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Abstract 

TasiC, V.. On unit groups of Lie centre-by-metabelian algebras, Journal of Pure and Applied 
Algebra 78 (1992) 195-201. 

We prove that the group of units of a Lie centre-by-metabelian algebra need not be 

centre-by-metabelian. This settles a question raised by Sharma and Srivastava. 

In view of several known results, namely the result of Gupta and Levin who 

have proved that if an algebra is Lie nilpotent, then its group of units must be 

nilpotent, and the result of Sharma and Srivastava that Lie metabelian algebras 

have metabelian unit groups, it is natural to ask whether the unit groups of Lie 

centre-by-metabelian algebras must be centre-by-metabelian (the question was 

raised in [3]). Some results in the positive direction have been obtained by 

Smirnov [4] in the case of algebras of exponent 4 over certain fields of characteris- 

tic 2; and by Sharma and Srivastava [3] for certain algebras over fields of odd 

characteristic. (The reader is referred to these articles for the details.) However, 

we shall exhibit an example to demonstrate the following: 

The main result. The group of units of a Lie centre-by-metabelian Lie nilpotent 
algebra need not be centre-by-metabelian. 

The notation. Let R be an algebra; then for X, y E R we define Lie commutators 

as (x, y) = xy - yx; and left-normed Lie commutators by (x, y, z) = ((x, y), 2). 

Let L,,(R) be the ideal of R generated by the left-normed Lie commutators of 

weight n, (x,, . . . ,x,), where X, E R. (X, Y) denotes the additive subgroup of R 
generated by the set {(x, y) ( x E X, y E Y}; in this notation the smallest ideal 

whose quotient is Lie centre-by-metabelian is the ideal generated by ((RI R), 
(R, R), R). Further, let U = U(R) denote the group of units of R, and in the 
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standard notation let [x, y] = .I-‘y-‘xy, [x, y, z] = [[x, y], z] and y,(U) be the 

nth term of the lower central series of U. If A,B are subgroups of U we let [A, B] 
be the subgroup generated by {[a, b] 1 a E A, b E B}. As usual U’ = [U, U], 

U” = [U’, U’]. In th’ 1 1s anguage, the result of Gupta and Levin reads y,(u) c 

1 + L,l(R). We shall describe an R such that 

[U”, U] - 1 gR((R, R), (R, R), R)R . 

The example. Let K = Z2[[x, y, z]] and let A = (x, y, z), the fundamental ideal 

of K. Under the operation of Lie commutation K becomes a Lie algebra K*; 
elements of the Lie subalgebra of K* generated by {x, y, z} are called special Lie 

elements of K. By a special Lie element of weight n we mean a special Lie 

element which is homogeneous of degree n in K. Let A,,(K) be the ideal of K 
generated by the special Lie elements of weight at least II. 

The example is the algebra R = K/J, where J is the ideal of K generated by 

(i) Ax + A,(K) n A’ + AA,(K)A,(K); 

(ii) ((K, K), (K, K), K). 
Clearly (because of the generators of type (ii)) R is Lie centre-by-metabelian; it 

is Lie nilpotent because A8 is factored out; we shall prove that U(R) is not 

centre-by-metabelian. 

The proof. We want to show that [[X, j], [ - - x, z], X] # 1 in R. (Here W = 1 + w for 
_ - 

w E {x, y, z}. Note that X, y, z are in U(R).) The central place in proving that 

statement is occupied by the following lemmas: 

Lemma 1. [[X, j], [X, Z], X] - 1 E J if and only if (y, x)*(2, x, x) and 
(z, x)?(y, x, x) are in J. 

Lemma 2. Let t? be the endomorph&m of K given by xH = x, yH = y, zH = y. Then 

(Y, x>‘(Y, x, 4@JH. 

Assuming we have proved the lemmas, the argument is as follows: Suppose 

[[X, 71, [i, 21, X] - 1 E 1. Th en, by Lemma 1, (y, x)‘(z, x, x) E J and therefore 

(y, x)‘(y, x, x) is in JH. However, this contradicts Lemma 2. This establishes the 

result: [[X, j], [i, Z], X] - 1 J??! J. 
We now proceed to prove the lemmas. 

Proof of Lemma 1. Let u = [[X, 91, [X, Z]]; using [u, X] - 1 = u-‘F’(u, X), we 

get 

[u, X] - 1 = (Y’ - 1)X_‘(u, X) + qu, X) = x-‘(u, X) 

since the first summand is zero modulo A’. Therefore, [u, X] - 1 E J iff (u, X) E J. 
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_ - 
Let u = [X, 71, w = [x, z]; then u = [u, w] and using the identity 

(*I (rs, t) = Y(S, t) + (r, t)s 

we obtain that (u, X) = (C’w-‘(u, w), X) equals 

(u-‘w-’ _ l)(u, w, X) + (u, w, X) + (u-W, X)(u, w) 

The third summand is in A' so that modulo A* it takes the form b((x, y), (x, z)), 

and hence is in J. Similarly, the first summand is in A’, so that modulo A8 it 

becomes a multiple of ((x, y), ( , ), ) x z x and thus belongs to J. The second 

summand, upon further expansion of u, w, and using a-’ = 1 + a + uz + . . ., is 

congruent modulo A* to 

+ i (x’(x, YL x’(x, z), x> + i w, Y), z’(x, z>, x> 
i+j=l ;+,=I 

+ $ (YYX, Y>, x’(x, 

(xy(x, Y), (x, z), x> + ((x, Y>, -4x, Z>> x> 

A typical element in the first three lines of this sum would be 

(x1(x, y), z’(x, z), x); since x’(x, y) = (xi+‘, y) - (x’, yx) by (*) we see that these 

elements are actually in ((K, K), (K, K), K). Therefore, 

(u, 2) = (xy(x, y>, (x, 2). x> + ((x, Y>, x2(x, z), x> mod J . 

Finally, repeatedly applying (*), we obtain 

(XYCG Y>> (x7 z), x> 
= (xy((x, Y>, (x3 z>), x> + ((X> 23 XY>k Y>> x> 
=(x, z, xy)(x, Y, x> + (x3 z> XYY, X)(X> Y> 

= (x(x, z, Y), x)(x, Y) + ((X> z, X>Y, x)(-G Y) 

= (y, x)*(2, x, x> 

modulo J. Similarly, ((x, y), xz(x, z), x) = (z, x)‘(y, X, x). Thus, we have proved 

that [[a?, r], [,I?, 21, X] - 1 E J if and only if (y, x)‘(z, X, X) + (z, x)‘(y, x, x) E J. 

Each monomial has its frequency pattern (the triple (i, j, k) telling that x 

occurs i times, y occurs j times and z occurs k times in that monomial); and to 
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each triple there is an additive map of K which leaves monomials of that 

frequency pattern invariant and annihilates all other monomials. Since J is in- 

variant under these frequency maps, and the two summands of (y, x)‘(z, x, x) + 

(z, x)‘( y, x, x) have different frequency patterns, it follows that (y, x)‘(z, x, x) + 

(z, ~)~(y, x, x) E J iff (Y, .x)‘( z, x, x) and (z, x)?( y, x, x) are in J. This completes 

the proof of Lemma 1. q 

For the proof of Lemma 2 we shall need the following: 

Lemma 3. 

K((K, K), (K, K), K)K n A7 

c ((A’, A), A,, A) + ((& A’>, 4, A) 

+ ((A’, A), (A’, A), A) + A, n A7 + AA,A, + Ax. 

Furthermore, each of 

((AA,, A), A,, A) , ((4, A’>, A,, A> > ((4, A>, (A*, A>, A> 

is contained in the ideal A, f’ A7 + AA,A,. 

Proof. Clearly, modulo A, fl A7 + A’, 

K((K K), (K, q> K)K n A7 

= ((A’, A), AZ, A, A> + A(@‘, A>, A,, A> 

+ ((A’, A), A,> A> + ((A’, A>, (A’, A>, A> 

+ ((A’, A’), Al, A) + ((A’, A), AZ, A) . 

Consider ((A’, A), AZ, A, A); we have, using (*), 

((A’, A), A,, A, A) 

c (AA,, A,, A, A) + (A24 A,, 4 A> 

c (AA,, A, A) + (A,, A?> A, A) 

+ (A,A, A, A) + (A,A,> A, A). 

Another application of (*) shows that every summand is in A, fl A7. 
In a similar way we have by (*): 
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A@‘, A), A,, A) 

c A(AA,, A,, A) + 444 A,, A> 

c A(AA,, A) + 444, A> 

+ A(A, A, A) + 444, A>. 

Expanding one more time we see that each of the summands is contained in the 

ideal A, fl A’ + AA,A,. Futhermore, 

((A’, A), A,, A> C ((A23 A), (A’, A>, A> . 

Therefore modulo A, f7 A’ + AA, A, + A’, 

K((K, K), (K, K), K)K n A’ 

is contained in 

((A’, A), 4, A> + ((A2, A’), 4, A> + ((A’, A), (A’, A), A) 

The second statement of the lemma follows in much the same way. 0 

Proof of Lemma 2. Suppose (y, x)‘( y, X, x) E .I’. By Lemma 3, J” is contained in 

A, n A’ i AA,A, + Ax + ((A’, A), A,, A>” 

+ ((A’, A’), AZ, A)” + ((A’, A), (A’, A), A)” 

Hence, modulo A, f’ A7 + AA,A, + As, ( y, x)‘( y, x, x) is a linear combination of 

elements from 

((A”, A>, 4, A>” , ((A’, A’>, A2, A)” , and ((A’, A), (A’, A), A)” . 

Furthermore, we may assume that the summands in this linear combination are all 

of the frequency pattern (4,3,0). We shall show that such elements are actually in 

A, f’ A’ + AA,A,. Let us look at ((abc, d), (e, S), g) E ((A”, A), A,, A)” and as- 

sume that its frequency pattern is (4,3,0). Modulo A, f2 A’ + AA,A,, 

((abc, 4, (e, f), 8) = ((a”b”c”, 4, (e, f>, g> 

for all permutations r of the set {a, 6, c}-by Lemma 3; hence we only have four 

possibilities: 
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((yk x), (x, Y>, x> KX’YT XL (A Y>> Y) ’ 

((X’YT Y>> (X> Y), x> and ((x3, y>, (x, Y>, Y> 

Modulo A, f’ A7 + AA, A,, 

((& x)3 (x3 Y), Y) 

= ((X’(Y, X>> (x, Y>>? Y> 

= ((x, y, X2)(X> Y>T Y> 

=(x(x, y, x)(x, y), Y) + ((x, YT x)x(x, Y), Y) 

=2(x, y>(x, Y)(X, Y> x) = 0 

Similar calculations will prove that the other elements are in A, n 4’ + Ad,A,, 

too. Consider ((ab, cd), (e, f), g) E ((A’, a’), d2, A)“, having frequency pattern 

(4,3,0); modulo 4, n 4’ + A4,4,, and using Lemma 3, the nontrivial choices are 

((x’, y’), (x, y), x) and ((xl, xy), (x, y), y). Repeated application of (*) will show 

that each of these is in 4, n A’ + 4A,4,. Finally, let us look at a generator 

((ab, c), (de, f), g) of ((a’, 4), (A’, A), 4)@. Modulo A, fl4’ + 44,A,, we may 

assume that x precedes y in the expressions ab and de (by Lemma 3); hence, the 

generator is congruent to one of: 

((x2, y), (xy, y), x> > ((x2 Y>> (XYT x>, Y> T ((x2, Y>T (XY, XL xl 3 

((~y,.Y),bY,x)>x)~ ((XY~XL(Y'A4. 

(Using, of course, that the frequency pattern is (4.3, O).) Expanding these by (*) 

will show that each of them is zero modulo 4, f-14’ + A4,4,. For example, 

((XY> Y>? (XY? Xl> x) 

= ((Y? X>Y, X(Y, x), x) 

= ((YY X>(YY X(Y7 X>)> x> + (((y, x), x(y, x))y, x) 

= ((Y> $> x> + ((y, x, x>(y, x>y, x) 

-3(Y~~)2(,Y,Jhx)+(y,x)2(y,x,x)=o. 

Therefore, we are forced to conclude that modulo A’, ( y, x)‘( y, x, x) is a linear 

combination of elements from A, f~ 4’ and dA,A,. But this yields a nontrivial 

relation between the basic products of degree 7-which is impossible (see 12, 

Theorem 5.81). Lemma 2 is thus proved. 0 



Lie centre-by-metabelian algebras 201 

Acknowledgment 

I wish to express my sincere gratitude to Professor Narain Gupta, for his 

guidance, patience and support. 

References 

[l] N. Gupta and F. Levin, On the Lie ideals of a ring, J. Algebra 81 (1983) 225-231. 

[2] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory (Dover, New York, 2nd ed., 

1976). 

[3] R.K. Sharma and J.B. Srivastava, Lie centrally metabelian group rings, J. Algebra, to appear. 

[4] M.B. Smirnov. On associated groups of nilalgebras of exponent 4 over fields of characteristic 2, 

Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk 5 (1988) 8-13 (in Russian). 


