the standard projection.
(a) If r > O orif M has non-empty boundary then p, admits a section for all m and n.
(b) Suppose that r = 0 and that M is without boundary. Then p, admits a section if and only if one of the following conditions
holds:
(i) M is S?, the 2-torus T or the Klein bottle K2 (for all m and n).
(i) M=RP>n=2andm = 1.
(iii) M # RP?,§%, T2, K?> and n = 1.

The rest of the paper is organised as follows. In Section 2, we determine a presentation of P,,(M) (Theorem 3). In Section 3,
we study the consequences of the existence of a section in the casem = 1andn > 2,i.e. p,: Pyy.1(M) —> P,(M).The general
strategy of the proof of Theorem 1 is based on the following remark. Suppose that (PBS) splits. If H is any normal subgroup
of P,+1(M) contained in Ker (p,), the quotiented short exact sequence 1 — Ker (p,) /H < Py 1(M)/H — P,(M) — 1
must also split. In order to obtain a contradiction, we seek such a subgroup H for which this short exact sequence does not
split. However the choice of H needed to achieve this may be somewhat delicate: if H is too ‘small’, the structure of the
quotient P,,1(RP?)/H remains complicated; on the other hand, if H is too ‘large’, we lose too much information and cannot
reach a conclusion. In Section 4, we first show that we may reduce to the case m = 1, and then go on to prove Theorem 1
using the analysis of Section 3. As we shall see in Section 4, it suffices to take H to be Abelianisation of Ker (p,), in which
case the quotient Ker (p,) /H is a free Abelian group. We will then deduce Theorem 2.
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Fig. 1. The generators B;; and oy of P,(M), represented geometrically by loops lying in M minus a disc.
2. A presentation of P,,(M)

Let M = M, be a compact, connected, non-orientable surface without boundary of genus g > 2.1f n € Nand D’Cc M
is a topological disc, the inclusion induces a homomorphism ¢: B, (D?) — B,(M).If 8 € B,(D?) then we shall denote its
image ¢(8) simply by S. For 1 < i < j < n, we consider the following elements of P,(M):

-1 -1_2
Bi,j — Ui ".o}‘—zo}'—lo)—Z"'O‘i7
where o1, . . ., 0,1 are the standard generators of B,(D?). The geometric braid corresponding to B; j takes the ith string once

around the jth string in the positive sense, with all other strings remaining vertical. Foreach 1 < k < nand 1 <l < g, we
define a generator py; which is represented geometrically by a loop based at the kth point and which goes round the Ith
twisted handle. These elements are illustrated in Fig. 1 that represents M minus a disc.

A presentation of the braid groups of non-orientable surfaces was originally given by Scott [24]. Other presentations were
later obtained in [25,26]. In the following theorem, we derive another presentation of P,(M).

Theorem 3. Let M be a compact, connected, non-orientable surface without boundary of genus g > 2, and let n € N. The
following constitutes a presentation of the pure braid group P,(M):

generators: B;;, 1 <i <j<n,and p,;, where1 <k <nand1<I<g.
relations: (a) the Artin relations between the B; ; emanating from those of P, (D?):

B;; ifi<r<s<jorr<s<i<j
7] — . . .
B B B — By]Br,j B; jB: jBi lfr <i=s <]. "
r,sP1,jBr BSJ]B,-JFS_]- . ifi=r<s<j
Bs_,j Br_] Bs,jBr,jBi,jBr_J Bs_,j Br,]‘Bs,]‘ lf r<i<s< ]
(b) forall1<i<j<nand1 <k, I<g,
Pjl ifk <1
— —1p—1 2 .
pi,kpj,lp,‘JJ = pj,lei,j1pj,k ) ) ifk=1 (2)
Pk Bij 0B pjiBijoy Bijoik  if k> 1.
(c) forall 1 < i< n, the ‘surface relations’ ]_['f":1 pf, =Bj;i---Bi_1iBiit1---Bin.
(d) forall1<i<j<nl<k<nk#jand1<I<g,
Bij ifk<iorj<k
— —1p—1 . .
pk,lBi,j/OkJ1 = pj,l]Bi,jlpj,l ] 1 ifk=i (3)
i1 Bij 0j1Byj BiBrjpjy Brjpji if i<k <j.

Proof. We apply induction and standard results concerning the presentation of an extension (see [27, Theorem 1,
Chapter 13]). The proof generalises that of [22] for RP?, and is similar in spirit to that of [24].

First note that the given presentation is correct for n = 1 (P;(M) = 71(M) has a presentation (1,1, ..., P14 | ]_[,gz1 ,olzq,
= 1)).So let n > 1, and suppose that P,(M) has the given presentation. Taking m = 1 in (PBS), we have a short exact
sequence:

1— i (M\ {x1, . X K1) — Papa (M) = Py(M) —> 1.
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In order to retain the symmetry of the presentation, we take the free group Ker (p,) to have the following one-relator
presentation:

g
2
<Pn+1,1, .- Pnt1gs Bintts oo Banga 1_[ Prr11 = Bint1 - Brnta > .
=1

Together with these generators of Ker (p,), the elements B;j, 1 <i < j < n,and pr;, 1 <k <nand1 << g,of Py (M)
(which are coset representatives of the generators of P,(M)) form the given generating set of P, (M).

There are three classes of relations of P, 1(M) which are obtained as follows. The first consists of the single relation
]_[,gz1 p,fﬂl = B1nt1 - - - Bnny1 of Ker (p,). The second class is obtained by rewriting the relators of the quotient in terms of
the coset representatives, and expressing the corresponding element as a word in the generators of Ker (p,). In this way, all
of the relations of P,(M) lift directly to relations of P, 1 (M), with the exception of the surface relations which become

g

2 .
1_[ Py =Bui - Bi1iBiiy1- - BinBinyr foralll<i<n
1=1

Along with the relation of Ker (p,), we obtain the complete set of surface relations (relations (c) for P, 1 (M).
The third class of relations is obtained by rewriting the conjugates of the generators of Ker (p,) by the coset
representatives in terms of the generators of Ker (p,):

(i) Forall1<i<j<gnand1<I<n,

Bini1 ifl <iorj<I
BB n+1ij1 _ B[Z;+]BE;+1BI,n+1Bi,n+1Bl,n+1 %fl ZJ:
Hen R Bj7n+]Bl,n+1Bj,n+1 ifl =i
Bi 1B 1Bint1Bint1Bint1Bi i By BintiBiagr  ifi <1 <j.

(ii) Bijons11B) = pryraforalll <i<j<nand1<lI<g.
(iii) forall1 <ig<nand 1<k, 1< g,

Pnt1,l ifk <1
:01',l<:0n+1,l:0i._/<l = p;—gl,kB;r3+lpr%+1,k ifk=1
pni+1,k3jjn+1pn+1,kB;n]+1pn+1,IBi,n+1p,;:],kBi,nJrlanrl,k ifk > L
(iv) Forall1 <i,k<nand1<Il<g,

Bj,n+] ifk <i
,Ok.lBi,an,Z,l = Pn_+]1,lBEnl+1Pn+1,l ifk=i
Pt Bins1Pns 1B i 1Bins1Bini1 00y Bens1pnirs  ifi < k.

Then relations (a) for P, 1(M) are obtained from relations (a) for P,(M) and relations (i), relations (b) for P, (M) are
obtained from relations (b) for P,,(M) and relations (iii), and relations (d) for P,;1(M) are obtained from relations (d) for
P,(M), and relations (ii) and (iv). O

3. Analysis of the case P, 1(Mg) —> P,(M;), n > 2
For the whole of this section, we suppose that g > 3 and n > 2. By Theorem 3, P,(M;) is generated by the union of the

Bij,1<i<j<n,andofthe py;, 1 <k<n1<I<g. Letusconsider the homomorphism p,: Pnt1(Mg) —> Py(M,). In this
section, we suppose that p, admits a section, denoted by s... Applying (PBS), we thus have a split short exact sequence

Dx
1 ——> K — Puri(Mg) = Pa(Mg) —— 1, (4)
Sk
where K = Ker (p.) = m1(Mg \ {X1, ..., Xn}, Xn+1) is a free group of rank n + g — 1, generated by {B1 nt1, ..., Bnnt1,
Pnt1,15 - - - » Pnt1,¢)» and subject to the relation

2 2
Bint1+ Bant1 = Ppi11° Pogige

Let H = [K, K] be the commutator subgroup of K. Then K /H is a free Abelian group of rank n 4+ g — 1. In what follows, we
shall not distinguish notationally between the elements of K and those of K/H. The quotient group K/H thus has a basis

B = {Bint1: - Batntts Pntits s Prstg) s 5)
and the relation

_ p1 -1 2 2
Bony1 =B 1 Byl np1 P Parig (6)
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holds in the Abelian group K /H. Since H is normal in P41 (M) and p, admits a section, it follows from Eq. (4) that we have
a split short exact sequence

p
1——K/H 4>Pn+1(Mg)/H <— _Pn(Mg) —1,
3

where p is the homomorphism induced by p,, and s is the induced section.
Consider the subset

I'={Bjjp|1<i<j<n1<k<n 1<l<g]
of Pip1(Mg)/H. If g € I'" thenp(g) = g € Py(M), and so g7'5(p(g)) € Ker (p) = K/H. Then the integer coefficients
ijrs Bijg Vilrs Mklg Where 1 <1 < gand 1< q < n—1,are (uniquely) defined by the equations:

S (Bij) = Buupoi s+ Pt B Byt

5 n-}l/—l.g 1,ﬂn+1 e n;l,n+l (7)
- _ kL1 ki oilkl,1 k.Ln—1
S (pk”) - pkﬁllon+1.1 e pn+1,gBl,n+1 o 'Bn—l,n+1‘

There is an equation for each element of I". Most of the elements of I" commute with the elements of the basis B of K/H
given in Eq. (5). We record the list of conjugates of such elements for later use. In what follows, 1 <i <j<n, 1<k,m<n
and 1 < I,r < g.InK/H, we have

—1
Bi,ij,n+1Bi’j = Bm,n+1
(this follows from Eq. (1) and the fact that the elements By 11, 1 < g < n, belong to K/H and so commute pairwise), and
Bijoni11Bj = pns1
by Eq. (3). Thus B; j belongs to the centraliser of K /H in P,..1(Mg)/H. Also by Eq. (3), we have

Bonit ifk <m
-1 -1 -1 __p—1 : _
PkBmnt10; =\ Prs1,Bmpg1Pnt10 = By : ifk=m
Pr1.Bk.nt10n4+1,1By i 1Bm 1B n+10p 11, 1Bion1Pn41,1 =B nt1 ifk > m,
)
-1 1-26k.m
PriBmnt10) =Byt s (8)
where §. . is the Kronecker delta. By Eq. (2), we have
Pn+1,r ifl<r
~1_ -l Bl p2 . = B; ! ifl=r
P 1Pn+1,r P p = Pnt1,1P%n+1Pn1,1 = Pn+1,10x niq =
-1 B! B! B -1 B = if 1
Pni1,1Pk n1Pn+1,18g n1 Pn+1,rBi,n+1Pp 1 (Pkon+1Pn+1,1 = Pny1,r HE>T,
)
-1 __ B_‘Sl.r 9
Pk, 1Pn+1,r Py i = Pn+1,rD nyq- 9)

Combining Egs. (8) and (9), we obtain

2 -2 -1 -1 —1
Pi,r Pn+1,r Py = Pk,rpn+1,er,n+1ka = Pn+1,er'n+1Bk.n+1 = Pn+1,r»
SO

,Ok,r,On+1,r,0,Z,1 = plzrlpn+l,rpk,r- (10)
Furthermore, by Eq. (8), ,o,f’ , commutes with By, 41, and therefore

pk,le,nJr]p];[] = ,0;:113m,n+1,0k,1~ (]])
Hence p,i, also belongs to the centraliser of K/H in P41 (Mg)/H. From Egs. (8) and (9), we obtain the following relations:

Yik1 Vikg o —Yikl Yik1 Vikg :
Pt Priig - Pid = Pil - B oy Py Pugr forall1<j<m, (12)
and
—27i kj ik, 1 i k,n—1 . .
glik1 . pglikn=1 o _ ,Oj,lBj_n+1 By Bl iflgjg<n—1
1,n+1 n—1,n+10.1 gk k=1 ifi—
AAC I I A | jy=n.

Setting n; ., = Oforall 1 <i < nand 1< k< g yields:
ik, i.k,n— —27i,kj pTli.k, i,k,n— .
B?,ﬁ] - 'BZ—’l,n-:—l C O = PjiL- Bj,n—ilij;],rl:—:] T BZ—Il,nJlrl forall1 <j<n. (13)
Egs. (12) and (13) will be employed repeatedly in the ensuing calculations.
We now investigate the images under s of some of the relations (b)-(d) of Theorem 3 (it turns out that the analysis of the
other relations, including (a), will not be necessary for our purposes).
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(a) Let1 <i<j<nand1<k,I<g. Weexamine the three possible cases of Eq. (7) (relation (b) of Theorem 3).
(i) k < I: then p; kpj1 = pj1pik iN Py (Mg) The respective images under s are:

N

= Vi k1 Vx k.g phik,1 Ni,k,n— Vil Yilg plil1 Mj,l,n—1
S (Pi,k/’j,l) PikPrii1 """ PniigBini By, n+1/01 1Pnt1,1 " PrtigBingt Baling
—YikI=2Nikj Vik1tVilL1 Yik.g TVjlLg plik, 170,11 i k.n—17+1j,1,n—1
= PikPiB; ni1 1,1 o Pnig By By ,
and
- Vi1 Yilg plil1 Mj,I,n—1 Yik.g pMik1 Mi,k,n—1
S (PJ'J/’LR) PidPni1 " PrrigBingt - Bt ny10n k/’n+1 1 pn+1 eBint1 Balint
—YiLk=20jLi Vil 1tYik1 YilgtYikg pMil 17k 1 Nj,ln—1+Mik,n—1
= Pj.1Pi.kB; n i1 n+1,1 © o Pntig Bt < Byl .
—Vi,k1—20ikj —Vj.Lk—21jLi . . .
The relation p;, kOl = Pi1Pik in Pp41(Mg) implies that B; , nt1 = B .13 . Comparing coefficients of the
elements of 8 in K/H (cf. Eq. (5)), if j < n, we have
Yilk +2m,; =0 and
(14)
Yikd + 20ikj = 0,
while if j = n, applying Eq. (6) yields
g/t k20,10 — plik 1+27i k.n B*(M kI+20ikn) .B =~ ik 1+20ikn) 20k 1+20kn) 2(¥i,k,1+27i k,n)
in+1 n,n+1 - T Pn—1,n+1 n+1,1 " FPnt1g ’
and thus Eq. (14) also holds for j = n. So foralll1<i<jg<nandl<k<lI<g
YLk + 27}1',[’,‘ =0 and (15)
Yikl + 20ikj = 0. (16)

k = I: then pirpj i, = pj, Bij pF in Pa(Mg) forall 1 < i < j < nand 1 < k < g. The respective images under 5
are:

§(/Oll’</OJ'J<pi,7k]) Pi, kpr}z/1+k111 p:ﬁklg B;h:::l : le klnnjrlpj lcpr)?+k111 p;ﬁklg B?’,ﬂ] : 'szfi’?:;il
X B Bt ot Pudid i
= B A A I e
X 0y BBy By B o T o Y
= P, kp] k,01 k Bj ;1’(1’(3: rfj:]k e kk)prji/:rkllle e /’:lflg;m kgB nzjzllijl nzinll LD
BT U G B
= pi,kpj,kpi}]/)rﬁl,l prﬁk]g B;Ur’:l "B:ﬂiﬁhB;éi?'kviﬂ/j'kyk)BjTrfin{'kJﬂ/hkvk)
(IO] k Bl] 10] k) = B;jjlf(nr:; e B],ijil nﬁf}g : pnfjl k]1 ,O] k : anllJ.r;:} e B] f::t]] pnf;’j:gg . pnf;jll .
X 0j, kpr]llj+k111 p:llj-l—kl Bilhzf-;l : BZJ klnn-:—lp] kpr?+k1l1 pil‘l/j-!—klgg ?:-L szikir,];jrl
= P B BB - B B o L 0, B B
X pnf;]g . IOthijl1 Pik ]:ilakpr}l’]f]l] ' 'p:jflyggB 1121]1’”3;’]11:1 ' szfklnr;ltl
X pz?+k1]1 pr}:]+k1g qurllil : 'BZJikinz:L
= 'Oj_k u ’O] klor}z/j+k1]1 RS r}rﬁ+k1gg aungyJ:J:] e "'szfir,l;;;ﬁi’jvn_]
Since pi,kpj,kpi} Pik B,] ,o] « in Ppi1(M,), we obtain
B: n(iﬂlj ’<i+mk)37r1(inllk]+yl w = ;";111 ’ pn+1]g31 ‘:H.ll a B;fﬁ’,fl} (17)

Ifj <n then all of the terms in Eq. (17) are expressed in terms of the basis 8 of K/H of Eq. (5), and so for all
1<i<jg<n—1,

Qijr = 0 forall1<r<g (18)
Bijs=0 foralll1<s<n—1s¢{ij} (19)
Biji = Vikk + 20 ki (20)
Bijj = Vikk + 20k 1)

If j = n then substituting for B, 41 in Eq. (17) using Eq. (6) and comparing coefficients in K /H of the elements of 8
yields

2(2Nikn + Vikk) = Qip,r forall1<r
(zni,k,n + yi,k,k) = _,Bi,n,s forall1<s
2(Mikn — Mnk,i) + Yikk — Vakk) = —Bin,i-

<8
<n-—

1,s#1
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But iy, =0,soforall1<i<n—1land1<k<g,

Qinr = 2Yikk foralll<r<g (22)
ﬁi,n,s = —Vikk forall1<s<n—1,s ?é i (23)
ini — n,k,i nk,k — Vikk)-
Bini = 20nki + Vnkk — Vikk) (24)
(iii) k > I: then p,‘,kpj,,p{kl = pj]:B;jl ,oj,kBifj1 pj,lB,;jpkalB,;jpj,k in P,(Mg). The respective images under s are:
PP AN (N | Yikg pMik1 Mikn—-1_  Vjl1 YilLg plliL1 7j,l,n—1
S (pl,kpj,lpi,k ) = PikPnii1 " PrigBinrt Bnlins1PilPnt11 Pt gBintt  Balint
—Ni,k,n—1 —Nik,1 _~Vikg —Vik1 —1
X B, k1 Binki Puitg  Patia Pik
A Vikd T2k T Vilk 20 L Vi Yilg plill Nj.Ln—1
= PikPjIPik Bj i1 B; \ i1 1,1 PrrrgBintt - Bl
and
—( —1p-1 -1 -1
s (pjx Bij PikBij piiBijoyy Bijbik)
_ plikn—1 —Njk1 ~Vikg —Yik1 —1 p=PBijn-1 —Bija1 _—ijg —Qij1p—1
- anl,rH»l o 'B1,n+1 pn+1,g e Ion+1,1 loj,k ' Bn—],n+1 e B],n+1 IOnJr],g e pn+1,1 Bij
o Yk Yikg plik.1 Mj.k,n—1 —Bijn-1 —Bij1 _ —Cijg —®ij1p—1
X PkPri1,1 " Prg1gBrnt1  Balinrr s Basina1 - Binti Pailg o Pt Bij
BPR/AS| Yilg plil1 Nj.l.n—1 o dija Qijg nBij1 Bijn—1
X IOJJIOnle,l e pn+1,g31,n+l o 'Bn—l,nJr] : Bl,JIOrH»l,] e pn+1,gB1,n+l o 'Bn—1,n+1
—1j.k,n—1 —Njk1 _~Vikg —Vik1l —1 AR Qijg nbiji Bijn—1
X Bn71,n+1 o 'Bl,n+1 pn+1,g e pn+1,1 pj,k : Bl,]lon+1.1 e pn+1,gBl,n+1 o 'Bn—l,n+1
. Yik,1 Yik.g pljk1 Mj,k,n—1
X PjkPnii1 " PrttgBink1 Brlinga
7 likn—1 —Njk1 _~Vikg —Yik1 —1p—1 _ p2BijjTaijk
=B, 1 Binki Pritg  Pagin Pik Bij PikBi i
ik, 120 j,1 Vikg —2% j.g pik,1—2Bij1 Nj,k,n—1—2Bi jn—1
X Prt1,1 U Pptig By Bl
-1 Yill Yilg plili nj,1,n—1 o i Qijg nBij1 Bijn—1
X B 010511 Pt gBrntt  Baltngr s Biilngin  PugigBunet  Balin
—Nj,k,n—1 —Njk1 ~Yikg “Vik1 —1p = %ijk—2bijj
X By ni1 o Binkt Pugtg o Pt Pik BiglikBi i
&1 ®ijg nBij1 Bijn—1 Yjk,1 Yikg plik1 Nj.k.n—1
X P11 PfigBinsr Balingt  Pri1 PrgigBintt Balint
_ —lp=1,_ p-1_ p —1p  p20j—2¢jk Pl Niln—1  YjL1 Yilg
= P Bij pjkBij 041Bi o BijjkB; iy “Bintr BalinsPati  Potig:

since pipjipr, = Pji Bij pikBi; 01.1Bijp; . Bk in Poy1(Mg), we see that

B*Vj,t,k*ZUj,z,i _ 32011‘,]',1*Zdi,j,kﬂﬁ_k,1+2m,k,j
in+1 = Bjnt1 :
If j < n, it follows by comparing coefficients of the elements of 8 in K/H that forall 1 < i < j < n and

1<l<k<g,

Yidk + 20 =0 (25)
21 — 2 jk + Vikt + 20ikj = 0.
If j = nthen
B*Vn,t,k*ZUn,z,i 20 =20 k+Yik 1270 k,n

i,n+1 — “n,n+1

_ —(Z‘Jli,n,l_zoli,n,l<+}’i.k,l+2’7i,k.n) B_(Z‘xi.n.l_z‘xi,n,k+1’i,k,l+2’7i,k.n)

= P1inq1 T Pn—1,n+1

2(2atj,n,1—20,n, k+i,k, 17275 k,n) 2(2atj,n,1—20%, 0, ki, k, 1727 k,n)
X Pni1,1 © Pny

1, ’
and comparing coefficients of the elements of 8 in K/H, 5ve observe that Egs. (25) also hold if j = n. So for all
1<i<jgnandl<l<k<«g,

Yisk +2ni=0 (26)
2aij1 — 2@k + Vit + 27k = 0. (27)
(b) Let 1 <i < n.Then[]E, p? =By Bi_1,Biit1- - - Binin P,(Mg) by relation (c) of Theorem 3. For 1 < I < g, note that
= 2 _ Vil Vilg Mil,1 Mi,l,n—1 Vil Yilg Mi,1,1 Ni,l,n—1
S (pi,l) = PilPnii1 PairgBinet  Balins1PilPain 1 PugrgBingr - Baling
2 pT2MiLiVill 2Yila 2Vilg p2Mil1 21i,1,n—1
= 04,155 n1 11" PrprgBing1  Bo—intr-

As we saw in Egs. (10) and (11), pf, belongs to the centraliser of K /H in P,1(Mg)/H, so

g

< 2

s\[1e0
1=1

g g g g g g

g " g =23 mii— 2 Vil 22 Vil 2> vilg 22 MLt 23 Midn-1
i=1 =1 =1 =1 =1 =1

1_[ Oi1 HBi,n+] Pnf11 7 Parig Binkr BT

=1 =1
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Further,

i—1
- ali alig pPlLi1 Blin—1
S (Bl,i <o+ Bi_1,iBijy1 - 'Bi,n) =By, Bi—1,iBijit1- (pn+1 17 Prfa gBl,n+1 L

I=1

n
o1 %iLg pBil1 Bi,l,n—1
X 1_[ (lon+1 1° Ion+1 gBl n+1" Bn—],n+1

I=i+1
i—1 i—1 n i—1 n
ZWMH-IZ @1 Izla:,gﬁz g Zﬁli.1+lZlﬂi,z1 Zﬂli,n—l‘*'['zlﬂi,l,n—l
—_— e e e . . P .. l+ .. l+ - =it - :1+
=B1i- - Bi—1,iBiit1- - Bin - Ppy11 Pni1g B1 n+1 Bn 1.n+1
; g 2
Now in Pny1(Mg)/H, [T, p7; = Bu.i - - - Bi1.iBiit1 - - - BinBiny1, hence
g g
1_2‘Z nilLi— Z Yi Ll 2 Z Vil 2 Z Yilg 2 Z Ni,1,1 212 Ni,l,n—1
=1 =1
Bi i1 pn—H 1 pn+l g Bl 1 Bl
i-1 —1 n
Za111+2%11 Zahg"’zallg Zﬂl.i,1+zﬂi,11 Zﬂltn 1+Z/311n1
I=i+1 1=1 =i+ 37 I=i+1 37 i+
pn+1 1 Ion+1 g 1,n+1 n—1,n+1 .
Thus forall 1 <i < n,
g g i—1 i—1
1_22771',!.1'_2)4,11 Z"lltl+ Z 11— 2271[1 Za11g+2 allg_ZZVxlg
g = I=1 I= I=it1 =1 I= 1=it1
in+1 = pn+l 1 /’n+1 g
ZﬂltﬁLIZ Bil1— 22’7111 Zﬂlxnl““lz Biln—1 22’711111
= =it+1 = i+1
X Bl n+1 Bn 1.n+1 . (28)

4. Proofs of Theorems 1 and 2

In this section, we use the calculations of Section 3 to prove Theorem 1, from which we shall deduce Theorem 2.

Proof of Theorem 1. As we mentioned in the Introduction, the existence of an algebraic section for p, is equivalent to that
of a cross-section for p.
The case n = 1 was treated in Theorem 1 of [20], using the fact that if M = M,, where g > 3, then M is homeomorphic to
the connected sum of one or two copies of RP? with a compact, orientable surface without boundary of genus at least one.
Conversely, suppose that there exist m € N and n > 2 for which the homomorphism p,: Ppyn(M) —> P,(M) admits a
section. We shall argue for a contradiction. By [20, Proposition 3], it suffices to consider the case m = 1. We first analyse the
general structure of the coefficients «;j r, Bij.q, Vk.ir> Mk 1,q defined by Eq. (7).

(a) Takingj = nin Eq. (16) implies that y;x; =0forall1<i<n—1land1<k<I<g.
(b) By Eq. (27),
Yiki = —2Nikj — 2(cij1 — @ijk)

forall1 <i<j<nand1 <! < k< g. Takingj = n, we obtain
Yidkd = —20ijkn — 2(ting — Aink) =0

since n; x,, = 0 by definition and o pr = 2y;11 forall1 <i<n—1land 1 <r < g byEq. (22).
It thus follows from (a )and (b )that

Vikt=0 foralll<i<n—Tland1<kI<g k#IL (29)
(c) By Eq.(22), y,kk——a,n]foralll <n—1land1<k<g.So
Vikk = Y11 foralll<i<n—1land1<k<g. (30)

(d) ByEq.(16),forall1 <k <I<gand1<i<j<n wehave

1
Nikj = _Eyi,k,l =0,
using Eq. (29). So by taking | = g we obtain
Nikj =0 foralll<i<j<nandl1<k<g-1
(e) By Eq.(27)

Nikj = (2 (ai,j,l - Oli_j,k) + J/i,k,l)

N =
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forall1 <i<j<nand1<! <k <g. Buty;,; = 0byEq.(29),and «;j; — aijx = 0by Eq.(18)ifj < n — 1and by

Eq.(22)ifj = n. Setting [ = 1, it follows that
nikj=0 foralll1<i<j<nand2<k<g.

By (d) and (e) we thus have

Nikj =0 foralll<i<j<nand1<k<g. (31)
(f) Suppose that 1 <j <i<n— 1.Then
1
Nikj = _iyi’k‘l forall1 <k <1< g,byEq.(26)
= 0 byEq.(29).
So taking | = g, we have n;,; = O0forall 1 < k < g — 1. Further,forall 1 <l <k < g,
1
Mikj = =5 Vikl by Eq. (15)
= 0 byEq.(29).
Hence it follows from Eq. (31) and (f) that
Nikj=0 forall1<i,j<n—1i#jand1<k<g. (32)
(g) From Eq. (23), we obtain
ﬂjynys = —Yi11 forall1<s<n—1,s 75 i. (33)
(h) By Egs. (21) and (32), we see that
Vi1 = Biirtit1 = = Bin—1n foralll <i<n—2. (34)
(i) By Egs. (20) and (32), we obtain
Yitn = Brir=---=Biii1 forall2<i<n—1. (35)
Analysing Eq. (28), we are now able to complete the proof of Theorem 1 as follows. Let i € {1,...,n — 1}. Then the
coefficient of B; .41 yields:
g g i—1 n g
1=2) ni— > viu=Y_ Buit+ Y Bui—2) i (36)
=1 1=1 1=1 I=i+1 =1
Now
i—1 i—1
Z Buii = Z vi1.1 by Eq.(34),
=1 =1
and
n n
D Bii= Y i1 byEq.(35).
l=i+1 I=i+1
So using Eq. (30), Eq. (36) becomes
n—1
1—gvi11=Bini+ Z V11— Vil
1=1
Summing overalli = 1,...,n— 1,and setting A = 3"}, y.1.1 and L = 31—, B n.i» we obtain
n+g—-2)A=m-1)—L. (37)
Now leti =n,and letk € {1,...,n — 1}. Since n,;, = 0, the coefficient of By 11 in Eq. (28) yields:
g n—1 g n—1 g
Z Yo — 1= Z Bink — 2 Z Ntk = Bk + Z Bink — 2 Z N, Lk
1=1 =1 I=1 =1 =1
Ik
n—1 g
= Benk— »_ V11 —2 ) Nik byEq.(33)
=1 1=1

[
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g
= Brnk — (A —ye11) + Z (=Bink + Ynii — Vi) by Eq.(24)
=1

g g
= (1= Bink+ V11— A+ Y Yaur— Y a1 byEq.(30)
=1 =1

g
=1 =2PBknk+ 1 —=vk11— A+ Zyn,l,b
=1

Hence —1 = (1 — g)Bknk + (1 —8)¥k1,1 — A.Summing overallk = 1,...,n — 1, we obtain
m+g—-2)A=0-gL+n—1). (38)
Equating Egs. (37) and (38), we see that (n — 1) — L = (1 — g)L 4+ (n — 1). Since g > 3, it follows that L = 0, and therefore
n—1
A= ————
m-D+@E-1
by Eq. (37). This yields a contradiction to the fact that A is an integer, and thus completes the proof of Theorem 1. O

Remark. Although some of the relations derived in (a)—(i) do not exist if n = 2, one may check that the above analysis from
Eq. (36) onwards is also valid in this case (with A = y; 11 and L = B12,1).

Proof of Theorem 2. (a) Ifr > 0then the result follows applying the methods of the proofs of Proposition 27 and Theorem 6
of [20].Ifr = 0 and M has non-empty boundary, let C be a boundary component of M. Then M’ = M\ C is homeomorphic
to a compact surface with a single point deleted (which is the case r = 1), so (PBS) splits for M’. The inclusion of M’
in M not only induces a homotopy equivalence between M and M’, but also a homotopy equivalence between their nth
configuration spaces. Therefore their nth pure braid groups are isomorphic, and the sequence (PBS) for M splits if and
only it splits for M’.

(b) Suppose that r = 0 and that M is without boundary. If M = S?, m = 1 and n > 3 then the statement follows from [10].
The geometric construction of Fadell may be easily generalised to allm € N.If n € {1, 2}, the result is obvious since
Pa(S?) is trivial. If M = T? or K2, the fact that p,. has a section is a consequence of [9] and the fact that T? and K? admit
a non-vanishing vector field. If M = RP? then p, admits a section if and only if n = 2 and m = 1 by [22]. Finally, if
M # RP?, S?, T2, K? then p, admits a section if and only if n = 1 by Theorem 1 for the non-orientable case, and by [20]
for the orientable case. [

Acknowledgements

This work took place during the visit of the second author to the Departmento de Matematica do IME-Universidade de
Sdo Paulo during the periods 14th-29th April 2008, 18th July-8th August 2008 and 31st October-10th November 2008, and
of the visit of the first author to the Laboratoire de Mathématiques Nicolas Oresme, Université de Caen during the period
21st November-21st December 2008. It was supported by the international Cooperation USP/Cofecub project n° 105/06, by
the CNRS/CNPq project n° 21119, and by the ANR project TheoGar n° ANR-08-BLAN-0269-02.

References

[1] E. Artin, Theorie der Z6pfe, Abh. Math. Sem. Univ. Hamburg 4 (1925) 47-72.
[2] E. Artin, Theory of braids, Ann. Math. 48 (1947) 101-126.
[3] E. Artin, Braids and permutations, Ann. Math. 48 (1947) 643-649.
[4] O. Zariski, The topological discriminant group of a Riemann surface of genus p, Amer. J. Math. 59 (1937) 335-358.
[5] R.H. Fox, L. Neuwirth, The braid groups, Math. Scandinavica 10 (1962) 119-126.
[6] E.R. Cohen, S. Gitler, On loop spaces of configuration spaces, Trans. Amer. Math. Soc. 354 (2002) 1705-1748.
[7] E.Fadell, S.Y. Husseini, Geometry and topology of configuration spaces, in: Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001.
[8] E. Fadell, ]. Van Buskirk, The braid groups of EZ and S?, Duke Math. J. 29 (1962) 243-257.
[9] E.Fadell, L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962) 111-118.
[10] E. Fadell, Homotopy groups of configuration spaces and the string problem of Dirac, Duke Math. J. 29 (1962) 231-242.
[11] J. Van Buskirk, Braid groups of compact 2-manifolds with elements of finite order, Trans. Amer. Math. Soc. 122 (1966) 81-97.
[12] L. Paris, D. Rolfsen, Geometric subgroups of surface braid groups, Ann. Inst. Fourier 49 (1999) 417-472.
[13] ]. Gonzalez-Meneses, L. Paris, Vassiliev invariants for braids on surfaces, Trans. Amer. Math. Soc. 356 (2004) 219-243.
[14] M. Falk, R. Randell, The lower central series of a fiber-type arrangement, Invent. Math. 82 (1985) 77-88.
[15] D. Rolfsen, J. Zhu, Braids, orderings and zero divisors, J. Knot Theory Ramifications 7 (1998) 837-841.
[16] J.S. Birman, On braid groups, Comm. Pure and Appl. Math. 22 (1969) 41-72.
[17] HJ. Baues, Obstruction Theory on Homotopy Classification of Maps, in: Lecture Notes in Mathematics, vol. 628, Springer-Verlag, Berlin, 1977.
[18] G.W. Whitehead, Elements of Homotopy Theory, in: Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York, 1978.
[19] D.L. Gongalves, J. Guaschi, The braid groups of the projective plane, Algebraic Geom. Topol. 4 (2004) 757-780.
[20] D.L. Gongalves, J. Guaschi, On the structure of surface pure braid groups, J. Pure Appl. Algebra 182 (2003) 33-64 (due to a printer’s error, this article
was republished in its entirety with the reference 186 (2004), 187-218).
[21] J.H. Wang, On the braid groups for RP?, J. Pure Appl. Algebra 166 (2002) 203-227.



D.L. Gongalves, ]. Guaschi / Journal of Pure and Applied Algebra 214 (2010) 667-677 677

[22] D.L. Gongalves, J. Guaschi, The braid groups of the projective plane and the Fadell-Neuwirth short exact sequence, Geom. Dedicata 130 (2007) 93-107.
[23] D.L. Gongalves, J. Guaschi, Classification of the virtually cyclic subgroups of the pure braid groups of the projective plane, J. Group Theory (in press).
[24] G.P. Scott, Braid groups and the group of homeomorphisms of a surface, Proc. Camb. Phil. Soc. 68 (1970) 605-617.

[25] P. Bellingeri, On presentations of surface braid groups, J. Algebra 274 (2004) 543-563.

[26] J. Gonzélez-Meneses, New presentations of surface braid groups, J. Knot Theory Ramifications 10 (2001) 431-451.

[27] D.L. Johnson, Presentation of Groups, in: LMS Lecture Notes, vol. 22, Cambridge University Press, 1976.



	Braid groups of non-orientable surfaces and the Fadell--Neuwirth short exact sequence
	Introduction
	A presentation of  Pn (M) 
	Analysis of the case  Pn+ 1 (Mg) --3murightarrowPn (Mg), n 2 
	Proofs of Theorems 1 and 2
	Acknowledgements
	References


