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Abstract

Let G = (V,E) be a simple graph. The NON-PLANAR DELETION problem consists in finding a
smallest subset £’ C E such that H=(V,E\E’) is a planar graph. The SPLITTING NUMBER problem
consists in finding the smallest integer & > 0, such that a planar graph H can be defined from
G by k vertex splitting operations. We establish the Max SNP-hardness of SPLITTING NUMBER
and NON-PLANAR DELETION problems for cubic graphs.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Let G = (V,E) be a simple graph. The NON-PLANAR DELETION problem consists in
finding a smallest subset E/ C E such that H = (V,E \ E’) is a planar graph. The
MAXIMUM PLANAR SUBGRAPH problem consists in finding a largest subset £ C E such that
H=(V,E') is a planar graph. Given u € V(G), say that a graph H is obtained from G
by splitting vertex u if V(H)= (V(G)\ {u})U{u1,u2} and E(H) = (E(G) \ {(u,x) :
x€N@)}) U {(u1,x) : x€N1} U{(u2,x) : x€N,}, where N(u), the neighborhood of
u in G, is partitioned into non-empty sets N; and N,. The SPLITTING NUMBER problem
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consists in finding the smallest integer £ > 0, such that a planar graph H can be defined
from G by k splitting operations. In this work we establish the Max SNP-hardness of
SPLITTING NUMBER and NON-PLANAR DELETION problems for cubic graphs.

A natural question in the study of the complexity of a graph-theoretical decision prob-
lem is to determine the best possible bounds on the vertex degrees for which the prob-
lem remains NP-complete. Yannakakis [7] considered the complexity of edge-deletion
decision problems and obtained corresponding best possible vertex-degree bounds for
the NP-completeness of the edge-deletion bipartite problem and of the edge-deletion
comparability graph problem.

The NON-PLANAR DELETION decision problem was shown to be NP-complete by Yan-
nakakis in the fundamental paper [7]. More recently, Calinescu et al. [3] showed
that NON-PLANAR DELETION is Max SNP-hard, which implies [1] that there is a con-
stant ¢ > 0 such that the existence of a polynomial approximation algorithm with per-
formance ratio at least 1 + ¢ implies that P = NP. Both the NP-completeness and
Max SNP-hardness proofs left the corresponding best possible vertex-degree bounds
unanswered.

We have established [4] the complexity of the SPLITTING NUMBER decision problem
by constructing a reduction from 3-saT. We proved that the SPLITTING NUMBER decision
problem is NP-complete when restricted to cubic graphs.

In the present paper, we prove that, for graphs with maximum degree 3, we have
Opts(G) = Optypp(G), where Optg(G) and Optypp(G) denote, respectively, the
optimum values for SPLITTING NUMBER and NON-PLANAR DELETION of G. Consequently,
the NP-completeness of the sPLITTING NUMBER decision problem when restricted to cubic
graphs implies the NP-completeness of the NON-PLANAR DELETION decision problem when
restricted to cubic graphs.

In order to establish that sPLITTING NUMBER and consequently that NON-PLANAR DELETION
are Max SNP-hard even for cubic graphs, we use the concept of L-reductions [5],
a special kind of reduction that preserves approximability. To achieve the optimum
vertex-degree bound with respect to Max SNP-hardness, we have strengthened our
initial NP-completeness proof [4] by considering this time the Max SNP-complete
problem MAX3SATj [5], a restricted version of Max3-saT, where each variable appears
at most three times in the set of clauses.

The published results [7,3] on the complexity of NON-PLANAR DELETION did not use
graphs with maximum vertex degree 3. Thus, our complexity results for non-planarity
parameters SPLITTING NUMBER and NON-PLANAR DELETION are optimum with respect to the
allowed maximum vertex degree, because a graph with maximum degree 2 is a col-
lection of paths and circuits that define a planar graph.

2. The Max SNP-hardness of splitting number

In this section we prove that SPLITTING NUMBER is Max SNP-hard, by L-reducing the
Max SNP-complete problem MAX3SAT; [5] to SPLITTING NUMBER. These two optimiza-
tion problems are defined as follows:
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MAX3SAT;

Instance: Set U of variables, collection C of clauses over U such that each clause
c€C has |c| =3 literals, and each variable appears at most three times in the set of
clauses.

Goal: Find a truth assignment for U which maximizes the number of clauses in C
having at least one true literal.

SPLITTING NUMBER

Instance: Graph G.

Goal: Find the smallest integer £ > 0, such that a planar graph H can be defined
from G by k splitting operations.

We construct in polynomial time a special instance G for SPLITTING NUMBER from a
general instance / for MAX3SAT;. We follow the steps of the construction published
in [4] where we have established the NP-completeness of SPLITTING NUMBER decision
problem by reduction of 3-sATISFIABILITY to it. We need to adapt this published con-
struction in order to obtain the claimed L-reduction from MAX3SATj to SPLITTING
NUMBER optimization problem. In particular, the two main properties we are going to
establish are:

e We establish bounds for the size of the parameters and the optimum value for
MAX3SATj by proving that: if 7=(U, C) is an instance of MAX3SAT; with |U|=n
variables and |C| =m clauses, then [n/3] < Optysxssar, () < m < n.

e The special instance G for SPLITTING NUMBER constructed from a general instance / for
MAX3SATj satisfies: Opto(G) =4n+ 50ptyaxssar; (1) + 6(m — Optyaxssar;(1))-

2.1. The special instance G

The special instance G for SPLITTING NUMBER constructed from a general instance / for
MAX3SATj; contains two types of subgraphs: the truth setting (T;) and the satisfaction
testing (S;) subgraphs defined, respectively, in Figs. 1(c) and (d). For each variable
u; € U there is a T;. Note that each 7; is a modified K33 (Figs. 1(a) and (b)), in the
sense that the graph 7; can be obtained from the graph K3 by replacing, as shown
in Figs. 1(b) and (c), each one of the six vertices of K33 by a supervertex, each one
of six edges by a superedge, one edge by the graph left side, one edge by the graph
right side and by the attachment to the bottom horizontal line of a square as defined
in Figs. 1(b) and (c). For each clause ¢; € C there is an S;.

Each one of these two types of subgraphs has three types of vertices: white vertices
that are supervertices, stripped vertices that are linking supervertices, and black vertices
that are standard vertices. There are superedges linking supervertices (see Fig. 2). The
construction of G is performed such that the subgraph of G induced by the vertices of
the supervertices is a planar graph. We note in Fig. 2 that each supervertex has at the
infinite face 3(4n+ 6m+ 1) standard vertices. This number of 3(4n + 6m + 1) standard
vertices at the infinite face defines 3 sequences of 4n + 6m + 1 consecutive standard
vertices. Each sequence of 4n + 6m + 1 standard vertices can be linked to a sequence
of 4n+ 6m + 1 standard vertices in another supervertex in order to define a superedge.
A supervertex adjacent to a standard vertex v has only one standard vertex adjacent to
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Fig. 2. Two supervertices and one superedge.

v, which is the first standard vertex in the clockwise direction of one of the sequences
of 4n+ 6m + 1 standard vertices. As we will see in the sequel, these supervertices and
superedges are big enough to ensure that the number of splittings needed to obtain
a planar graph from G by splitting a supervertex is greater than 4n 4 6m. This key
property is used in our proof to forbid splittings in white or stripped vertices.
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Fig. 3. Graph G obtained from the MAX3SATj instance / = (U,C) = ({ur,up,u3}, {(uy V ity V i3),
(i) Vug Viz), (i Viiy V us)}).

The only part in the construction of G that depends on which literals occur in which
clauses is the following collection of edges produced sequentially when ;j grows from 1
until m. Let x,4,x; and x4, be the three literals in clause c;. Note that a literal x,=u,, if x,
is a positive literal; and x,=i,, if x, is a negative literal with a € {1,2,...,n}. We asso-
ciate literal x, to a vertex in the set {u,[/]: 1 </ <4} of T,, if x, is a positive literal;
or to a vertex in the set {i#,[/]: 1 <1 <4} of T,, if x, is a negative literal. We denote
this vertex associated to x, by x,[/,]. Thus, have the following sets of edges emanat-
ing of the subgraphs T, Ty, Ty, and S;: {(b,[1].x,[La]). (b[2) x6[15]). (b;[3). xalla])}
where, for s € {a,b,d}, I is the minimum number in the set {1,2,3,4} such that there
is no vertex by [h], he{1,2,3} linked to x,[/,] with ;" <.

There is a set of edges, called the ring connecting the subgraphs 7; and S;: [U:’;l
{(eil2) e [ID}] U LUSS {(/516) £5a 11D} U {(eal2], /11110, (fml6] ea[1])} (see
Fig. 3).

We observe that Optg(G) < 4n+ 6m. This upperbound can be justified as follows.
We can define a set Z with 4 splittings in a suitable set of black vertices in each one
of the n subgraphs 7;’s (either in left side or in the right side) totalizing 4n splittings,
such that, we remove the crossings among the edges of each 7;; and with 6 splittings,
one in each black vertex of each one of the m subgraphs §;’s, this subset with 6m
splittings remove the crossings in each S; allowing to define a plane drawing for each
subgraph K3 3\ {e} of S; that can be embedded in a suitable planar region of a resulting
subgraph from the 7;’s.
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Let G be a simple graph and e =(u,v) € E(G). Say that a graph Q is obtained from
G by contracting e if V(Q)=(V(G)\ {u,v})U{w} and E(Q)=(E(G)\ {(u,x),(v,») :
XxENu),ye NP U {(w,x) : x€(N(u) UN@®)) \ {u,v})}, where w & V(G); and
N(u) and N(v) are, respectively, the neighborhood of u and v. Say that a graph G is
contractible to a graph Q if there is a sequence of graphs G=Gy, G1, G, G3,..., G =0,
where G;;; is obtained from G; by contracting e € G;. If a graph G is connected, then G
is contractible to a graph with one vertex Q, since the resulting graph of a contraction
has one less vertex and is still connected. Consider a connected subgraph of a graph
G induced by a subset S C V(G). Say that a graph Q is obtained from a graph G
by contracting the set S of vertices to a single vertex if Q is obtained from G by
a sequence of contractions defining a graph with one vertex from the subgraph of G
induced by S.

Let G be the graph defined from the instance / =(U, C) of MAX3SAT;. We say that
two supervertices s and s, are adjacent in G if there are standard vertices x; € V(s1)
and x; € V'(s3), such that (x;,x;) € E(G). Let Z be a set of splittings defining a graph
H from G. Let Q be the graph obtained from the subgraph of G induced by the
set of vertices of the supervertices of G, by contracting each set of vertices of each
supervertex to a single vertex. We say that no supervertex is split in Z if H has a
subgraph contractible to Q.

Lemma 1. Let Z be a set of splittings defining a graph H from G. If |Z| < 4n+ 6m,
then no supervertex is split in Z.

Proof. Let Q be the graph obtained from the subgraph of G induced by the set of ver-
tices of the supervertices of G, by contracting each set of vertices of each supervertex
to a single vertex. Let s; and s, be two adjacent supervertices in G and let 5, 4 s, be
the graph induced by the vertices of s, and s,. Note that there are 4n + 6m + 1 vertex
disjoint cycles each in 3(4n+ 6m+ 1) vertices in each supervertex s; and s,. Note that
there are 4n + 6m + 1 vertex disjoint paths in 6(4n + 6m + 1) vertices with vertices in
each one of the 4n + 6m + 1 cycles as shown in Fig. 2.

Since |Z| < 4n+6m, there are at least one cycle contained in sy, one cycle contained
in s, and one path contained in s;+s, with no splitting in Z. For every pair of adjacent
supervertices in G, let H’ be the subgraph of H induced by the set of vertices of these
cycles and paths. The resulting graph from H’ by contracting each one of these cycles
to a single vertex is isomorphic to Q. Hence, no supervertex is split in Z. [J

Let Z be a set of splittings defining a graph H from G, with |Z| < 4n + 6m, and
let G’ be a subgraph of G containing a set S of supervertices. Start with C = () and
P = (). For each supervertex s of S, add to C the set of 4n + 6m + 1 vertex disjoint
cycles of s each cycle in 3(4n + 6m + 1) vertices. For each pair of adjacent super-
vertices in G’ add to P the set of 4n + 6m + 1 vertex disjoint paths each path in
6(4n + 6m + 1) vertices. The resulting graph from the supervertices of G' in H is the
subgraph of H induced by the vertices of the cycles of C and of the paths of P with no
vertices in Z.
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Fig. 4. A set Z' of splittings with |Z/| = 5.

Theorem 2 (Fundamental Property of the construction of G from ). Let I=(U,C) be
an instance of MAX3SATj, with |U|=n and |C|=m. A truth assignment for U with
¢ satisfied clauses defines a feasible set of splittings Z' for G of size |Z'| =4n+ 5¢ +
6(m —¢). Conversely, if Z' is a feasible set of splittings for G of size |Z'| < 4n+ 6m,
then there exists a subset Z'" C Z' such that Z" is a feasible set of splittings for G
whose size satisfies |Z'| = |Z"| = 4n + 5¢ + 6(m — ¢). Moreover, Z' defines a truth
assignment for U with ¢ satisfied clauses, where each graph T; requires 4 splittings
in Z", each graph S; corresponding to a satisfied clause requires 5 splittings in Z",
and each graph S; corresponding to a non-satisfied clause requires 6 splittings in Z".

Proof. Suppose a truth assignment for U with ¢ satisfied clauses is given. We shall
define a suitable set Z’ of splittings proving the first part of the Fundamental Property.
First of all, for each i€ {1,2,3,...,n} we define a planar graph from 7; by adding to
7' either 4 black vertices on the right side of 7} if u; is true, or 4 black vertices on the
left side of T; if u; is false. We remark that this set of 4n splittings defines a planar
resulting graph from each 7;. For each clause ¢; = (x, V xp V x4), Fig. 4 shows that if
c; is a satisfied clause, then it is enough to add 5 splittings to Z’ in order to define a
planar graph from S;, in this case each §; can borrow one splitting in 7, (Fig. 4(a)),
T, (Fig. 4(b)) or T, (Fig. 4(c)), according to if the corresponding literal with value
true in ¢; is x4, Xp or x4. If ¢; is a non-satisfied clause, then it is enough to add to
7' the 6 splittings of one of the sets of splittings in Figs. 4(a), (b) or (¢) in order
to define a planar graph from S;. This completes the definition of Z’. Since, all the
resulting graphs from the 7;’s and §;’s are planar and disjoint in vertices we have that
Z' defines a planar resulting graph from G. Hence, the set Z’ of splittings is a feasible
solution of size |Z'| = 4n + 5¢ + 6(m — ¢), as required.

Now we prove the second part of the Fundamental Property. Let F be the planar
graph that Z’ defines from G. Since |Z’| < 4n+6m, Lemma 1 says that no supervertex
is split. Since F is planar and no supervertex is split, for each i€ {1,2,3,...,n} the
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resulting graph of the left side of 7; in F' has white vertices in different connected
components, or the resulting graph of the right side of 7; has white vertices in different
connected components in F.

Let L; be the subset of Z’ on the side of 7; having white vertices in different
connected components in F. Consider the truth assignment that sets u; =T if and only
if the subset L; is on the right side of 7;. Let ¢ be the number of clauses of C satisfied
by this truth assignment. Since the first part of the Fundamental Property ensures that
there is a feasible solution Z” of size 4n+ 5¢ + 6(m — ¢) =|Z"|, it is enough to prove
that |Z"| < |Z'|.

By definition 4n < ||J}_; L;|. Let G’ be the graph that | J;_, L; defines from G. By
definition, the set (J_, L partitions the set of subgraphs §;’s into two sets, the set of
the §;’s that correspond to satisfied clauses and the set of the S;’s that correspond to
non-satisfied clauses.

Let H be the subgraph of G’ induced by the vertices of S; and the vertices of the
resulting graphs from 7,, T, and Ty in G, where ¢; = (x, Vxp V x4). We consider two
cases:

(1) We prove that if S; corresponds to a non-satisfied clause ¢;, then §; requires 6
additional splittings in Z’. Note that, there is a graph K33 — e in supervertices of
S; with a supervertex adjacent to a stripped vertex of 7. For simplicity, we say
that there is a graph K3 3 —e of S; adjacent to 7,. In addition, this stripped vertex
of T, is adjacent to 2 standard black vertices of 7,. Note that, if in the resulting
graph of A in F, the resulting graph from the supervertices of this K33 —e is in
the same connected component as the resulting graph from the white vertices of
S; incident to the ring and the white vertices of T, then there is a subdivision of
K33 in the planar graph F, a contradiction. The same argument is valid for the 2
K33 —e’s of S; adjacent to T, or of Tj.

Hence, each K33 — e requires at least 2 splittings in S; or at least 2 splittings
in T,, T, or Ty. Since there are (m — ¢) non-satisfied clauses, there are 6(m — ¢)
additional splittings in Z’.

(2) We prove that if S; corresponds to a satisfied clause c;, then S; requires 5 ad-
ditional splittings in Z’ besides the 4n + 6(m — ¢) splittings requlred by the set
U~ L: and by the subgraphs S; corresponding to non-satisfied clauses. In Fig. 5
we define three non-planar graphs » 1=1,2,3. In Fig. 5, we depict in H|, H,
and H; a subdivision for K33, as a subgraph. For the convenience of the reader,
we label the two color classes with 1 and 2, respectively. Each graph H;, H, and
Hj corresponds to the resulting subgraph from a subgraph of H defined by a set
of splittings with 2 splittings in each 7,, T, and 7,, and 2 splittings in S;. We
use H,, H, and H; in order to show that a subset of the set of splittings which
defines H;, H, or H; from H still defines a non-planar graph from H.

We remark that, if the resulting graphs in F* from the 3 K33 — e’s in S; adjacent
to T,, Tp and T, are, respectively, in the same component as 7,, 7, and 7,, in the
resulting graph of H in F, then there are at least 6 splittings of Z’ in the vertices of

S;, since each one of the 3 K33 — e’s requires 2 splittings at the vertices of S; in Z’.
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Fig. 5. Subdivision of K33 as subgraph of H;, i=1,2,3.

We observe also that at least 2 splittings are required in Z’ at the vertices of S,
because no supervertex is split and because of the depicted subdivisions of K33 in
Figs. 5(a)—(c).

Note that in H there are no splittings in the vertices of S;. Hence for H, there
are four possibilities according to the number of connected components containing the
white vertices of S;,7,,T, or T; in H being 1, 2, 3 or 4. We consider these four
possibilities next.

()

(b)

The first case is when the vertices of §; are in a different connected component
of H with respect to the resulting graphs from the white vertices of 7,, 7, and
T;. In this case, for each graph T,,7, and T, there is 1 additional splitting in
U, Li. These 3 splittings, plus the 2 additional splittings in Z’ at the vertices
of §;, yield 3 +2 =5 additional splittings in Z’.

The second case is when the vertices of S; are in a different connected component
of H with respect to the vertices of two of the resulting graphs from the white
vertices of 7,, T, and T,, say 7, and Tp. In this case, there are 2 additional
splittings in U:.':l L;, one in T, and one in T),. We consider two different subcases.
If the resulting graph in F* of the white vertices of the K33 — e in S; adjacent
to T, is not in the same component as the resulting graph of the white vertices
of Ty, then there is 1 additional splitting in Z’ in the vertices of 7, and case
(a) above shows that 2 additional splittings are required in Z’ at the vertices
of §;, yielding 2 4+ 1 + 2 =5 additional splittings in Z’. If the resulting graph
in F of the white vertices of the K33 — e in S; adjacent to 7, is in the same
component as the resulting graph of the white vertices of 7}, then the 2 additional
splittings in S; defined in Fig. 5(c) are required in Z’, and the K33 depicted in
this figure shows that 1 additional splitting is required in Z’ in the vertices of S;,
yielding 2 + 2 + 1 =5 additional splittings in Z’. Figs. 5(a) and (b) can be used,
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analogously, in the analysis when the vertices of S; are in a different connected
component of A with respect to the vertices of a different pair of 7, and 7} in
the set {7, Ty, T}

(c) The third case is when the vertices of S; are in a different connected component
of H with respect to the vertices of exactly one of the resulting graphs from the
white vertices of 7,, T, and T, in H, say T,. In this case, there is 1 additional
splitting in J}_; L; in the vertices of 7. If the resulting graph in F of the white
vertices of one of the K33 — e’s of S; adjacent to 7} or 7y, say in T, is not
in the same component as the resulting graph of the white vertices of 7}, then
we have 1 additional splitting in 7} and cases (a) and (b) above show that S;
requires at least 3 additional splittings in Z’, yielding 1+ 1 4+ 3 =5 additional
splittings in Z’. If the resulting graph in F' of the white vertices of the 2 K33 —e’s
of §; adjacent to T and Ty are, respectively, in the same connected component
as the white vertices of 7, and 7, in the resulting graph of H in F, then 4
additional splittings are required at the vertices of S; in Z’: 2 required by the
K33 —e adjacent to 7}, and 2 required by the K3 3 —e adjacent to 7,;, which yields
1 + 4 =5 additional splittings in Z’.

(d) The fourth case is when the vertices of S; are in the same connected component
as the resulting graphs from the white vertices of 7,, T, and 7; in H. If the
resulting graph in F of the white vertices of one of the K33 —e’s of S; adjacent
to T,, Tp or Ty, say T,, is not in the same connected component as the white
vertices of 7, in the resulting graph of A in F, then there is 1 additional splitting
in 7, and cases (a)—(c) above show that S; requires at least 4 additional splittings
in Z'. If the resulting graphs in F' of the white vertices of the K33 —e’s of S;
adjacent to T,,T, and T, are respectively, in the same connected component as
the white vertices of T,,7,, and T, in the resulting graph of H in F, then 6
additional splittings are required in S; in Z’.

Hence, for each one of the ¢ satisfied clauses at least 5 additional splittings are
required besides the 4n + 6(m — ¢) splittings required in |J;_, L; and in the set of the
non-satisfied clauses, this means that 4n + 5¢ +6(m —¢)=|2"| < |Z'|. O

Figs. 6(a), (b) and 7 give an example where a set Z’ of splittings defines a planar
graph F' from G which is the graph obtained in turn from the instance of MAX3SATj:
[Z(U, C):({ul,uz,u3}, {(u1 \/122 \/17!3),(121 \/uz\/123), (L_l] \/122\/143)}). Flg 6(21) shows
the graph G. Fig. 6(b) shows the graph G’ obtained from G by a set of 4 x 3 splittings
defined by the truth assignment u; =u; =u3 =7. Fig. 7 shows a plane drawing for the
graph F obtained from G by a set Z’ of splittings. Note that in this example we have
a satisfying truth assignment, which defines the size |Z'| =4 x 3+ 5 x 3 +6(3 — 3).

2.2. The L-reduction

Let 4 and B be two optimization problems. We say that 4 L-reduces to B if there
are two polynomial-time algorithms f* and g, and positive constants o and f, such that
for each instance / of A,
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(@) (b)

Fig. 6. Graph G (a) obtained from the MAX3SAT; instance [ = (U,C) = ({ur,uz,u3},
{(uy Via Vi), () Vuy Vis), (i) Viia Vuz)}l). Set of 4 x 3 splitting. (b) defined with satisfying truth
assignment u; =up =u3 =1T1.

(1) algorithm f produces an instance I’ = f(I) of B such that the optima of / and
I', satisfy Optz(I') < a.Opt (1),

(2) given any feasible solution of I’ with cost ¢/, algorithm ¢ produces a solution of
I with cost ¢ such that |¢c — Opt,(I)| < p.|c" — Optyz(I')).

Given an instance / =(U, C) for MAX3SATj, we first establish in Lemma 3 bounds
for the size of an instance / and for the size of its optimum value.

Lemma 3. If I =(U,C) is an instance of MAX3SATj with |(U|=n and |C|=m, then
[n/3] < Optyaxasar; (1) <m <n.

Proof. Consider / =(U, C) an instance of MAX3SATj with |U|=n and |C|=m. Since
each variable occurs at most 3 times in the set of clauses, the number m of clauses
satisfies 3m < 3n. Therefore we have the inequality m < n, as required.

Now in order to establish the claimed bounds for Optysxssar,(/), note first that
Optyiaxssar;(I) < m. Now to establish the claimed lower bound, it is enough to ex-
hibit a truth assignment for / with [n/3] satisfied clauses. For each variable u; € U,
i€{l,2,...,n}, set u; =T, if and only its positive literal occurs in C. Note that this
truth assignment for U can be defined in time polynomial in the size of /. Now to each
variable u; we have a corresponding literal x; with value true. Let £ be the minimum
number of clauses that fit those n literals with value true. Since each clause has size
3, integer k is the least integer satisfying 3k > n, i.e., k = [n/3] is the least integer
greater than or equal to n/3. Hence, we have at least [n/3] satisfied clauses, and we
have the inequalities [n/3] < Optyaxssar,(I) < m, as required. [
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Fig. 7. Set Z’ of 4 x 3 +5 x 3 splittings defining a planar graph from G.

Given an instance / = (U,C) for MAX3SATj;, the polynomial-time algorithm f
produces from / a graph G. We relate in Lemma 4 the optimum value for / to the
optimum value for G.

Lemma 4. If I = (U,C) is an instance for MAX3SAT; with |U| =n, |C| = m, and
fU)=G, then

Optgn(G) = 4n + 50ptypxssar, (1) + 6(m — Optyaxssar,(1))-
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Proof. Consider first a truth assignment for / with Optysxssar (/) satisfied clauses.
By Theorem 2, there exists a feasible solution Z’ for G, i.e., a set Z’ of splittings with
size: |Z'| = 4n + 5Optyaxasar,(I) + 6(m — Optyaxssar, (1)), which defines a planar
graph from G. This establishes the inequality: Optg\(G) < 4n + 5Optypxssar,(1) +
6(m — Optyaxssar;(1)-

On the other hand, let Z’' be any feasible solution for G with size |Z’| < 4n +
50ptyiaxssat;(I) +6(m — Optyaxssar,(1))- Since [Z'| < 4n+6m, by Theorem 2, there
exists a truth assignment with ¢ satisfied clauses such that |Z’| > 4n+ 5¢ 4 6(m —c) =
4n+6m—c = 4n+6m—Optyxssar, (1 )=4n+50ptyaxssar,(1)+6(m—Optyaxssar, (1)),
which establishes the claimed equality. [

We are now ready to define parameters o and f§ for the L-reduction and prove:
Theorem 5. SPLITTING NUMBER is Max SNP-hard.

Proof. Theorem 2 says that a truth assignment for U with ¢ satisfied clauses defines
a feasible solution Z’ for f(I)= G with size |Z'| =4n + 6m — ¢ < 4n + 6m. Hence,
Optsn(G) < 4n+6m. Now, by applying Lemma 3 we get Opto(G) < 4n+6m < 4n+
6n = 10n =30n/3 < 30[n/3] < 30.0ptypx3sat,(1), Which shows that o =30 suffices.

On the other hand, let us define algorithm g and constant . For let Z’ be a feasible
solution for G with cost ¢’, i.e., ¢/ =|Z’| is the size of this set of splittings Z’ which
defines a planar graph from G. We distinguish two cases for ¢’: If ¢/ > 4n + 6m, then
choose as image of Z’ under g any feasible solution for /, and let ¢ be the number
of clauses satisfied by this truth assignment. If ¢’ < 4n + 6m, then choose by Theo-
rem 2 as image of Z’ under ¢ a truth assignment for U with ¢ satisfied clauses such
that |Z'|=c" > 4n+5c+6(m—c). Thus, by Lemma 4 we obtain |Optyaxssar, (/) —c|=
| = Optyaxasar,(1)+c|=[(—6+5)Optyaxssar,()+(—5+6)c|=[(—6+5) Optyaxssar, (1)
H(=546)c+(4=4)n + (6 — 6)m| = [4n + 50pty axssat,(I) + 6(m — Optypxssar, (1)) —
4n—5¢ —6(m—c)|=|0pt(G)— (4n+5¢+6(m —c))|. Now, since: Opto((G) < 4n+
5¢+6(m—c) < ¢/, we have that: |Optg(G) —(4n+5¢c+6(m—c))| < |Optg(G)—C'|.
Therefore, |Optypxssar, (1) — ¢| < [Optgy(G) — |, which shows that f =1 suffices.
This ends the L-reduction. [J

3. Splitting number, non-planar deletion and cubic graphs

In Section 2 we have established the Max SNP-hardness of SPLITTING NUMBER. The
special instance of SPLITTING NUMBER, the graph G constructed as image of a general
instance / of MAX3SATj, is a graph of maximum degree 3.

For graphs of maximum degree 3, we have the following relationship between the
problems SPLITTING NUMBER and NON-PLANAR DELETION:

Lemma 6. Let G be a graph of maximum degree 3. Then, we have Opty(G) =
Optypp(G), where Optg(G) and Opt\pp(G) denote, respectively, the optimum values
for SPLITTING NUMBER and NON-PLANAR DELETION of G.
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@ (b)

Fig. 8. Auxiliary graph for the proof of Corollary 9.

Proof. A leaf is a vertex of degree 1. Any splitting in a graph of maximum degree
3 yields one or two leaves. In addition, a crossing in the edge incident to a leaf can
always be removed by considering a different drawing in the plane. Thus, if L is the
set of leaves of G, then Optg(G) = Opts(G \ L).

Let Z be a feasible solution of SPLITTING NUMBER for G, i.e., Z is a set of splittings
which defines a planar graph H from G. Define a subset L of V(H), |L| =|Z|, such
that L is obtained from Z by adding to L one leaf obtained in each splitting of Z. By
construction, the planar graph H \ L is isomorphic to a subgraph of G with |[E(H\L)|=
|E(G)| — |Z|, i.e., we have that |Z| = Opt\pp(G) and hence Optg(G) = Optypp(G).

On the other hand, let L be a feasible solution of NON-PLANAR DELETION for G, i.e., L
is a set of edges whose removal leaves a planar subgraph of G. Hence, a planar graph
is also obtained from G by splitting, for each edge (u,v) of L one of its endpoints,
say v, with degree greater than 1, into v; and v, such that {u} is the neighborhood
of vy. Thus, we have that |L| = Opts\(G), and hence Opty\pp(G) = Opto((G). [

Corollary 7. NON-PLANAR DELETION for graphs of maximum degree 3 is Max SNP-hard.

Corollary 8. SPLITTING NUMBER and NON-PLANAR DELETION are Max SNP-hard when re-
stricted to graphs not containing a subdivision of Ks as a subgraph.

Proof. It follows from Theorem 5 and Corollary 7 because a graph of maximum degree
3 does not have a subdivision of K5 as a subgraph. [J

Corollary 9. SPLITTING NUMBER @nd NON-PLANAR DELETION are Max SNP-hard for cubic
graphs.

Proof. By Lemma 6, it suffices to show that spLITTING NUMBER is Max SNP-hard for
cubic graphs. For, we use the strategy of Theorem 5 by modifying locally the graph
G in Theorem 5 as follows. Consider the auxiliary graph G, depicted in Fig. 8(a). For
each vertex v of degree 2 in G, we add to G a copy of G, such that w, is the vertex
of G, adjacent to v as shown in Fig. §(b). O

4. Conclusion and further work

We have established that for cubic graphs there is a constant threshold ¢ > 1 such
that if SPLITTING NUMBER Or NON-PLANAR DELETION can be approximated in polynomial
time with ratio better than ¢, then P = NP.
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Since MAXIMUM PLANAR SUBGRAPH and NON-PLANAR DELETION are complementary prob-
lems with respect to the number of edges of the graph, for the decision versions of
these two problems, every result for NON-PLANAR DELETION is also a result for MAXIMUM
PLANAR SUBGRAPH. In particular, Lemma 6 says that the NP-completeness of SPLITTING
NUMBER for cubic graphs [4] implies both the NP-completeness of MAXIMUM PLANAR
SUBGRAPH and of NON-PLANAR DELETION for cubic graphs.

The trivial polynomial-time approximation algorithm for MAXIMUM PLANAR SUBGRAPH
produces a spanning tree and achieves a performance ratio of %: every spanning tree of
a connected graph on n vertices has n — 1 edges, and every planar graph on n vertices
has at most 3n — 3 =3(n — 1) edges.

Recently, Célinescu et al. [3] published the first non-trivial polynomial-time approx-

imation algorithm for MAXIMUM PLANAR SUBGRAPH achieving a higher performance of
4

Note that a cubic graph on n vertices has 3n/2 edges, hence the trivial polynomial-
time approximation algorithm for MAXIMUM PLANAR SUBGRAPH achieves for cubic graphs a
performance ratio of %, the best known. We are currently trying to obtain a non-trivial
polynomial-time approximation algorithm for MAXIMUM PLANAR SUBGRAPH restricted to
cubic graphs.

Note that if a graph G is dense (i.e., |E(G)| = ©(n?)), then Optypp(G) = O(1?).
On the other hand, if a graph G is sparse (i.e., |E(G)| = O(n)), then Optypp(G) can
be O(1). This stands in contrast with the fact that for a general connected graph G,
we have Opt\pg(G) = ©(n), given that a spanning tree has n — 1 edges and that
every planar graph has at most 3n — 6 edges. The fact that, for a given graph, the op-
tima of NON-PLANAR DELETION and MAXIMUM PLANAR SUBGRAPH do not necessarily have the
same order, implies that the identity map cannot be used as f in an L-reduction from
NON-PLANAR DELETION and MAXIMUM PLANAR SUBGRAPH, and explains the difficulty in defin-
ing an L-reduction from NON-PLANAR DELETION t0 MAXIMUM PLANAR SUBGRAPH. Calinescu
et al. [3] established both the Max SNP-hardness of MAXIMUM PLANAR SUBGRAPH and
NON-PLANAR DELETION by presenting two distinct L-reductions from the same variant of
the traveling salesman problem.

We are also trying to exhibit an L-reduction in order to establish the Max SNP-
hardness, or to construct a better polynomial time approximation algorithm, for maxi-
MUM PLANAR SUBGRAPH restricted to cubic graphs. We have two conjectures concerning
the Max SNP-hardness of MAXIMUM PLANAR SUBGRAPH:

Conjecture 10. MAXIMUM PLANAR SUBGRAPH is Max SNP-hard even when restricted to
cubic graphs.

The girth of a graph is the size of its smallest cycle.

Conjecture 11. spLITTING NUMBER is Max SNP-hard for cubic graphs with girth k, for
some k = 1.

Lemma 12. The validity of Conjecture 11 implies the validity of Conjecture 10.
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Proof. Let H be a connected planar subgraph of G, with V(H )=V (G). Its number of
edges |E(H )| satisfies ZreF d(f)=2|E(H)|, where F is the set of faces in a plane
drawing of H, and d(f) is the degree of a face f. Recall that the degree of a face f
is defined to be the number of edges incident to its boundary with cut edges counted
twice [2]. If H has girth at least 7, then 7|F| < _ . d(f)=2|E(H)|. By Euler’s
formula: 7|F| =7|E(H)| — 7|V (G)| + 14, which implies |E(H)| < (7|V(G)| — 14)/5.

Note that a cubic graph G has 3|V (G)|/2 edges. Hence, Opty\pp(G) = 3|V (G)|/2 —
(7V(G)| — 14)/5 = |V(G)|/10 + %. Thus, Optypp(G) > |V(G)|/10. Therefore,
30.0p1xpp(G) > 307 (G)|/10 = 3|V(G)| > 3|V(G)|/2 = Optyps(G).

Therefore, in order to define an L-reduction from NON-PLANAR DELETION t0 MAXIMUM
PLANAR SUBGRAPH, we may take f as the identity map and o = 30 in the L-reduction.
To finish the L-reduction, it remains to define g and f. For, given a feasible solution
for instance G of MAXIMUM PLANAR SUBGRAPH of cost ¢, take as its image by g the set
of edges that are not in this planar subgraph. The cost of this feasible solution for
NON-PLANAR DELETION is ¢ = |[E(G)| — ¢. Since Optyps(G) = |E(G)| — Optypp(G), then
|Optapp(G) — ¢| = |Optyps(G) — ¢’|, and =1 suffices. [

A positive evidence for the validity of Conjecture 11 is the existence of an infinite
number of cubic graphs with a fixed girth k,k > 7 [6].
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