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a b s t r a c t

Let M be a compact, connected non-orientable surface without boundary and of genus
g > 3. We investigate the pure braid groups Pn(M) of M , and in particular the possible
splitting of the Fadell–Neuwirth short exact sequence

1 −→ Pm(M \ {x1, . . . , xn}) ↪→ Pn+m(M)
p∗
−→ Pn(M) −→ 1,

where m, n > 1, and p∗ is the homomorphism which corresponds geometrically to
forgetting the lastm strings. This problem is equivalent to that of the existence of a section
for the associated fibration p: Fn+m(M) −→ Fn(M) of configuration spaces, defined by
p((x1, . . . , xn, xn+1, . . . , xn+m)) = (x1, . . . , xn). We show that p and p∗ admit a section
if and only if n = 1. Together with previous results, this completes the resolution of the
splitting problem for surface pure braid groups.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Braid groups of the plane were defined by Artin in 1925 [1], and further studied in [2,3]. Braid groups of surfaces were
studied by Zariski [4], andwere later generalised using the following definition due to Fox [5]. LetM be a compact, connected
surface, and let n ∈ N. We denote the set of all ordered n-tuples of distinct points ofM , known as the nth configuration space
of M , by:

Fn(M) = {(p1, . . . , pn) | pi ∈ M and pi 6= pj if i 6= j}.

Configuration spaces play an important rôle in several branches of mathematics and have been extensively studied, see [6,
7] for example.
The symmetric group Sn on n letters acts freely on Fn(M) by permuting coordinates. The corresponding quotient space

will be denoted by Dn(M). Notice that Fn(M) is a regular covering of Dn(M). The nth pure braid group Pn(M) (respectively
the nth braid group Bn(M)) is defined to be the fundamental group of Fn(M) (respectively of Dn(M)). If m ∈ N, then we
may define a homomorphism p∗: Pn+m(M) −→ Pn(M) induced by the projection p: Fn+m(M) −→ Fn(M) defined by
p((x1, . . . , xn, xn+1, . . . , xn+m)) = (x1, . . . , xn). Representing Pn+m(M) geometrically as a collection of n + m strings, p∗
corresponds to forgetting the lastm strings.We adopt the convention, that unless explicitly stated, all homomorphisms
Pn+m(M) −→ Pn(M) in the text will be this one. IfM is the 2-disc (or the plane R2), Bn(M) and Pn(M) are respectively the
classical Artin braid group Bn and pure braid group Pn [8].
IfM iswithout boundary, Fadell andNeuwirth study themap p, and show [9, Theorem3] that it is a locally-trivial fibration.

The fibre over a point (x1, . . . , xn) of the base space is Fm(M \ {x1, . . . , xn}) which we interpret as a subspace of the total
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space via the map i: Fm(M \ {x1, . . . , xn}) −→ Fn(M) defined by
i ((y1, . . . , ym)) = (x1, . . . , xn, y1, . . . , ym).

Applying the associated long exact sequence in homotopy, we obtain the pure braid group short exact sequence of Fadell and
Neuwirth:

1 −→ Pm (M \ {x1, . . . , xn})
i∗
−→ Pn+m(M)

p∗
−→ Pn(M) −→ 1, (PBS)

where n > 3 ifM is the sphere S2 [10,8], n > 2 ifM is the real projective plane RP2 [11], and n > 1 otherwise [9], and where
i∗ and p∗ are the homomorphisms induced by themaps i and p respectively. The short exact sequence (PBS) has beenwidely
studied, and may be employed for example to determine presentations of Pn(M) (see Section 2), its centre, and possible
torsion. It was also used in recent work on the structure of the mapping class groups [12] and on Vassiliev invariants for
surface braids [13].
In the case of Pn, and takingm = 1, Ker (p∗) is a free group of rank n. The short exact sequence (PBS) splits for all n > 1,

and so Pn may be described as a repeated semi-direct product of free groups. This decomposition, known as the ‘combing’
operation, is the principal result of Artin’s classical theory of braid groups [2], and yields normal forms and a solution to
the word problem in Bn. More recently, it was used by Falk and Randell to study the lower central series and the residual
nilpotence of Pn [14], and by Rolfsen and Zhu to prove that Pn is bi-orderable [15].
The problem of deciding whether such a decomposition exists for braid groups of surfaces is thus fundamental. This was

indeed a recurrent and central question during the foundation of the theory and its subsequent development during the
1960’s [10,9,8,11,16]. If the fibre of the fibration is an Eilenberg–MacLane space then the existence of a section for p∗ is
equivalent to that of a cross-section for p [17,18] (cf. [19]). But with the exception of the construction of sections in certain
cases (for S2 [10] and the 2-torusT2 [16]), no progress on the possible splitting of (PBS)was recorded for nearly forty years. In
the case of orientable surfaceswithout boundary of genus at least two, the question of the splitting of (PBS) whichwas posed
explicitly by Birman in 1969 [16], was finally resolved by the authors, the answer being positive if and only if n = 1 [20].
As for the non-orientable case, the braid groups of RP2 were first studied by Van Buskirk [11], and more recently by

Wang [21] and the authors [19,22,23]. For n = 1, we have P1(RP2) = B1(RP2) ∼= Z2. Van Buskirk showed that for all n > 2,
neither the fibration p: Fn(RP2) −→ F1(RP2) nor the homomorphism p∗: Pn(RP2) −→ P1(RP2) admit a cross-section (for
p, this is a manifestation of the fixed point property of RP2), but that the fibration p: F3(RP2) −→ F2(RP2) admits a cross-
section, and hence so does the corresponding homomorphism p∗. Using coincidence theory, we showed that for n = 2, 3
and m > 4 − n, neither the fibration nor the short exact sequence (PBS) admit a section [19]. In [22], we gave a complete
answer to the splitting problem for RP2: if m, n ∈ N, the homomorphism p∗: Pn+m(RP2) −→ Pn(RP2) and the fibration
p: Fn+m(RP2) −→ Fn(RP2) admit a section if and only if n = 2 andm = 1. In other words, Van Buskirk’s values (n = 2 and
m = 1) are the only ones for which a section exists (both on the geometric and the algebraic level).
In this paper, we study the splitting problem for compact, connected non-orientable surfaces without boundary and of

genus g > 3 (every non-orientable compact surfaceM without boundary is homeomorphic to the connected sum of g copies
of RP2, g ∈ N being the genus ofM). In the case of the Klein bottle K2 (g = 2), the existence of a non-vanishing vector field
implies that there always exists a section, both geometric and algebraic (cf. [9]). Our main result is:

Theorem 1. Let M be a compact, connected, non-orientable surface without boundary of genus g > 3, and let m, n ∈ N. Then
the homomorphism p∗: Pn+m(M) −→ Pn(M) and the fibration p: Fn+m(M) −→ Fn(M) admit a section if and only if n = 1.

Applying Theorem 1 and the results of [20,22], we may solve completely the splitting problem for surface pure braid
groups:

Theorem 2. Let m, n ∈ N and r > 0. Let N be a compact, connected surface possibly with boundary, let {x1, . . . xr} be a finite
subset in the interior of N, let M = N \ {x1, . . . xr}, and let p∗: Pn+m(M) −→ Pn(M) be the standard projection.
(a) If r > 0 or if M has non-empty boundary then p∗ admits a section for all m and n.
(b) Suppose that r = 0 and that M is without boundary. Then p∗ admits a section if and only if one of the following conditions
holds:
(i) M is S2, the 2-torus T2 or the Klein bottle K2 (for all m and n).
(ii) M = RP2, n = 2 and m = 1.
(iii) M 6= RP2, S2,T2,K2 and n = 1.
The rest of the paper is organised as follows. In Section 2, we determine a presentation of Pn(M) (Theorem 3). In Section 3,

we study the consequences of the existence of a section in the casem = 1 and n > 2, i.e. p∗: Pn+1(M) −→ Pn(M). The general
strategy of the proof of Theorem 1 is based on the following remark. Suppose that (PBS) splits. If H is any normal subgroup
of Pn+1(M) contained in Ker (p∗), the quotiented short exact sequence 1 −→ Ker (p∗) /H ↪→ Pn+1(M)/H −→ Pn(M) −→ 1
must also split. In order to obtain a contradiction, we seek such a subgroup H for which this short exact sequence does not
split. However the choice of H needed to achieve this may be somewhat delicate: if H is too ‘small’, the structure of the
quotient Pn+1(RP2)/H remains complicated; on the other hand, if H is too ‘large’, we lose too much information and cannot
reach a conclusion. In Section 4, we first show that we may reduce to the case m = 1, and then go on to prove Theorem 1
using the analysis of Section 3. As we shall see in Section 4, it suffices to take H to be Abelianisation of Ker (p∗), in which
case the quotient Ker (p∗) /H is a free Abelian group. We will then deduce Theorem 2.
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Fig. 1. The generators Bi,j and ρk,l of Pn(M), represented geometrically by loops lying inM minus a disc.

2. A presentation of Pn(M)

Let M = Mg be a compact, connected, non-orientable surface without boundary of genus g > 2. If n ∈ N and D2 ⊆ M
is a topological disc, the inclusion induces a homomorphism ι: Bn(D2) −→ Bn(M). If β ∈ Bn(D2) then we shall denote its
image ι(β) simply by β . For 1 6 i < j 6 n, we consider the following elements of Pn(M):

Bi,j = σ−1i · · · σ
−1
j−2σ

2
j−1σj−2 · · · σi,

where σ1, . . . , σn−1 are the standard generators of Bn(D2). The geometric braid corresponding to Bi,j takes the ith string once
around the jth string in the positive sense, with all other strings remaining vertical. For each 1 6 k 6 n and 1 6 l 6 g , we
define a generator ρk,l which is represented geometrically by a loop based at the kth point and which goes round the lth
twisted handle. These elements are illustrated in Fig. 1 that representsM minus a disc.
A presentation of the braid groups of non-orientable surfaceswas originally given by Scott [24]. Other presentationswere

later obtained in [25,26]. In the following theorem, we derive another presentation of Pn(M).

Theorem 3. Let M be a compact, connected, non-orientable surface without boundary of genus g > 2, and let n ∈ N. The
following constitutes a presentation of the pure braid group Pn(M):
generators: Bi,j, 1 6 i < j 6 n, and ρk,l, where 1 6 k 6 n and 1 6 l 6 g.
relations: (a) the Artin relations between the Bi,j emanating from those of Pn(D2):

Br,sBi,jB−1r,s =


Bi,j if i < r < s < j or r < s < i < j
B−1i,j B

−1
r,j Bi,jBr,jBi,j if r < i = s < j

B−1s,j Bi,jBs,j if i = r < s < j
B−1s,j B

−1
r,j Bs,jBr,jBi,jB

−1
r,j B
−1
s,j Br,jBs,j if r < i < s < j.

(1)

(b) for all 1 6 i < j 6 n and 1 6 k, l 6 g,

ρi,kρj,lρ
−1
i,k =


ρj,l if k < l
ρ−1j,k B

−1
i,j ρ

2
j,k if k = l

ρ−1j,k B
−1
i,j ρj,kB

−1
i,j ρj,lBi,jρ

−1
j,k Bi,jρj,k if k > l.

(2)

(c) for all 1 6 i 6 n, the ‘surface relations’
∏g
l=1 ρ

2
i,l = B1,i · · · Bi−1,iBi,i+1 · · · Bi,n.

(d) for all 1 6 i < j 6 n, 1 6 k 6 n, k 6= j, and 1 6 l 6 g,

ρk,lBi,jρ−1k,l =


Bi,j if k < i or j < k
ρ−1j,l B

−1
i,j ρj,l if k = i

ρ−1j,l B
−1
k,j ρj,lB

−1
k,j Bi,jBk,jρ

−1
j,l Bk,jρj,l if i < k < j.

(3)

Proof. We apply induction and standard results concerning the presentation of an extension (see [27, Theorem 1,
Chapter 13]). The proof generalises that of [22] for RP2, and is similar in spirit to that of [24].
First note that the given presentation is correct for n = 1 (P1(M) = π1(M) has a presentation 〈ρ1,1, . . . , ρ1,g |

∏g
l=1 ρ

2
1,l

= 1〉). So let n > 1, and suppose that Pn(M) has the given presentation. Taking m = 1 in (PBS), we have a short exact
sequence:

1 −→ π1 (M \ {x1, . . . , xn} , xn+1) −→ Pn+1(M)
p∗
−→ Pn(M) −→ 1.
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In order to retain the symmetry of the presentation, we take the free group Ker (p∗) to have the following one-relator
presentation:〈

ρn+1,1, . . . ρn+1,g , B1,n+1, . . . , Bn,n+1

∣∣∣∣∣ g∏
l=1

ρ2n+1,l = B1,n+1 · · · Bn,n+1

〉
.

Together with these generators of Ker (p∗), the elements Bi,j, 1 6 i < j 6 n, and ρk,l, 1 6 k 6 n and 1 6 l 6 g , of Pn+1(M)
(which are coset representatives of the generators of Pn(M)) form the given generating set of Pn+1(M).
There are three classes of relations of Pn+1(M) which are obtained as follows. The first consists of the single relation∏g
l=1 ρ

2
n+1,l = B1,n+1 · · · Bn,n+1 of Ker (p∗). The second class is obtained by rewriting the relators of the quotient in terms of

the coset representatives, and expressing the corresponding element as a word in the generators of Ker (p∗). In this way, all
of the relations of Pn(M) lift directly to relations of Pn+1(M), with the exception of the surface relations which become

g∏
l=1

ρ2i,l = B1,i · · · Bi−1,iBi,i+1 · · · Bi,nBi,n+1 for all 1 6 i 6 n.

Along with the relation of Ker (p∗), we obtain the complete set of surface relations (relations (c) for Pn+1(M).
The third class of relations is obtained by rewriting the conjugates of the generators of Ker (p∗) by the coset

representatives in terms of the generators of Ker (p∗):

(i) For all 1 6 i < j 6 n and 1 6 l 6 n,

Bi,jBl,n+1B−1i,j =


Bl,n+1 if l < i or j < l
B−1l,n+1B

−1
i,n+1Bl,n+1Bi,n+1Bl,n+1 if l = j

B−1j,n+1Bl,n+1Bj,n+1 if l = i
B−1j,n+1B

−1
i,n+1Bj,n+1Bi,n+1Bl,n+1B

−1
i,n+1B

−1
j,n+1Bi,n+1Bj,n+1 if i < l < j.

(ii) Bi,jρn+1,lB−1i,j = ρn+1,l for all 1 6 i < j 6 n and 1 6 l 6 g .
(iii) for all 1 6 i 6 n and 1 6 k, l 6 g ,

ρi,kρn+1,lρ
−1
i,k =


ρn+1,l if k < l
ρ−1n+1,kB

−1
i,n+1ρ

2
n+1,k if k = l

ρ−1n+1,kB
−1
i,n+1ρn+1,kB

−1
i,n+1ρn+1,lBi,n+1ρ

−1
n+1,kBi,n+1ρn+1,k if k > l.

(iv) For all 1 6 i, k 6 n and 1 6 l 6 g ,

ρk,lBi,n+1ρ−1k,l =


Bi,n+1 if k < i
ρ−1n+1,lB

−1
i,n+1ρn+1,l if k = i

ρ−1n+1,lB
−1
k,n+1ρn+1,lB

−1
k,n+1Bi,n+1Bk,n+1ρ

−1
n+1,lBk,n+1ρn+1,l if i < k.

Then relations (a) for Pn+1(M) are obtained from relations (a) for Pn(M) and relations (i), relations (b) for Pn+1(M) are
obtained from relations (b) for Pn(M) and relations (iii), and relations (d) for Pn+1(M) are obtained from relations (d) for
Pn(M), and relations (ii) and (iv). �

3. Analysis of the case Pn+1(Mg ) −→ Pn(Mg ), n > 2

For the whole of this section, we suppose that g > 3 and n > 2. By Theorem 3, Pn(Mg) is generated by the union of the
Bi,j, 1 6 i < j 6 n, and of the ρk,l, 1 6 k 6 n, 1 6 l 6 g . Let us consider the homomorphism p∗: Pn+1(Mg) −→ Pn(Mg). In this
section, we suppose that p∗ admits a section, denoted by s∗. Applying (PBS), we thus have a split short exact sequence

1 // K // Pn+1(Mg)
p∗ //

Pn(Mg)
s∗

oo_ _ _ // 1, (4)

where K = Ker (p∗) = π1(Mg \ {x1, . . . , xn} , xn+1) is a free group of rank n + g − 1, generated by {B1,n+1, . . . , Bn,n+1,
ρn+1,1, . . . , ρn+1,g}, and subject to the relation

B1,n+1 · · · Bn,n+1 = ρ2n+1,1 · · · ρ
2
n+1,g .

Let H = [K , K ] be the commutator subgroup of K . Then K/H is a free Abelian group of rank n+ g − 1. In what follows, we
shall not distinguish notationally between the elements of K and those of K/H . The quotient group K/H thus has a basis

B =
{
B1,n+1, . . . , Bn−1,n+1, ρn+1,1, . . . , ρn+1,g

}
, (5)

and the relation

Bn,n+1 = B−11,n+1 · · · B
−1
n−1,n+1ρ

2
n+1,1 · · · ρ

2
n+1,g (6)
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holds in the Abelian group K/H . Since H is normal in Pn+1(Mg) and p∗ admits a section, it follows from Eq. (4) that we have
a split short exact sequence

1 // K/H // Pn+1(Mg)/H
p //
Pn(Mg)

s
oo_ _ _ // 1,

where p is the homomorphism induced by p∗, and s is the induced section.
Consider the subset
Γ =

{
Bi,j, ρk,l

∣∣ 1 6 i < j 6 n, 1 6 k 6 n, 1 6 l 6 g}
of Pn+1(Mg)/H . If g ∈ Γ then p(g) = g ∈ Pn(Mg), and so g−1.s(p(g)) ∈ Ker (p) = K/H . Then the integer coefficients
αi,j,r , βi,j,q, γk,l,r , ηk,l,q, where 1 6 r 6 g and 1 6 q 6 n− 1, are (uniquely) defined by the equations:{

s
(
Bi,j
)
= Bi,jρ

αi,j,1
n+1,1 · · · ρ

αi,j,g
n+1,gB

βi,j,1
1,n+1 · · · B

βi,j,n−1
n−1,n+1

s
(
ρk,l
)
= ρk,lρ

γk,l,1
n+1,1 · · · ρ

γk,l,g
n+1,gB

ηk,l,1
1,n+1 · · · B

ηk,l,n−1
n−1,n+1.

(7)

There is an equation for each element of Γ . Most of the elements of Γ commute with the elements of the basis B of K/H
given in Eq. (5). We record the list of conjugates of such elements for later use. In what follows, 1 6 i < j 6 n, 1 6 k,m 6 n
and 1 6 l, r 6 g . In K/H , we have

Bi,jBm,n+1B−1i,j = Bm,n+1
(this follows from Eq. (1) and the fact that the elements Bq,n+1, 1 6 q 6 n, belong to K/H and so commute pairwise), and

Bi,jρn+1,lB−1i,j = ρn+1,l
by Eq. (3). Thus Bi,j belongs to the centraliser of K/H in Pn+1(Mg)/H . Also by Eq. (3), we have

ρk,lBm,n+1ρ−1k,l =


Bm,n+1 if k < m
ρ−1n+1,lB

−1
m,n+1ρn+1,l = B

−1
m,n+1 if k = m

ρ−1n+1,lB
−1
k,n+1ρn+1,lB

−1
k,n+1Bm,n+1Bk,n+1ρ

−1
n+1,lBk,n+1ρn+1,l=Bm,n+1 if k > m,

so

ρk,lBm,n+1ρ−1k,l = B
1−2δk,m
m,n+1 , (8)

where δ·,· is the Kronecker delta. By Eq. (2), we have

ρk,lρn+1,rρ
−1
k,l =


ρn+1,r if l < r
ρ−1n+1,lB

−1
k,n+1ρ

2
n+1,l = ρn+1,lB

−1
k,n+1 if l = r

ρ−1n+1,lB
−1
k,n+1ρn+1,lB

−1
k,n+1ρn+1,rBk,n+1ρ

−1
n+1,lBk,n+1ρn+1,l = ρn+1,r if l > r ,

so

ρk,lρn+1,rρ
−1
k,l = ρn+1,rB

−δl,r
k,n+1. (9)

Combining Eqs. (8) and (9), we obtain
ρ2k,rρn+1,rρ

−2
k,r = ρk,rρn+1,rB

−1
k,n+1ρ

−1
k,r = ρn+1,rB

−1
k,n+1Bk,n+1 = ρn+1,r ,

so

ρk,rρn+1,rρ
−1
k,r = ρ

−1
k,r ρn+1,rρk,r . (10)

Furthermore, by Eq. (8), ρ2k,l commutes with Bm,n+1, and therefore

ρk,lBm,n+1ρ−1k,l = ρ
−1
k,l Bm,n+1ρk,l. (11)

Hence ρ2k,l also belongs to the centraliser of K/H in Pn+1(Mg)/H . From Eqs. (8) and (9), we obtain the following relations:

ρ
γi,k,1
n+1,1 · · · ρ

γi,k,g
n+1,g · ρj,l = ρj,l · B

−γi,k,l
j,n+1 ρ

γi,k,1
n+1,1 · · · ρ

γi,k,g
n+1,g for all 1 6 j 6 n, (12)

and

Bηi,k,11,n+1 · · · B
ηi,k,n−1
n−1,n+1ρj,l =

{
ρj,lB

−2ηi,k,j
j,n+1 B

ηi,k,1
1,n+1 · · · B

ηi,k,n−1
n−1,n+1 if 1 6 j 6 n− 1

ρj,lB
ηi,k,1
1,n+1 · · · B

ηi,k,n−1
n−1,n+1 if j = n.

Setting ηi,k,n = 0 for all 1 6 i 6 n and 1 6 k 6 g yields:

Bηi,k,11,n+1 · · · B
ηi,k,n−1
n−1,n+1 · ρj,l = ρj,l · B

−2ηi,k,j
j,n+1 B

ηi,k,1
1,n+1 · · · B

ηi,k,n−1
n−1,n+1 for all 1 6 j 6 n. (13)

Eqs. (12) and (13) will be employed repeatedly in the ensuing calculations.
We now investigate the images under s of some of the relations (b)–(d) of Theorem 3 (it turns out that the analysis of the

other relations, including (a), will not be necessary for our purposes).
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(a) Let 1 6 i < j 6 n and 1 6 k, l 6 g . We examine the three possible cases of Eq. (7) (relation (b) of Theorem 3).
(i) k < l: then ρi,kρj,l = ρj,lρi,k in Pn(Mg). The respective images under s are:

s
(
ρi,kρj,l

)
= ρi,kρ

γi,k,1
n+1,1 · · · ρ

γi,k,g
n+1,gB

ηi,k,1
1,n+1 · · · B

ηi,k,n−1
n−1,n+1ρj,lρ

γj,l,1
n+1,1 · · · ρ

γj,l,g
n+1,gB

ηj,l,1
1,n+1 · · · B

ηj,l,n−1
n−1,n+1

= ρi,kρj,lB
−γi,k,l−2ηi,k,j
j,n+1 ρ

γi,k,1+γj,l,1
n+1,1 · · · ρ

γi,k,g+γj,l,g
n+1,g B

ηi,k,1+ηj,l,1
1,n+1 · · · B

ηi,k,n−1+ηj,l,n−1
n−1,n+1 ,

and
s
(
ρj,lρi,k

)
= ρj,lρ

γj,l,1
n+1,1 · · · ρ

γj,l,g
n+1,gB

ηj,l,1
1,n+1 · · · B

ηj,l,n−1
n−1,n+1ρi,kρ

γi,k,1
n+1,1 · · · ρ

γi,k,g
n+1,gB

ηi,k,1
1,n+1 · · · B

ηi,k,n−1
n−1,n+1

= ρj,lρi,kB
−γj,l,k−2ηj,l,i
i,n+1 ρ

γj,l,1+γi,k,1
n+1,1 · · · ρ

γj,l,g+γi,k,g
n+1,g B

ηj,l,1+ηi,k,1
1,n+1 · · · B

ηj,l,n−1+ηi,k,n−1
n−1,n+1 .

The relation ρi,kρj,l = ρj,lρi,k in Pn+1(Mg) implies that B
−γi,k,l−2ηi,k,j
j,n+1 = B

−γj,l,k−2ηj,l,i
i,n+1 . Comparing coefficients of the

elements ofB in K/H (cf. Eq. (5)), if j < n, we have{
γj,l,k + 2ηj,l,i = 0 and
γi,k,l + 2ηi,k,j = 0,

(14)

while if j = n, applying Eq. (6) yields
Bγn,l,k+2ηn,l,ii,n+1 = Bγi,k,l+2ηi,k,nn,n+1 = B−(γi,k,l+2ηi,k,n)1,n+1 · · · B−(γi,k,l+2ηi,k,n)n−1,n+1 ρ

2(γi,k,l+2ηi,k,n)
n+1,1 · · · ρ

2(γi,k,l+2ηi,k,n)
n+1,g ,

and thus Eq. (14) also holds for j = n. So for all 1 6 i < j 6 n and 1 6 k < l 6 g ,
γj,l,k + 2ηj,l,i = 0 and (15)

γi,k,l + 2ηi,k,j = 0. (16)

(ii) k = l: then ρi,kρj,kρ−1i,k = ρ
−1
j,k B
−1
i,j ρ

2
j,k in Pn(Mg) for all 1 6 i < j 6 n and 1 6 k 6 g . The respective images under s

are:
s
(
ρi,kρj,kρ

−1
i,k

)
= ρi,kρ

γi,k,1
n+1,1 · · · ρ

γi,k,g
n+1,gB

ηi,k,1
1,n+1 · · · B

ηi,k,n−1
n−1,n+1ρj,kρ

γj,k,1
n+1,1 · · · ρ

γj,k,g
n+1,gB

ηj,k,1
1,n+1 · · · B

ηj,k,n−1
n−1,n+1

× B−ηi,k,n−1n−1,n+1 · · · B
−ηi,k,1
1,n+1 ρ

−γi,k,g
n+1,g · · · ρ

−γi,k,1
n+1,1 ρ

−1
i,k

= ρi,kρj,kB
−γi,k,k
j,n+1 ρ

γi,k,1+γj,k,1
n+1,1 · · · ρ

γi,k,g+γj,k,g
n+1,g B

−2ηi,k,j
j,n+1 B

ηi,k,1+ηj,k,1
1,n+1 · · · B

ηi,k,n−1+ηj,k,n−1
n−1,n+1

× ρ−1i,k B
2ηi,k,i
i,n+1B

−ηi,k,n−1
n−1,n+1 · · · B

−ηi,k,1
1,n+1 B

γi,k,k
i,n+1ρ

−γi,k,g
n+1,g · · · ρ

−γi,k,1
n+1,1

= ρi,kρj,kρ
−1
i,k B
−γi,k,k
j,n+1 B

−(γi,k,k+γj,k,k)

i,n+1 ρ
γi,k,1+γj,k,1
n+1,1 · · · ρ

γi,k,g+γj,k,g
n+1,g B

−2ηi,k,j
j,n+1 B

−2(ηi,k,i+ηj,k,i)
i,n+1

× B
ηi,k,1+ηj,k,1
1,n+1 · · · B

ηi,k,n−1+ηj,k,n−1
n−1,n+1 B2ηi,k,ii,n+1B

−ηi,k,n−1
n−1,n+1 · · · B

−ηi,k,1
1,n+1 B

γi,k,k
i,n+1ρ

−γi,k,g
n+1,g · · · ρ

−γi,k,1
n+1,1

= ρi,kρj,kρ
−1
i,k ρ

γj,k,1
n+1,1 · · · ρ

γj,k,g
n+1,gB

ηj,k,1
1,n+1 · · · B

ηj,k,n−1
n−1,n+1B

−(2ηj,k,i+γj,k,k)
i,n+1 B

−(2ηi,k,j+γi,k,k)
j,n+1

and
s
(
ρ−1j,k B

−1
i,j ρ

2
j,k

)
= B

−ηj,k,n−1
n−1,n+1 · · · B

−ηj,k,1
1,n+1 ρ

−γj,k,g
n+1,g · · · ρ

−γj,k,1
n+1,1 ρ

−1
j,k · B

−βi,j,n−1
n−1,n+1 · · · B

−βi,j,1
1,n+1 ρ

−αi,j,g
n+1,g · · · ρ

−αi,j,1
n+1,1 B

−1
i,j

× ρj,kρ
γj,k,1
n+1,1 · · · ρ

γj,k,g
n+1,gB

ηj,k,1
1,n+1 · · · B

ηj,k,n−1
n−1,n+1ρj,kρ

γj,k,1
n+1,1 · · · ρ

γj,k,g
n+1,gB

ηj,k,1
1,n+1 · · · B

ηj,k,n−1
n−1,n+1

= ρ−1j,k B
−1
i,j B

2ηj,k,j
j,n+1B

−ηj,k,n−1
n−1,n+1 · · · B

−ηj,k,1
1,n+1 B

γj,k,k
j,n+1ρ

−γj,k,g
n+1,g · · · ρ

−γj,k,1
n+1,1 B

−βi,j,n−1
n−1,n+1 · · · B

−βi,j,1
1,n+1

× ρ
−αi,j,g
n+1,g · · · ρ

−αi,j,1
n+1,1 ρ

2
j,kB
−γj,k,k
j,n+1 ρ

γj,k,1
n+1,1 · · · ρ

γj,k,g
n+1,gB

−2ηj,k,j
j,n+1 B

ηj,k,1
1,n+1 · · · B

ηj,k,n−1
n−1,n+1

× ρ
γj,k,1
n+1,1 · · · ρ

γj,k,g
n+1,gB

ηj,k,1
1,n+1 · · · B

ηj,k,n−1
n−1,n+1

= ρ−1j,k B
−1
i,j ρ

2
j,kρ

γj,k,1−αi,j,1
n+1,1 · · · ρ

γj,k,g−αi,j,g
n+1,g B

ηj,k,1−βi,j,1
1,n+1 · · · B

ηj,k,n−1−βi,j,n−1
n−1,n+1 .

Since ρi,kρj,kρ−1i,k = ρ
−1
j,k B
−1
i,j ρ

2
j,k in Pn+1(Mg), we obtain

B
−(2ηj,k,i+γj,k,k)
i,n+1 B

−(2ηi,k,j+γi,k,k)
j,n+1 = ρ

−αi,j,1
n+1,1 · · · ρ

−αi,j,g
n+1,g B

−βi,j,1
1,n+1 · · · B

−βi,j,n−1
n−1,n+1 . (17)

If j < n then all of the terms in Eq. (17) are expressed in terms of the basis B of K/H of Eq. (5), and so for all
1 6 i < j 6 n− 1,

αi,j,r = 0 for all 1 6 r 6 g (18)

βi,j,s = 0 for all 1 6 s 6 n− 1, s 6∈ {i, j} (19)

βi,j,i = γj,k,k + 2ηj,k,i (20)

βi,j,j = γi,k,k + 2ηi,k,j. (21)
If j = n then substituting for Bn,n+1 in Eq. (17) using Eq. (6) and comparing coefficients in K/H of the elements ofB
yields

2(2ηi,k,n + γi,k,k) = αi,n,r for all 1 6 r 6 g
(2ηi,k,n + γi,k,k) = −βi,n,s for all 1 6 s 6 n− 1, s 6= i
2(ηi,k,n − ηn,k,i)+ (γi,k,k − γn,k,k) = −βi,n,i.
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But ηi,k,n = 0, so for all 1 6 i 6 n− 1 and 1 6 k 6 g ,
αi,n,r = 2γi,k,k for all 1 6 r 6 g (22)

βi,n,s = −γi,k,k for all 1 6 s 6 n− 1, s 6= i (23)

βi,n,i = 2ηn,k,i + (γn,k,k − γi,k,k). (24)
(iii) k > l: then ρi,kρj,lρ−1i,k = ρ

−1
j,k B
−1
i,j ρj,kB

−1
i,j ρj,lBi,jρ

−1
j,k Bi,jρj,k in Pn(Mg). The respective images under s are:

s
(
ρi,kρj,lρ

−1
i,k

)
= ρi,kρ

γi,k,1
n+1,1 · · · ρ

γi,k,g
n+1,gB

ηi,k,1
1,n+1 · · · B

ηi,k,n−1
n−1,n+1ρj,lρ

γj,l,1
n+1,1 · · · ρ

γj,l,g
n+1,gB

ηj,l,1
1,n+1 · · · B

ηj,l,n−1
n−1,n+1

× B−ηi,k,n−1n−1,n+1 · · · B
−ηi,k,1
1,n+1 ρ

−γi,k,g
n+1,g · · · ρ

−γi,k,1
n+1,1 ρ

−1
i,k

= ρi,kρj,lρ
−1
i,k B
−γi,k,l−2ηi,k,j
j,n+1 B

−γj,l,k−2ηj,l,i
i,n+1 ρ

γj,l,1
n+1,1 · · · ρ

γj,l,g
n+1,gB

ηj,l,1
1,n+1 · · · B

ηj,l,n−1
n−1,n+1

and
s
(
ρ−1j,k B

−1
i,j ρj,kB

−1
i,j ρj,lBi,jρ

−1
j,k Bi,jρj,k

)
= B

−ηj,k,n−1
n−1,n+1 · · · B

−ηj,k,1
1,n+1 ρ

−γj,k,g
n+1,g · · · ρ

−γj,k,1
n+1,1 ρ

−1
j,k · B

−βi,j,n−1
n−1,n+1 · · · B

−βi,j,1
1,n+1 ρ

−αi,j,g
n+1,g · · · ρ

−αi,j,1
n+1,1 B

−1
i,j

× ρj,kρ
γj,k,1
n+1,1 · · · ρ

γj,k,g
n+1,gB

ηj,k,1
1,n+1 · · · B

ηj,k,n−1
n−1,n+1 · B

−βi,j,n−1
n−1,n+1 · · · B

−βi,j,1
1,n+1 ρ

−αi,j,g
n+1,g · · · ρ

−αi,j,1
n+1,1 B

−1
i,j

× ρj,lρ
γj,l,1
n+1,1 · · · ρ

γj,l,g
n+1,gB

ηj,l,1
1,n+1 · · · B

ηj,l,n−1
n−1,n+1 · Bi,jρ

αi,j,1
n+1,1 · · · ρ

αi,j,g
n+1,gB

βi,j,1
1,n+1 · · · B

βi,j,n−1
n−1,n+1

× B
−ηj,k,n−1
n−1,n+1 · · · B

−ηj,k,1
1,n+1 ρ

−γj,k,g
n+1,g · · · ρ

−γj,k,1
n+1,1 ρ

−1
j,k · Bi,jρ

αi,j,1
n+1,1 · · · ρ

αi,j,g
n+1,gB

βi,j,1
1,n+1 · · · B

βi,j,n−1
n−1,n+1

× ρj,kρ
γj,k,1
n+1,1 · · · ρ

γj,k,g
n+1,gB

ηj,k,1
1,n+1 · · · B

ηj,k,n−1
n−1,n+1

= B
−ηj,k,n−1
n−1,n+1 · · · B

−ηj,k,1
1,n+1 ρ

−γj,k,g
n+1,g · · · ρ

−γj,k,1
n+1,1 ρ

−1
j,k B
−1
i,j ρj,kB

2βi,j,j+αi,j,k
j,n+1

× ρ
γj,k,1−2αi,j,1
n+1,1 · · · ρ

γj,k,g−2αi,j,g
n+1,g B

ηj,k,1−2βi,j,1
1,n+1 · · · B

ηj,k,n−1−2βi,j,n−1
n−1,n+1

× B−1i,j ρj,lρ
γj,l,1
n+1,1 · · · ρ

γj,l,g
n+1,gB

ηj,l,1
1,n+1 · · · B

ηj,l,n−1
n−1,n+1 · Bi,jρ

αi,j,1
n+1,1 · · · ρ

αi,j,g
n+1,gB

βi,j,1
1,n+1 · · · B

βi,j,n−1
n−1,n+1

× B
−ηj,k,n−1
n−1,n+1 · · · B

−ηj,k,1
1,n+1 ρ

−γj,k,g
n+1,g · · · ρ

−γj,k,1
n+1,1 ρ

−1
j,k Bi,jρj,kB

−αi,j,k−2βi,j,j
j,n+1

× ρ
αi,j,1
n+1,1 · · · ρ

αi,j,g
n+1,gB

βi,j,1
1,n+1 · · · B

βi,j,n−1
n−1,n+1 · ρ

γj,k,1
n+1,1 · · · ρ

γj,k,g
n+1,gB

ηj,k,1
1,n+1 · · · B

ηj,k,n−1
n−1,n+1

= ρ−1j,k B
−1
i,j ρj,kB

−1
i,j ρj,lBi,jρ

−1
j,k Bi,jρj,kB

2αi,j,l−2αi,j,k
j,n+1 · B

ηj,l,1
1,n+1 · · · B

ηj,l,n−1
n−1,n+1ρ

γj,l,1
n+1,1 · · · ρ

γj,l,g
n+1,g .

Since ρi,kρj,lρ−1i,k = ρ
−1
j,k B
−1
i,j ρj,kB

−1
i,j ρj,lBi,jρ

−1
j,k Bi,jρj,k in Pn+1(Mg), we see that

B
−γj,l,k−2ηj,l,i
i,n+1 = B

2αi,j,l−2αi,j,k+γi,k,l+2ηi,k,j
j,n+1 .

If j < n, it follows by comparing coefficients of the elements of B in K/H that for all 1 6 i < j < n and
1 6 l < k 6 g ,{

γj,l,k + 2ηj,l,i = 0
2αi,j,l − 2αi,j,k + γi,k,l + 2ηi,k,j = 0.

(25)

If j = n then
B−γn,l,k−2ηn,l,ii,n+1 = B2αi,n,l−2αi,n,k+γi,k,l+2ηi,k,nn,n+1

= B−(2αi,n,l−2αi,n,k+γi,k,l+2ηi,k,n)1,n+1 · · · B−(2αi,n,l−2αi,n,k+γi,k,l+2ηi,k,n)n−1,n+1

× ρ
2(2αi,n,l−2αi,n,k+γi,k,l+2ηi,k,n)
n+1,1 · · · ρ

2(2αi,n,l−2αi,n,k+γi,k,l+2ηi,k,n)
n+1,g ,

and comparing coefficients of the elements of B in K/H , we observe that Eqs. (25) also hold if j = n. So for all
1 6 i < j 6 n and 1 6 l < k 6 g ,

γj,l,k + 2ηj,l,i = 0 (26)

2αi,j,l − 2αi,j,k + γi,k,l + 2ηi,k,j = 0. (27)
(b) Let 1 6 i 6 n. Then

∏g
l=1 ρ

2
i,l = B1,i · · · Bi−1,iBi,i+1 · · · Bi,n in Pn(Mg) by relation (c) of Theorem 3. For 1 6 l 6 g , note that

s
(
ρ2i,l
)
= ρi,lρ

γi,l,1
n+1,1 · · · ρ

γi,l,g
n+1,gB

ηi,l,1
1,n+1 · · · B

ηi,l,n−1
n−1,n+1ρi,lρ

γi,l,1
n+1,1 · · · ρ

γi,l,g
n+1,gB

ηi,l,1
1,n+1 · · · B

ηi,l,n−1
n−1,n+1

= ρ2i,lB
−2ηi,l,i−γi,l,l
i,n+1 ρ

2γi,l,1
n+1,1 · · · ρ

2γi,l,g
n+1,gB

2ηi,l,1
1,n+1 · · · B

2ηi,l,n−1
n−1,n+1.

As we saw in Eqs. (10) and (11), ρ2i,l belongs to the centraliser of K/H in Pn+1(Mg)/H , so

s

(
g∏
l=1

ρ2i,l

)
=

(
g∏
l=1

ρ2i,l

) g∏
l=1

B
−2

g∑
l=1

ηi,l,i−
g∑
l=1

γi,l,l

i,n+1 ρ

2
g∑
l=1

γi,l,1

n+1,1 · · · ρ

2
g∑
l=1

γi,l,g

n+1,g · B
2
g∑
l=1

ηi,l,1

1,n+1 · · · B
2
g∑
l=1

ηi,l,n−1

n−1,n+1

 .
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Further,

s
(
B1,i · · · Bi−1,iBi,i+1 · · · Bi,n

)
= B1,i · · · Bi−1,iBi,i+1 · · · Bi,n ·

i−1∏
l=1

(
ρ
αl,i,1
n+1,1 · · · ρ

αl,i,g
n+1,gB

βl,i,1
1,n+1 · · · B

βl,i,n−1
n−1,n+1

)
×

n∏
l=i+1

(
ρ
αi,l,1
n+1,1 · · · ρ

αi,l,g
n+1,gB

βi,l,1
1,n+1 · · · B

βi,l,n−1
n−1,n+1

)

= B1,i · · · Bi−1,iBi,i+1 · · · Bi,n · ρ

i−1∑
l=1

αl,i,1+
n∑

l=i+1
αi,l,1

n+1,1 · · · ρ

i−1∑
l=1

αl,i,g+
n∑

l=i+1
αi,l,g

n+1,g · B

i−1∑
l=1

βl,i,1+
n∑

l=i+1
βi,l,1

1,n+1 · · · B

i−1∑
l=1

βl,i,n−1+
n∑

l=i+1
βi,l,n−1

n−1,n+1 .

Now in Pn+1(Mg)/H ,
∏g
l=1 ρ

2
i,l = B1,i · · · Bi−1,iBi,i+1 · · · Bi,nBi,n+1, hence

B
1−2

g∑
l=1

ηi,l,i−
g∑
l=1

γi,l,l

i,n+1 ρ

2
g∑
l=1

γi,l,1

n+1,1 · · · ρ

2
g∑
l=1

γi,l,g

n+1,g B
2
g∑
l=1

ηi,l,1

1,n+1 · · · B
2
g∑
l=1

ηi,l,n−1

n−1,n+1

= ρ

i−1∑
l=1

αl,i,1+
n∑

l=i+1
αi,l,1

n+1,1 · · · ρ

i−1∑
l=1

αl,i,g+
n∑

l=i+1
αi,l,g

n+1,g · B

i−1∑
l=1

βl,i,1+
n∑

l=i+1
βi,l,1

1,n+1 · · · B

i−1∑
l=1

βl,i,n−1+
n∑

l=i+1
βi,l,n−1

n−1,n+1 .

Thus for all 1 6 i 6 n,

B
1−2

g∑
l=1

ηi,l,i−
g∑
l=1

γi,l,l

i,n+1 = ρ

i−1∑
l=1

αl,i,1+
n∑

l=i+1
αi,l,1−2

g∑
l=1

γi,l,1

n+1,1 · · · ρ

i−1∑
l=1

αl,i,g+
n∑

l=i+1
αi,l,g−2

g∑
l=1

γi,l,g

n+1,g

× B

i−1∑
l=1

βl,i,1+
n∑

l=i+1
βi,l,1−2

g∑
l=1

ηi,l,1

1,n+1 · · · B

i−1∑
l=1

βl,i,n−1+
n∑

l=i+1
βi,l,n−1−2

g∑
l=1

ηi,l,n−1

n−1,n+1 . (28)

4. Proofs of Theorems 1 and 2

In this section, we use the calculations of Section 3 to prove Theorem 1, from which we shall deduce Theorem 2.

Proof of Theorem 1. As we mentioned in the Introduction, the existence of an algebraic section for p∗ is equivalent to that
of a cross-section for p.
The case n = 1 was treated in Theorem 1 of [20], using the fact that ifM = Mg , where g > 3, thenM is homeomorphic to

the connected sum of one or two copies of RP2 with a compact, orientable surface without boundary of genus at least one.
Conversely, suppose that there exist m ∈ N and n > 2 for which the homomorphism p∗: Pn+m(M) −→ Pn(M) admits a

section. We shall argue for a contradiction. By [20, Proposition 3], it suffices to consider the casem = 1. We first analyse the
general structure of the coefficients αi,j,r , βi,j,q, γk,l,r , ηk,l,q defined by Eq. (7).

(a) Taking j = n in Eq. (16) implies that γi,k,l = 0 for all 1 6 i 6 n− 1 and 1 6 k < l 6 g .
(b) By Eq. (27),

γi,k,l = −2ηi,k,j − 2(αi,j,l − αi,j,k)

for all 1 6 i < j 6 n and 1 6 l < k 6 g . Taking j = n, we obtain

γi,k,l = −2ηi,k,n − 2(αi,n,l − αi,n,k) = 0

since ηi,k,n = 0 by definition and αi,n,r = 2γi,1,1 for all 1 6 i 6 n− 1 and 1 6 r 6 g by Eq. (22).
It thus follows from (a) and (b) that

γi,k,l = 0 for all 1 6 i 6 n− 1 and 1 6 k, l 6 g , k 6= l. (29)

(c) By Eq. (22), γi,k,k = 1
2αi,n,1 for all 1 6 i 6 n− 1 and 1 6 k 6 g . So

γi,k,k = γi,1,1 for all 1 6 i 6 n− 1 and 1 6 k 6 g . (30)

(d) By Eq. (16), for all 1 6 k < l 6 g and 1 6 i < j 6 n, we have

ηi,k,j = −
1
2
γi,k,l = 0,

using Eq. (29). So by taking l = g we obtain

ηi,k,j = 0 for all 1 6 i < j 6 n and 1 6 k 6 g − 1.

(e) By Eq. (27)

ηi,k,j =
1
2

(
2
(
αi,j,l − αi,j,k

)
+ γi,k,l

)
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for all 1 6 i < j 6 n and 1 6 l < k 6 g . But γi,k,l = 0 by Eq. (29), and αi,j,l − αi,j,k = 0 by Eq. (18) if j 6 n − 1 and by
Eq. (22) if j = n. Setting l = 1, it follows that

ηi,k,j = 0 for all 1 6 i < j 6 n and 2 6 k 6 g .

By (d) and (e) we thus have

ηi,k,j = 0 for all 1 6 i < j 6 n and 1 6 k 6 g . (31)

(f) Suppose that 1 6 j < i 6 n− 1. Then

ηi,k,j = −
1
2
γi,k,l for all 1 6 k < l 6 g, by Eq. (26)

= 0 by Eq. (29).

So taking l = g , we have ηi,k,j = 0 for all 1 6 k 6 g − 1. Further, for all 1 6 l < k 6 g ,

ηi,k,j = −
1
2
γi,k,l by Eq. (15)

= 0 by Eq. (29).

Hence it follows from Eq. (31) and (f) that

ηi,k,j = 0 for all 1 6 i, j 6 n− 1, i 6= j, and 1 6 k 6 g . (32)

(g) From Eq. (23), we obtain

βi,n,s = −γi,1,1 for all 1 6 s 6 n− 1, s 6= i. (33)

(h) By Eqs. (21) and (32), we see that

γi,1,1 = βi,i+1,i+1 = · · · = βi,n−1,n−1 for all 1 6 i 6 n− 2. (34)

(i) By Eqs. (20) and (32), we obtain

γi,1,1 = β1,i,1 = · · · = βi−1,i,i−1 for all 2 6 i 6 n− 1. (35)

Analysing Eq. (28), we are now able to complete the proof of Theorem 1 as follows. Let i ∈ {1, . . . , n− 1}. Then the
coefficient of Bi,n+1 yields:

1− 2
g∑
l=1

ηi,l,i −

g∑
l=1

γi,l,l =

i−1∑
l=1

βl,i,i +

n∑
l=i+1

βi,l,i − 2
g∑
l=1

ηi,l,i. (36)

Now
i−1∑
l=1

βl,i,i =

i−1∑
l=1

γl,1,1 by Eq. (34),

and
n∑

l=i+1

βi,l,i =

n∑
l=i+1

γl,1,1 by Eq. (35).

So using Eq. (30), Eq. (36) becomes

1− gγi,1,1 = βi,n,i +
n−1∑
l=1

γl,1,1 − γi,1,1.

Summing over all i = 1, . . . , n− 1, and setting∆ =
∑n−1
l=1 γl,1,1 and L =

∑n−1
i=1 βi,n,i, we obtain

(n+ g − 2)∆ = (n− 1)− L. (37)

Now let i = n, and let k ∈ {1, . . . , n− 1}. Since ηn,l,n = 0, the coefficient of Bk,n+1 in Eq. (28) yields:

g∑
l=1

γn,l,l − 1 =
n−1∑
l=1

βl,n,k − 2
g∑
l=1

ηn,l,k = βk,n,k +

n−1∑
l=1
l6=k

βl,n,k − 2
g∑
l=1

ηn,l,k

= βk,n,k −

n−1∑
l=1
l6=k

γl,1,1 − 2
g∑
l=1

ηn,l,k by Eq. (33)



676 D.L. Gonçalves, J. Guaschi / Journal of Pure and Applied Algebra 214 (2010) 667–677

= βk,n,k − (∆− γk,1,1)+

g∑
l=1

(
−βk,n,k + γn,l,l − γk,l,l

)
by Eq. (24)

= (1− g)βk,n,k + γk,1,1 −∆+
g∑
l=1

γn,l,l −

g∑
l=1

γk,1,1 by Eq. (30)

= (1− g)βk,n,k + (1− g)γk,1,1 −∆+
g∑
l=1

γn,l,l.

Hence−1 = (1− g)βk,n,k + (1− g)γk,1,1 −∆. Summing over all k = 1, . . . , n− 1, we obtain

(n+ g − 2)∆ = (1− g)L+ (n− 1). (38)

Equating Eqs. (37) and (38), we see that (n− 1)− L = (1− g)L+ (n− 1). Since g > 3, it follows that L = 0, and therefore

∆ =
n− 1

(n− 1)+ (g − 1)

by Eq. (37). This yields a contradiction to the fact that∆ is an integer, and thus completes the proof of Theorem 1. �

Remark. Although some of the relations derived in (a)–(i) do not exist if n = 2, one may check that the above analysis from
Eq. (36) onwards is also valid in this case (with∆ = γ1,1,1 and L = β1,2,1).

Proof of Theorem 2. (a) If r > 0 then the result follows applying themethods of the proofs of Proposition 27 andTheorem6
of [20]. If r = 0 andM has non-empty boundary, let C be a boundary component ofM . ThenM ′ = M\C is homeomorphic
to a compact surface with a single point deleted (which is the case r = 1), so (PBS) splits for M ′. The inclusion of M ′
inM not only induces a homotopy equivalence betweenM andM ′, but also a homotopy equivalence between their nth
configuration spaces. Therefore their nth pure braid groups are isomorphic, and the sequence (PBS) for M splits if and
only it splits forM ′.

(b) Suppose that r = 0 and thatM is without boundary. IfM = S2,m = 1 and n > 3 then the statement follows from [10].
The geometric construction of Fadell may be easily generalised to all m ∈ N. If n ∈ {1, 2}, the result is obvious since
Pn(S2) is trivial. IfM = T2 or K2, the fact that p∗ has a section is a consequence of [9] and the fact that T2 and K2 admit
a non-vanishing vector field. If M = RP2 then p∗ admits a section if and only if n = 2 and m = 1 by [22]. Finally, if
M 6= RP2, S2,T2,K2 then p∗ admits a section if and only if n = 1 by Theorem 1 for the non-orientable case, and by [20]
for the orientable case. �
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