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We explore via linearized perturbation theory the Gregory–Laflamme instability of the NUT string (i.e.
the D = 4 Lorentzian NUT solution uplifted to five dimensions). Our results indicate that the Gregory–
Laflamme instability persists in the presence of a NUT charge n, the critical length of the extra-dimension
increasing with n for the same value of mass. The non-uniform branch of NUT strings is numerically
extended into the full nonlinear regime.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

It is well known that any solution of vacuum general relativity
in D-spacetime dimensions can be promoted to a solution of the
same theory in (D + p)-spacetime dimensions by adding a number
of p flat directions. These extra-dimensions are usually supposed
to be compact, the model being described by a Kaluza–Klein the-
ory. The simplest such configuration is found by trivially extend-
ing to (D + 1)-spacetime dimensions the Schwarzschild black hole
in D-dimensions. The resulting solution corresponds to a uniform
black string, the extra-dimension being periodic with an (arbitrary)
length L.

Rather unexpectedly, twenty years ago Gregory and Laflamme
(GL) made the discovery that, for a given value of L, the Schwarz-
schild black string is classically unstable against linearized gravi-
tational perturbations below a critical value of the mass [1]. Fol-
lowing this discovery, a branch of non-uniform black string (NUBS)
solutions breaking the translational invariance along the periodic
direction was found perturbatively from the critical GL string [2–4].
This non-uniform branch was subsequently numerically extended
into the full nonlinear regime in [3,5,6]. Further developments
have proven that the GL instability is a generic property of black
objects in spacetimes with compact extra-dimensions. This in-
cludes also rotating solutions [7], non-vacuum solutions [8–10]
and configurations with several extra-dimensions compactified on
a torus [11] (see [12–14] for reviews of these aspects).

However, most of the work on the stability and phases of black
strings has been performed assuming that the solutions approach
at infinity the Minkowski spacetime times a circle. Then it is worth
inquiring, what happens if we drop these assumptions? Will the GL
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instability persist? As proven in [15], this is the case in the pres-
ence of a negative cosmological constant, since the anti-de Sitter
black strings [16,17] are also unstable for small enough values of
the event horizon radius.

In some sense, at least for D = 4, the minimal deviation from
the asymptotic flatness is to include a “dual” or “magnetic” mass in
the theory. As explicitly proven by the famous Taub–NUT solution
[18–20], general relativity allows for “gravitational dyon” solutions
possessing both ordinary (or “electric”) and “magnetic” mass (the
NUT charge). In this case, the metric is not asymptotically flat in
the usual sense although it does obey the required fall-off con-
ditions. The Taub–NUT spacetime has a number of unusual prop-
erties, becoming renowned for being “a counter-example to almost
anything” [21] and is unlikely to be of interest as a model for
a macroscopic object. Nevertheless, the Euclideanized Taub–NUT
solution extremizes the gravitational action functional and might
play an important role in the context of quantum gravity [22], pro-
viding an analogue of instantons in gauge theories.

Let us mention also that the vacuum Taub–NUT solution has
been generalized in different directions, by including matter fields
or a cosmological constant [23]. There are also some indications
that the NUT charge is an important ingredient in low energy
string theory (see e.g. [24]). However, the pathological features of
the vacuum Taub–NUT solution are generic and affect gravitational
solutions with “dual” mass in general [25].

Of interest in this work is the fact that, being Ricci flat, the
Lorentzian Taub–NUT solution can be promoted to a solution of
the D = 5 vacuum Einstein equations. However, due to the pres-
ence of a NUT charge, the asymptotics are different from the case
of a Schwarzschild black string. Then it is interesting to inquire if
the NUT strings are also unstable. The main purpose of this Letter
is to answer this question. In addition, since all solutions are found
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by
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to possess a GL unstable mode, we construct numerically the cor-
responding branch of non-uniform configurations.

The Letter is structured as follows: in the next section we re-
view the basic properties of the D = 4 Lorentzian signature Taub–
NUT solution. The D = 5 uniform string whose stability is investi-
gated is the product of this four-dimensional solution and a circle.
In Section 3 we investigate its stability and show results for the GL
mode obtained by numerical calculation. The basic properties of
the non-perturbative D = 5 configurations with a dependence of
the extra-dimension are discussed in Section 4. We conclude with
Section 5 where the results are compiled.

2. The D = 4 NUT spacetime

The line element of the D = 4 Taub–NUT spacetime is usually
written as

ds2 = dr2

f (r)
+ g(r)

(
dθ2 + sin2 θ dϕ2)

− f (r)(dt + 2n cos θ dϕ)2, (1)

where

f (r) = 1 − 2(mr + n2)

r2 + n2
, g(r) = r2 + n2. (2)

This spacetime has two independent parameters, m and n, cor-
responding to the “electric” and “magnetic” masses, respectively.
The NUT charge n plays a dual role to ordinary mass, in the same
way that electric and magnetic charges are dual within Maxwell
theory [26]. The Killing symmetries of the solution are still trans-
lations and SO(3) rotations. However, the spherical symmetry in
a conventional sense is lost when the NUT parameter is nonzero,
since the rotations act on the time coordinate as well.

This solution has an outer horizon located at

rH = m +
√

m2 + n2 > 0. (3)

Here f (rH ) = 0 is only a coordinate singularity where all curva-
ture invariants are finite. A nonsingular extension across this null
surface can be found just as at the event horizon of a black hole.
However, the line-element (1) possesses also an inner horizon at
ri = m − √

m2 + n2 < 0. The solution derived by Taub in 1951 is
valid in the “inner” region with f (r) < 0, being interpreted as a
cosmological model. The metric valid in the outer region r � rH
(which is of interest in this work), has been derived independently
in 1961 by Newman, Unti and Tamburino, being usually called the
NUT spacetime.1

One can easily see that, for n �= 0, the metric (1) has a sin-
gular symmetry axis (defined by θ = 0,π ). As discussed in [21],
these singularities can be removed by appropriate identifications
and changes in the topology of the spacetime manifold, which
imply a periodic time coordinate.2 However, in this work, follow-
ing Ref. [27], we choose a different interpretation of (1), with
−∞ < t < ∞ and two physical singularities at θ = 0 and θ = π , re-
spectively. These singularities are interpreted as two semi-infinite
counter-rotating rods. Note that the pathology of closed timelike
curves is still present in this case, as proven by the fact that, for
any θ , the metric component gϕϕ becomes negative for r < rc ,

with rc a solution of the equation cos 2θ = r2
c +n2−4n2 f (rc)

r2
c +n2+4n2 f (rc)

[29,30].

1 As discussed by Misner in [20], the NUT spacetime can be joined analytically to
the Taub spacetime as a single Taub–NUT spacetime.

2 This comes essentially from the fact that the nondiagonal part of the metric (1)
can be generalized to gϕt = − f (r)(2n cos θ + n0), with n0 an arbitrary constant, see
e.g. the discussion in [27,28].
As a result, similar to the case of Gödel’s rotating universe3 [31],
the Killing vector ∂/∂ϕ is timelike in a region around the symme-
try axis (which extends to infinity for θ → 0,π ), and the spacetime
is not globally hyperbolic.

This interpretation of the solution leads, however, to an in-
teresting analogy between the angular momentum of the NUT
charged spacetimes in general relativity and that of the spin-
ning solitons of the Georgi–Glashow model. To this aim, follow-
ing [35], we compute the mass and angular momentum of the
NUT solution by employing the quasilocal formalism in conjunc-
tion with the boundary counterterm method, which avoids the
choice of a reference background. In this approach one supple-
ments the gravity action (which contains the Gibbons–Hawking
boundary term [36]) by including suitable boundary counterterms,
which are functionals of curvature invariants of the induced metric
on the boundary. The usual choice [37] for the boundary coun-
terterm is Ict = − 1

8πG

∫
∂M d3x

√−h
√

2R, where R is the Ricci
scalar of the induced metric on the boundary hij . Varying the to-
tal action with respect to the boundary metric hab , we obtain the
divergence-free boundary stress-tensor Tab = 1

8πG (Kab − hab K −
Ψ (Rab − Rhab) − hab�Ψ + Ψ;ab), where Kab is the extrinsic cur-
vature of the boundary and Ψ = √

2/R. Provided the boundary
geometry has an isometry generated by a Killing vector ξ i , a con-
served charge Qξ = ∮

Σ
d2 Si ξ j T i j can be associated with a closed

surface Σ .
Similar to the case of a Schwarzschild black hole, the bound-

ary of the NUT spacetime is taken at constant r, being sent to
infinity in the final relations. A straightforward computation gives
8πGT t

t = 2m/r2 + O (1/r3), which leads to the usual expression of
the “electric” mass (which is the charge associated with the Killing
vector ∂/∂t)

M = m

G
= 1

G

r2
H − n2

2rH
. (4)

Interestingly, a gravitational dyon possesses a nonvanishing angu-
lar momentum density,

8πGT t
ϕ = 4mn cos θ

r2
+ O

(
1/r3). (5)

However, one can easily verify that the total angular momentum J
(which is the charge associated with the Killing vector ∂/∂ϕ) van-
ishes. Noticing that Tϕt is antisymmetric with respect to a reflec-
tion in the equatorial plane, one can say that a NUT spacetime
consists of two counter-rotating regions, which agrees with the re-
sults in [27].

The same quasilocal approach applied to the Kerr black hole
leads to the usual expressions for the conserved charges [35]. How-
ever, as discussed in [38–40], one may think of the Kerr metric as
possessing also a NUT dipole in addition to the usual “electric”
mass. Thus we note that the simplest NUT “dyon” in general rel-
ativity does not rotate globally, whereas the angular momentum
is nonzero for the Kerr solution, which possesses a vanishing net
“magnetic” mass. This reveals an interesting analogy with the spin-
ning dyons and dipoles in the Georgi–Glashow model, featuring an
SU(2) gauge field and a Higgs field in the adjoint representation.
This model possesses globally regular, particle-like solutions, the
BPS monopole [41] and dyon [42] being the best known exam-
ples. The existence of a profound connection between the angular
momentum and the electric and magnetic charges in this theory
has been suggested already in the seminal paper [42]. Indeed,

3 This analogy becomes more transparent after noticing that the Gödel-type uni-
verse corresponds to the boundary metric of the Taub–NUT solution with a negative
cosmological constant [32–34].
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as discussed in [43,44] the total angular momentum of the soli-
tons endowed with a net magnetic charge vanishes (despite the
fact that their angular momentum density can be nonzero). At the
same time, the angular momentum of a spinning magnetic dipole
is nonzero [45].

Returning to the properties of NUT charged spacetimes, we no-
tice that their thermodynamical description is still poorly under-
stood (the difficulties result mainly from the absence of a global
Cauchy surface). Most of the existing results in the literature were
found by using a Euclidean approach.4 The Euclidean version of
(1) is obtained by performing the analytic continuation n → iN ,
t → iτ ; then the regularity of the metric fixes m as a func-
tion of N [22]. However, the relevance of the results found on
the Euclidean section for the Lorentzian signature solution is un-
clear [46]. Nevertheless, one can define a temperature of solutions
via the surface gravity associated with the Killing vector ∂/∂t

T H = κ

2π
= 1

4πrH
, (6)

and also an (outer) event horizon area

AH = 4π
(
r2

H + n2). (7)

Let us also mention that, although one can write a Smarr-type
formula [47], the issue of the first law of thermodynamics for NUT-
charged solutions is unclear.

We close this part by remarking that, different from the case of
a Schwarzschild black hole, a negative value of the electric mass
m is allowed for the NUT solution. Such configurations have 0 <

rH < n and do not possess a Schwarzschild limit. Also, since the
line-element (1) is invariant under the transformation n → −n, one
can take n > 0 without loss of generality.

3. The Gregory–Laflamme instability

The line element (1) can trivially be extended to D = 5 by
adding a dz2 term to that metric, the extra-coordinate z possessing
a periodicity L. It is natural to expect that the resulting uniform
solution becomes unstable at critical values of M , n. To deter-
mine these critical values, we follow the same approach as in [2].
The starting point is to consider the following ansatz for the non-
uniform generalization of the NUT string5

ds2 = e2B(r,z)
(

dr2

f (r)
+ dz2

)
+ g(r)e2C(r,z)(dθ2 + sin2 θ dϕ2)

− f (r)e2A(r,z)(dt + 2n cos θ dϕ)2, (8)

the uniform limit corresponding to A = B = C = 0. The problem is
thus characterized by two dimensionless parameters: μ1 = MG/L2

and μ2 = n/L. Here M is the mass of the D = 5 solutions, as
computed from the relation (17) below. (Note that the uniform
solutions have M = Lm/G .) The limit μ2 → 0 corresponds to the
Schwarzschild black string solution in a Kaluza–Klein theory, in
which case the GL unstable mode occurs for μ1 � 0.0649519 [1].

In the next step, we perform an expansion of the functions A,
B , C in terms of a small parameter ε and consider a Fourier series
in the z coordinate. In leading order, we assume:

4 An interesting result here is that the entropy of such solutions generically does
not obey the simple “quarter-area law”, see the discussion in [33].

5 Similar to the case of a D = 4 NUT spacetime, the singularities at θ = 0,π can
be eliminated by a coordinate transformation together with a periodic identification
of t .
X(r, z) = ε X1(r) cos(kz) + O
(
ε2), (9)

X denoting generically A, B , C and k being the critical wavenum-
ber corresponding to a static perturbation, k = 2π/L. This expan-
sion is appropriate for studying perturbations at the wavelength
which is marginally stable.

We then substitute the form (8) in the general Einstein equa-
tions and expand A, B , C according to (9). The system relevant
for addressing the stability problem is found by taking the lin-
ear terms in the infinitesimal parameter ε . Similarly to the n = 0
case [2], the Einstein equation Gz

r = 0 allows to eliminate the func-
tion B1 in favor of the other functions and to reduce the problem
to a system of two differential equations for A1 and C1. These
equations read:

A′′
1 + 1

2

(
3 f ′

f
+ 2g′

g

)
A′ + f ′

f
C ′

1 + 4n2

g2
(A1 − 2C1)

+ 8n2 f

g(g f ′ + 2 f g′)

(
A′

1 + 2C ′
1 + f ′

2 f
A1 + g′

g
C1

)

− k2 A1

f
= 0,

C ′′
1 +

(
f ′

f
+ 2g′

g

)
C ′

1 + g′

2g
A′

1 + 4n2

g2
(C1 − A1)

− 2(2n2 f + g)

g(g f ′ + 2 f g′)

(
4C ′

1 + 2A′
1 − f ′

f
C1 + f ′

f
A1

)

− k2 C1

f
= 0, (10)

where a prime denotes d/dr. This eigenvalue problem for the
wavenumber k = 2π/L was solved numerically with suitable
boundary conditions. First, the perturbation has to vanish for
r → ∞, i.e. limr→∞ A1, C1 = 0. The solutions of the linearized
equations should also be regular at the horizon. This leads to a
set of specific relations to be satisfied by A1(rH ), C1(rH ) and their
derivatives.

To integrate Eqs. (10), we have used the differential equation
solver COLSYS which involves a Newton–Raphson method [48]. In
practice, we have set rH = 1 without loss of generality and com-
puted the corresponding k for a given value of n.

Our numerical results show that the NUT-charged configura-
tions inherit the GL instability of the purely “electric” Schwarz-
schild black strings. Interestingly, for a given L, the critical value
of the mass decreases as n increases, and becomes zero for n/L �
0.13021. The strings with M < 0 become also unstable for larger
values of μ2. The numerical results are displayed in Fig. 1, where
we exhibit the dimensionless quantity μ1 = MG/L2 vs. the dimen-
sionless ratio between the NUT parameter and the length of the
extra-dimension μ2 = n/L. For completeness, there we show also
the value of k as a function of n, for a fixed value rH = 1 of the
horizon radius (the L(n) curve is shown in the inset).

4. The non-uniform solutions

4.1. General relations

As usual, the unstable GL mode signals the existence of a
branch of solutions with a nontrivial dependence on the extra-
coordinate z. These solutions are constructed numerically by using
a similar approach to that employed in [5,7] to construct NUBS
with usual Kaluza–Klein asymptotics.
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Fig. 1. Left: The critical mass M is shown as a function of the NUT parameter n (these quantities are given in units set by the length L of the extra-dimension). Right: The
wavelength k = 2π/L is shown as a function of the NUT parameter n for solutions with a fixed horizon radius rH = 1 (the corresponding L(n) curve is shown in the inset).
The Einstein equations Gt
t = 0, Gr

r + Gz
z = 0 and Gθ

θ = 0 yield for
the functions A, B , C the set of equations6

A′′ + Ä

f
+ A′ 2 + Ȧ2

f
+ 2r A′

g
+ 3 f ′ A′

2 f
+ f ′C ′

f

+ 2

(
A′C ′ + ȦĊ

f

)
+ f ′r

f g
+ f ′′

2 f
+ 2e2A+2B−4Cn2

g2
= 0, (11)

B ′′ + B̈

f
− 2

(
A′C ′ + ȦĊ

f

)
− C ′ 2 − Ċ2

f
− 2r A′

g
+ f ′B ′

2 f

− (2r f + g f ′)
f g

C ′ + 1

f g

(
e2B−2C − r f ′) − r2

g2

+ e2A+2B−4Cn2

g2
= 0, (12)

C ′′ + C̈

f
+ 2

(
C ′ 2 + Ċ2

f

)
+ A′C ′ + ȦĊ

f
+ r A′

g
+ f ′C ′

f
+ 4rC ′

g

+ 1

f g

(
r f ′ − e2B−2C ) + 1

g
− 2e2A+2B−4Cn2

g2
= 0, (13)

where a prime denotes ∂/∂r, and a dot ∂/∂z. (Note that the D = 5
equations in Ref. [5] are recovered for n = 0.)

To solve these equations, we use the same approach as for

n = 0, and introduce a new radial coordinate r̃, where r =
√

r2
H + r̃2

(i.e. the horizon resides at r̃ = 0). Utilizing the reflection symmetry
of the solutions w.r.t. z = L/2, the solutions are constructed subject
to the boundary conditions

∂z A|z=0,L/2 = ∂z B|z=0,L/2 = ∂zC |z=0,L/2 = 0,

A|r̃=0 − B|r̃=0 = d0,

∂r̃ A|r̃=0 = ∂r̃ C |r̃=0 = 0 (14)

(where the constant d0 is related to the Hawking temperature of
the solutions (18)), together with

A|r̃=∞ = B|r̃=∞ = C |r̃=∞ = 0, (15)

6 Note that the Einstein equations Gr
z = 0, Gr

r − Gz
z = 0 are not automatically sat-

isfied, yielding two constraints. However, following [3], one can show that these
constraints are satisfied as a consequence of the Bianchi identities. Also, one can
show that all other Einstein equations are either linear combinations of those used
to derive (11)–(13) or are identically zero.
such that the uniform background NUT × S1 is approached asymp-
totically. Regularity further requires that the condition ∂r̃ B|r̃=0 = 0
holds for the solutions.

The asymptotic form of the relevant metric components is

gtt � −1 + ct

r
, gzz � 1 + cz

r
, (16)

and contains two parameters ct and cz encoding the global charges
of the solutions (with ct = 2m, cz = 0 for uniform configurations).

The global charges of the NUT strings are the mass M and the
tension T . In their computation, it is convenient to use again the
quasilocal formalism augmented by the counterterm approach.7

M and T are charges associated with the asymptotic Killing vec-
tors ∂/∂t and ∂/∂z, respectively, their expressions being analogous
to those valid in the n = 0 limit, with8

M = L

4G
(2ct − cz), T = 1

4πG
(ct − 2cz). (17)

Other quantities of interest are the Hawking temperature and
the horizon area of the non-uniform solutions

T H = 1

4πrH
e A0−B0 , AH = 4π L

(
r2

H + n2) L∫
0

eB0+2C0 dz, (18)

where A0(z), B0(z), C0(z) are the values of the metric functions
on the event horizon r = rH .

To obtain a measure of the deformation of the solutions, we
define the non-uniformity parameter [2]

λ = 1

2

(
Rmax

Rmin
− 1

)
, (19)

where Rmax and Rmin represent the maximum and minimum
radii of the two-sphere on the horizon.

We remark also that Eqs. (11)–(13) are left invariant by the
transformation r → r/p, z → z/p, rH → rH/p, n → n/p, with p
a positive integer. Therefore, a new family of vacuum solutions
with the same length of the extra-dimension can be generated in
this way (see e.g. [49] for a detailed discussion of this procedure

7 For D = 5 solutions, the appropriate expression of the counterterm is Ict =
− 1

8πG

∫
∂M d4x

√−h
√

2R.
8 Note that the non-uniform solutions possess also a nonzero angular momentum

density. However, similar to the case of the D = 4 NUT solution, the total angular
momentum vanishes.
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Fig. 2. The mass M , the tension T , the temperature T H and the area AH are shown in units of n as functions of the non-uniformity 1/(1 + λ), for a family of non-uniform
strings with μ2 = n/L = 0.1302.

Fig. 3. The mass M , the tension T , the area AH and the non-uniformity parameter λ of a family of solutions with LT H = 0.553 are shown in units of the corresponding n = 0
NUBS solution (denoted by M0, T0, AH(0) and λ0), as functions of the dimensionless ratio n/L.
for the n = 0 case). Their relevant quantities, expressed in terms
of the initial solution, read M(p) = M/p, T (p) = T /p, T (p)

H = pT H ,
A(p) = AH/p2.

4.2. The solutions

The nonlinear elliptic partial differential equations (11)–(13)
are solved numerically, subject to the boundary conditions (14),
(15). The numerical calculations are based on the Newton–Raphson
method and are performed with help of the professional package
FIDISOL/CADSOL [50], which provides also an error estimate for
each unknown function. (See Ref. [5] for a detailed description of
the numerical scheme.)

The input parameters of the problem are the horizon coordi-
nate rH , the temperature T H , the NUT charge n and the asymptotic
length L of the compact z-direction.

For a given n, a branch of non-uniform solutions is obtained
by starting at the critical point of the uniform configurations and
varying the boundary parameter d0, which enters Eq. (14), relating
the values of the functions A and B at the horizon. Our numer-
ical results show that the properties of the solutions are rather
similar to the case of the non-uniform generalizations of the n = 0
Schwarzschild black string. In particular, the functions A, B , C have
a similar shape to that displayed in Ref. [5], exhibiting extrema at
z = 0 at the horizon. As λ increases, the extrema increase in height
and become increasingly sharp.

Some numerical results are displayed in Fig. 2, where we ex-
hibit the mass M , the tension T , the temperature T H and the hori-
zon area AH versus the parameter λ for a family of non-uniform
solutions with μ2 = n/L = 0.1302. In that plot, M , T , T H and AH

are given in units of n, with λ = 0 corresponding to the uniform
solution. One can see that the mass and horizon area assume a
maximal value for a value of λ = λex , where the temperature as-
sumes a minimal value.

Non-uniform strings can also be obtained by starting from n = 0
NUBSs with a given temperature (as specified by the parameter d0)
and length of the extra-dimension, and then slowly increasing the
value of the NUT charge. The numerical results suggest that any
NUBS possess generalizations with n �= 0. No upper bound on n
appears to exist, although the numerical integration becomes more
difficult with increasing n.

In Fig. 3 we exhibit the mass M , tension T , horizon area AH

and non-uniformity parameter λ for non-uniform string solutions
with LT H = 0.553, in units of the corresponding n = 0 solution,
versus the parameter μ2 = n/L. As one can see, both the mass
and tension decrease with n, becoming negative for large enough
values of the NUT charge. At the same time, the horizon area and
the non-uniformity parameter increase.
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5. Further remarks

The main purpose of this work was to investigate the stability
of the Lorentzian NUT solution uplifted to D = 5 dimensions. Even
if one’s primary interest is in solutions with usual Kaluza–Klein
asymptotics, we hope that, by widening the context to solutions
with NUT charge, one may achieve a deeper appreciation of the
theory. In particular, one may hope to determine more general fea-
tures of the string solutions, independent of whether or not they
contain a “magnetic” mass. Expanding around the uniform solu-
tion and solving the eigenvalue problem numerically, our results
indicate that the GL instability persists for n �= 0 configurations.
Moreover, for a given length of the extra-dimension, a D = 5 NUT-
charged solution becomes unstable for a smaller value of the mass
as compared to the Schwarzschild black string.

We also constructed numerically the corresponding non-uni-
form strings emerging from the branch of marginally stable uni-
form solutions. The properties of these solutions are rather sim-
ilar to the well-known n = 0 case. An interesting point which
remains to be clarified is the phase diagram of the D = 5 solu-
tions approaching at infinity a NUT × S1 background. For n = 0,
apart from the black string solutions, the Kaluza–Klein theory pos-
sesses also a branch of black hole solutions with an S3 topology
of the event horizon. There is now convincing evidence that the
non-uniform string branch and the black hole branch merge at a
topology changing solution. Based on the numerical results in Sec-
tion 4, we expect that a similar picture should be valid also for
the configurations in this work. The conjectured horizon topol-
ogy changing transition should be approached again for λ → ∞.
However, the construction of the D = 5 nutty solutions with an S3

horizon topology still represents a numerical challenge.
Finally, let us remark that the NUT solution (1) possesses higher

dimensional D = 2K + 2 generalizations (see e.g. [51] and the ref-
erences there). Their main properties (in particular the presence
of closed timelike curves) follow closely the four-dimensional case.
These generalized NUT solutions can also be uplifted to D = 2K +3
dimensions and are likely to possess as well a GL unstable mode.
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