Available online at www.sciencedirect.com

DISCRETE
APPLIED
MATHEMATICS

On the complexity of the approximation of nonplanarity parameters for cubic graphs ${ }^{2 /}$

Luerbio Faria ${ }^{\mathrm{a}}$, Celina M. Herrera de Figueiredo ${ }^{\text {b }}$, Candido F.X. Mendonça ${ }^{\text {c }}$
${ }^{a}$ Faculdade de Formação de Professores, Universidade do Estado do, Rio de Janeiro, Brazil
${ }^{\mathrm{b}}$ Instituto de Matemática and COPPE, Universidade Federal do Rio de Janeiro, Brazil
${ }^{\mathrm{c}}$ Departamento de Informática, Universidade Estadual de Maringá, Brazil

Received 22 June 2001; received in revised form 29 May 2002; accepted 22 March 2003

Abstract

Let $G=(V, E)$ be a simple graph. The NON-PLANAR DELETION problem consists in finding a smallest subset $E^{\prime} \subset E$ such that $H=\left(V, E \backslash E^{\prime}\right)$ is a planar graph. The splitting number problem consists in finding the smallest integer $k \geqslant 0$, such that a planar graph H can be defined from G by k vertex splitting operations. We establish the Max SNP-hardness of SPLItting nUmber and NON-PLANAR DELETION problems for cubic graphs. (C) 2003 Elsevier B.V. All rights reserved.

Keywords: Topological graph theory; Complexity classes; Computational difficulty of problems; Splitting number; Maximum planar subgraph

1. Introduction

Let $G=(V, E)$ be a simple graph. The non-Planar deletion problem consists in finding a smallest subset $E^{\prime} \subset E$ such that $H=\left(V, E \backslash E^{\prime}\right)$ is a planar graph. The MAXIMUM PLANAR SUBGRAPH problem consists in finding a largest subset $E^{\prime} \subset E$ such that $H=\left(V, E^{\prime}\right)$ is a planar graph. Given $u \in V(G)$, say that a graph H is obtained from G by splitting vertex u if $V(H)=(V(G) \backslash\{u\}) \cup\left\{u_{1}, u_{2}\right\}$ and $E(H)=(E(G) \backslash\{(u, x)$: $x \in N(u)\}) \cup\left\{\left(u_{1}, x\right): x \in N_{1}\right\} \cup\left\{\left(u_{2}, x\right): x \in N_{2}\right\}$, where $N(u)$, the neighborhood of u in G, is partitioned into non-empty sets N_{1} and N_{2}. The splitting number problem

[^0]consists in finding the smallest integer $k \geqslant 0$, such that a planar graph H can be defined from G by k splitting operations. In this work we establish the Max SNP-hardness of splitting number and non-planar deletion problems for cubic graphs.

A natural question in the study of the complexity of a graph-theoretical decision problem is to determine the best possible bounds on the vertex degrees for which the problem remains NP-complete. Yannakakis [7] considered the complexity of edge-deletion decision problems and obtained corresponding best possible vertex-degree bounds for the NP-completeness of the edge-deletion bipartite problem and of the edge-deletion comparability graph problem.

The non-planar deletion decision problem was shown to be NP-complete by Yannakakis in the fundamental paper [7]. More recently, Călinescu et al. [3] showed that non-planar deletion is Max SNP-hard, which implies [1] that there is a constant $\varepsilon>0$ such that the existence of a polynomial approximation algorithm with performance ratio at least $1+\varepsilon$ implies that $\mathrm{P}=\mathrm{NP}$. Both the NP-completeness and Max SNP-hardness proofs left the corresponding best possible vertex-degree bounds unanswered.

We have established [4] the complexity of the Splitting number decision problem by constructing a reduction from 3 -sat. We proved that the splitting number decision problem is NP-complete when restricted to cubic graphs.

In the present paper, we prove that, for graphs with maximum degree 3, we have $O p t_{\mathrm{SN}}(G)=O p t_{\mathrm{NPD}}(G)$, where $O p t_{\mathrm{SN}}(G)$ and $O p t_{\mathrm{NPD}}(G)$ denote, respectively, the optimum values for splitting number and non-planar deletion of G. Consequently, the NP-completeness of the splitting number decision problem when restricted to cubic graphs implies the NP-completeness of the non-Planar deletion decision problem when restricted to cubic graphs.
In order to establish that splitting number and consequently that non-planar deletion are Max SNP-hard even for cubic graphs, we use the concept of L-reductions [5], a special kind of reduction that preserves approximability. To achieve the optimum vertex-degree bound with respect to Max SNP-hardness, we have strengthened our initial NP-completeness proof [4] by considering this time the Max SNP-complete problem MAX3SAT $_{\overline{3}}$ [5], a restricted version of mAX3-sAT, where each variable appears at most three times in the set of clauses.

The published results $[7,3]$ on the complexity of non-planar deletion did not use graphs with maximum vertex degree 3 . Thus, our complexity results for non-planarity parameters splitting number and non-planar deletion are optimum with respect to the allowed maximum vertex degree, because a graph with maximum degree 2 is a collection of paths and circuits that define a planar graph.

2. The Max SNP-hardness of splitting number

In this section we prove that Splitting number is Max SNP-hard, by L-reducing the Max SNP-complete problem MAX3SAT ${ }_{\overline{3}}$ [5] to splitting number. These two optimization problems are defined as follows:

MAX3SAT $_{\overline{3}}$

Instance: Set U of variables, collection C of clauses over U such that each clause $c \in C$ has $|c|=3$ literals, and each variable appears at most three times in the set of clauses.

Goal: Find a truth assignment for U which maximizes the number of clauses in C having at least one true literal.

SPLITTING NUMBER

Instance: Graph G.
Goal: Find the smallest integer $k \geqslant 0$, such that a planar graph H can be defined from G by k splitting operations.

We construct in polynomial time a special instance G for splitting number from a general instance I for MAX3 SAT_{3}. We follow the steps of the construction published in [4] where we have established the NP-completeness of SPLitting number decision problem by reduction of 3 -satisfiability to it. We need to adapt this published construction in order to obtain the claimed L-reduction from MAX3SAT $\mathrm{M}_{\overline{3}}$ to splitting NUMBER optimization problem. In particular, the two main properties we are going to establish are:

- We establish bounds for the size of the parameters and the optimum value for MAX3SAT $_{3}$ by proving that: if $I=(U, C)$ is an instance of $\operatorname{MAX}^{2} \mathrm{SAT}_{\overline{3}}$ with $|U|=n$ variables and $|C|=m$ clauses, then $\lceil n / 3\rceil \leqslant O p t_{\mathrm{MAX3SAT}_{3}}(I) \leqslant m \leqslant n$.
- The special instance G for splitting number constructed from a general instance I for MAX3SAT $_{\overline{3}}$ satisfies: $O p t_{\mathrm{SN}}(G)=4 n+5 O p t_{\mathrm{MAX3SAT}_{3}}(I)+6\left(m-O p t_{\mathrm{MAX}^{2} \mathrm{SAT}_{3}}(I)\right)$.

2.1. The special instance G

The special instance G for spliting number constructed from a general instance I for MAX3SAT $\bar{j}_{\overline{3}}$ contains two types of subgraphs: the truth setting $\left(T_{i}\right)$ and the satisfaction testing $\left(S_{j}\right)$ subgraphs defined, respectively, in Figs. 1(c) and (d). For each variable $u_{i} \in U$ there is a T_{i}. Note that each T_{i} is a modified $K_{3,3}$ (Figs. 1(a) and (b)), in the sense that the graph T_{i} can be obtained from the graph $K_{3,3}$ by replacing, as shown in Figs. 1(b) and (c), each one of the six vertices of $K_{3,3}$ by a supervertex, each one of six edges by a superedge, one edge by the graph left side, one edge by the graph right side and by the attachment to the bottom horizontal line of a square as defined in Figs. 1(b) and (c). For each clause $c_{j} \in C$ there is an S_{j}.

Each one of these two types of subgraphs has three types of vertices: white vertices that are supervertices, stripped vertices that are linking supervertices, and black vertices that are standard vertices. There are superedges linking supervertices (see Fig. 2). The construction of G is performed such that the subgraph of G induced by the vertices of the supervertices is a planar graph. We note in Fig. 2 that each supervertex has at the infinite face $3(4 n+6 m+1)$ standard vertices. This number of $3(4 n+6 m+1)$ standard vertices at the infinite face defines 3 sequences of $4 n+6 m+1$ consecutive standard vertices. Each sequence of $4 n+6 m+1$ standard vertices can be linked to a sequence of $4 n+6 m+1$ standard vertices in another supervertex in order to define a superedge. A supervertex adjacent to a standard vertex v has only one standard vertex adjacent to

Fig. 1. (c) Truth-setting subgraph T_{i} and (d) satisfaction-testing subgraph S_{j}.

Fig. 2. Two supervertices and one superedge.
v, which is the first standard vertex in the clockwise direction of one of the sequences of $4 n+6 m+1$ standard vertices. As we will see in the sequel, these supervertices and superedges are big enough to ensure that the number of splittings needed to obtain a planar graph from G by splitting a supervertex is greater than $4 n+6 m$. This key property is used in our proof to forbid splittings in white or stripped vertices.

Fig. 3. Graph G obtained from the $\operatorname{MAX3SAT}_{\overline{3}}$ instance $I=(U, C)=\left(\left\{u_{1}, u_{2}, u_{3}\right\},\left\{\left(u_{1} \vee \bar{u}_{2} \vee \bar{u}_{3}\right)\right.\right.$, $\left.\left.\left(\bar{u}_{1} \vee u_{2} \vee \bar{u}_{3}\right),\left(\bar{u}_{1} \vee \bar{u}_{2} \vee u_{3}\right)\right\}\right)$.

The only part in the construction of G that depends on which literals occur in which clauses is the following collection of edges produced sequentially when j grows from 1 until m. Let x_{a}, x_{b} and x_{d}, be the three literals in clause c_{j}. Note that a literal $x_{a}=u_{a}$, if x_{a} is a positive literal; and $x_{a}=\bar{u}_{a}$, if x_{a} is a negative literal with $a \in\{1,2, \ldots, n\}$. We associate literal x_{a} to a vertex in the set $\left\{u_{a}[l]: 1 \leqslant l \leqslant 4\right\}$ of T_{a}, if x_{a} is a positive literal; or to a vertex in the set $\left\{\bar{u}_{a}[l]: 1 \leqslant l \leqslant 4\right\}$ of T_{a}, if x_{a} is a negative literal. We denote this vertex associated to x_{a} by $x_{a}\left[l_{a}\right]$. Thus, have the following sets of edges emanating of the subgraphs T_{a}, T_{b}, T_{d}, and $S_{j}:\left\{\left(b_{j}[1], x_{a}\left[l_{a}\right]\right),\left(b_{j}[2], x_{b}\left[l_{b}\right]\right),\left(b_{j}[3], x_{d}\left[l_{d}\right]\right)\right\}$, where, for $s \in\{a, b, d\}, l_{s}$ is the minimum number in the set $\{1,2,3,4\}$ such that there is no vertex $b_{j^{\prime}}[h], h \in\{1,2,3\}$ linked to $x_{s}\left[l_{s}\right]$ with $j^{\prime} \leqslant j$.

There is a set of edges, called the ring connecting the subgraphs T_{i} and $S_{j}:\left[\bigcup_{i=1}^{n-1}\right.$ $\left.\left\{\left(e_{i}[2], e_{i+1}[1]\right)\right\}\right] \cup\left[\bigcup_{j=1}^{m-1}\left\{\left(f_{j}[6], f_{j+1}[1]\right)\right\}\right] \cup\left\{\left(e_{n}[2], f_{1}[1]\right),\left(f_{m}[6], e_{1}[1]\right)\right\} \quad$ (see Fig. 3).

We observe that $O p t_{\mathrm{SN}}(G) \leqslant 4 n+6 m$. This upperbound can be justified as follows. We can define a set Z with 4 splittings in a suitable set of black vertices in each one of the n subgraphs T_{i} 's (either in left side or in the right side) totalizing $4 n$ splittings, such that, we remove the crossings among the edges of each T_{i}; and with 6 splittings, one in each black vertex of each one of the m subgraphs S_{j} 's, this subset with $6 m$ splittings remove the crossings in each S_{j} allowing to define a plane drawing for each subgraph $K_{3,3} \backslash\{e\}$ of S_{j} that can be embedded in a suitable planar region of a resulting subgraph from the T_{i} 's.

Let G be a simple graph and $e=(u, v) \in E(G)$. Say that a graph Q is obtained from G by contracting e if $V(Q)=(V(G) \backslash\{u, v\}) \cup\{w\}$ and $E(Q)=(E(G) \backslash\{(u, x),(v, y)$: $x \in N(u), y \in N(v)\}) \cup\{(w, x): x \in((N(u) \cup N(v)) \backslash\{u, v\})\}$, where $w \notin V(G)$; and $N(u)$ and $N(v)$ are, respectively, the neighborhood of u and v. Say that a graph G is contractible to a graph Q if there is a sequence of graphs $G=G_{0}, G_{1}, G_{2}, G_{3}, \ldots, G_{k}=Q$, where G_{i+1} is obtained from G_{i} by contracting $e \in G_{i}$. If a graph G is connected, then G is contractible to a graph with one vertex Q, since the resulting graph of a contraction has one less vertex and is still connected. Consider a connected subgraph of a graph G induced by a subset $S \subset V(G)$. Say that a graph Q is obtained from a graph G by contracting the set S of vertices to a single vertex if Q is obtained from G by a sequence of contractions defining a graph with one vertex from the subgraph of G induced by S.

Let G be the graph defined from the instance $I=(U, C)$ of MAX3SAT $_{\overline{3}}$. We say that two supervertices s_{1} and s_{2} are adjacent in G if there are standard vertices $x_{1} \in V\left(s_{1}\right)$ and $x_{2} \in V\left(s_{2}\right)$, such that $\left(x_{1}, x_{2}\right) \in E(G)$. Let Z be a set of splittings defining a graph H from G. Let Q be the graph obtained from the subgraph of G induced by the set of vertices of the supervertices of G, by contracting each set of vertices of each supervertex to a single vertex. We say that no supervertex is split in Z if H has a subgraph contractible to Q.

Lemma 1. Let Z be a set of splittings defining a graph H from G. If $|Z| \leqslant 4 n+6 m$, then no supervertex is split in Z.

Proof. Let Q be the graph obtained from the subgraph of G induced by the set of vertices of the supervertices of G, by contracting each set of vertices of each supervertex to a single vertex. Let s_{1} and s_{2} be two adjacent supervertices in G and let $s_{1}+s_{2}$ be the graph induced by the vertices of s_{1} and s_{2}. Note that there are $4 n+6 m+1$ vertex disjoint cycles each in $3(4 n+6 m+1)$ vertices in each supervertex s_{1} and s_{2}. Note that there are $4 n+6 m+1$ vertex disjoint paths in $6(4 n+6 m+1)$ vertices with vertices in each one of the $4 n+6 m+1$ cycles as shown in Fig. 2.

Since $|Z| \leq 4 n+6 m$, there are at least one cycle contained in s_{1}, one cycle contained in s_{2}, and one path contained in $s_{1}+s_{2}$ with no splitting in Z. For every pair of adjacent supervertices in G, let H^{\prime} be the subgraph of H induced by the set of vertices of these cycles and paths. The resulting graph from H^{\prime} by contracting each one of these cycles to a single vertex is isomorphic to Q. Hence, no supervertex is split in Z.

Let Z be a set of splittings defining a graph H from G, with $|Z| \leqslant 4 n+6 m$, and let G^{\prime} be a subgraph of G containing a set S of supervertices. Start with $C=\emptyset$ and $P=\emptyset$. For each supervertex s of S, add to C the set of $4 n+6 m+1$ vertex disjoint cycles of s each cycle in $3(4 n+6 m+1)$ vertices. For each pair of adjacent supervertices in G^{\prime} add to P the set of $4 n+6 m+1$ vertex disjoint paths each path in $6(4 n+6 m+1)$ vertices. The resulting graph from the supervertices of G^{\prime} in H is the subgraph of H induced by the vertices of the cycles of C and of the paths of P with no vertices in Z.

Fig. 4. A set Z^{\prime} of splittings with $\left|Z^{\prime}\right|=5$.

Theorem 2 (Fundamental Property of the construction of G from I). Let $I=(U, C)$ be an instance of $\mathrm{MAX}^{2} \mathrm{SAT}_{\overline{3}}$, with $|U|=n$ and $|C|=m$. A truth assignment for U with c satisfied clauses defines a feasible set of splittings Z^{\prime} for G of size $\left|Z^{\prime}\right|=4 n+5 c+$ $6(m-c)$. Conversely, if Z^{\prime} is a feasible set of splittings for G of size $\left|Z^{\prime}\right| \leqslant 4 n+6 m$, then there exists a subset $Z^{\prime \prime} \subseteq Z^{\prime}$ such that $Z^{\prime \prime}$ is a feasible set of splittings for G whose size satisfies $\left|Z^{\prime}\right| \geqslant\left|Z^{\prime \prime}\right|=4 n+5 c+6(m-c)$. Moreover, $Z^{\prime \prime}$ defines a truth assignment for U with c satisfied clauses, where each graph T_{i} requires 4 splittings in $Z^{\prime \prime}$, each graph S_{j} corresponding to a satisfied clause requires 5 splittings in $Z^{\prime \prime}$, and each graph S_{j} corresponding to a non-satisfied clause requires 6 splittings in $Z^{\prime \prime}$.

Proof. Suppose a truth assignment for U with c satisfied clauses is given. We shall define a suitable set Z^{\prime} of splittings proving the first part of the Fundamental Property. First of all, for each $i \in\{1,2,3, \ldots, n\}$ we define a planar graph from T_{i} by adding to Z^{\prime} either 4 black vertices on the right side of T_{i} if u_{i} is true, or 4 black vertices on the left side of T_{i} if u_{i} is false. We remark that this set of $4 n$ splittings defines a planar resulting graph from each T_{i}. For each clause $c_{j}=\left(x_{a} \vee x_{b} \vee x_{d}\right)$, Fig. 4 shows that if c_{j} is a satisfied clause, then it is enough to add 5 splittings to Z^{\prime} in order to define a planar graph from S_{j}, in this case each S_{j} can borrow one splitting in T_{a} (Fig. 4(a)), T_{b} (Fig. 4(b)) or T_{d} (Fig. 4(c)), according to if the corresponding literal with value true in c_{j} is x_{a}, x_{b} or x_{d}. If c_{j} is a non-satisfied clause, then it is enough to add to Z^{\prime} the 6 splittings of one of the sets of splittings in Figs. 4(a), (b) or (c) in order to define a planar graph from S_{j}. This completes the definition of Z^{\prime}. Since, all the resulting graphs from the T_{i} 's and S_{j} 's are planar and disjoint in vertices we have that Z^{\prime} defines a planar resulting graph from G. Hence, the set Z^{\prime} of splittings is a feasible solution of size $\left|Z^{\prime}\right|=4 n+5 c+6(m-c)$, as required.
Now we prove the second part of the Fundamental Property. Let F be the planar graph that Z^{\prime} defines from G. Since $\left|Z^{\prime}\right| \leqslant 4 n+6 m$, Lemma 1 says that no supervertex is split. Since F is planar and no supervertex is split, for each $i \in\{1,2,3, \ldots, n\}$ the
resulting graph of the left side of T_{i} in F has white vertices in different connected components, or the resulting graph of the right side of T_{i} has white vertices in different connected components in F.

Let L_{i} be the subset of Z^{\prime} on the side of T_{i} having white vertices in different connected components in F. Consider the truth assignment that sets $u_{i}=T$ if and only if the subset L_{i} is on the right side of T_{i}. Let c be the number of clauses of C satisfied by this truth assignment. Since the first part of the Fundamental Property ensures that there is a feasible solution $Z^{\prime \prime}$ of size $4 n+5 c+6(m-c)=\left|Z^{\prime \prime}\right|$, it is enough to prove that $\left|Z^{\prime \prime}\right| \leqslant\left|Z^{\prime}\right|$.

By definition $4 n \leqslant\left|\bigcup_{i=1}^{n} L_{i}\right|$. Let G^{\prime} be the graph that $\bigcup_{i=1}^{n} L_{i}$ defines from G. By definition, the set $\bigcup_{i=1}^{n} L_{i}$ partitions the set of subgraphs S_{j} 's into two sets, the set of the S_{j} 's that correspond to satisfied clauses and the set of the S_{j} 's that correspond to non-satisfied clauses.

Let H be the subgraph of G^{\prime} induced by the vertices of S_{j} and the vertices of the resulting graphs from T_{a}, T_{b} and T_{d} in G^{\prime}, where $c_{j}=\left(x_{a} \vee x_{b} \vee x_{d}\right)$. We consider two cases:
(1) We prove that if S_{j} corresponds to a non-satisfied clause c_{j}, then S_{j} requires 6 additional splittings in Z^{\prime}. Note that, there is a graph $K_{3,3}-e$ in supervertices of S_{j} with a supervertex adjacent to a stripped vertex of T_{a}. For simplicity, we say that there is a graph $K_{3,3}-e$ of S_{j} adjacent to T_{a}. In addition, this stripped vertex of T_{a} is adjacent to 2 standard black vertices of T_{a}. Note that, if in the resulting graph of H in F, the resulting graph from the supervertices of this $K_{3,3}-e$ is in the same connected component as the resulting graph from the white vertices of S_{j} incident to the ring and the white vertices of T_{a}, then there is a subdivision of $K_{3,3}$ in the planar graph F, a contradiction. The same argument is valid for the 2 $K_{3,3}-e$'s of S_{j} adjacent to T_{b} or of T_{d}.

Hence, each $K_{3,3}-e$ requires at least 2 splittings in S_{j} or at least 2 splittings in T_{a}, T_{b} or T_{d}. Since there are $(m-c)$ non-satisfied clauses, there are $6(m-c)$ additional splittings in Z^{\prime}.
(2) We prove that if S_{j} corresponds to a satisfied clause c_{j}, then S_{j} requires $5 \mathrm{ad}-$ ditional splittings in Z^{\prime} besides the $4 n+6(m-c)$ splittings required by the set $\bigcup_{i=1}^{n} L_{i}$ and by the subgraphs S_{j} corresponding to non-satisfied clauses. In Fig. 5 we define three non-planar graphs $H_{i}, i=1,2,3$. In Fig. 5, we depict in H_{1}, H_{2} and H_{3} a subdivision for $K_{3,3}$, as a subgraph. For the convenience of the reader, we label the two color classes with 1 and 2, respectively. Each graph H_{1}, H_{2} and H_{3} corresponds to the resulting subgraph from a subgraph of H defined by a set of splittings with 2 splittings in each T_{a}, T_{b} and T_{d}, and 2 splittings in S_{j}. We use H_{1}, H_{2} and H_{3} in order to show that a subset of the set of splittings which defines H_{1}, H_{2} or H_{3} from H still defines a non-planar graph from H.

We remark that, if the resulting graphs in F from the $3 K_{3,3}-e$'s in S_{j} adjacent to T_{a}, T_{b} and T_{d} are, respectively, in the same component as T_{a}, T_{b} and T_{d}, in the resulting graph of H in F, then there are at least 6 splittings of Z^{\prime} in the vertices of S_{j}, since each one of the $3 K_{3,3}-e$'s requires 2 splittings at the vertices of S_{j} in Z^{\prime}.

Fig. 5. Subdivision of $K_{3,3}$ as subgraph of $H_{i}, i=1,2,3$.

We observe also that at least 2 splittings are required in Z^{\prime} at the vertices of S_{j} because no supervertex is split and because of the depicted subdivisions of $K_{3,3}$ in Figs. 5(a)-(c).

Note that in H there are no splittings in the vertices of S_{j}. Hence for H, there are four possibilities according to the number of connected components containing the white vertices of S_{j}, T_{a}, T_{b} or T_{d} in H being $1,2,3$ or 4 . We consider these four possibilities next.
(a) The first case is when the vertices of S_{j} are in a different connected component of H with respect to the resulting graphs from the white vertices of T_{a}, T_{b} and T_{d}. In this case, for each graph T_{a}, T_{b} and T_{d} there is 1 additional splitting in $\bigcup_{i=1}^{n} L_{i}$. These 3 splittings, plus the 2 additional splittings in Z^{\prime} at the vertices of S_{j}, yield $3+2=5$ additional splittings in Z^{\prime}.
(b) The second case is when the vertices of S_{j} are in a different connected component of H with respect to the vertices of two of the resulting graphs from the white vertices of T_{a}, T_{b} and T_{d}, say T_{a} and T_{b}. In this case, there are 2 additional splittings in $\bigcup_{i=1}^{n} L_{i}$, one in T_{a} and one in T_{b}. We consider two different subcases. If the resulting graph in F of the white vertices of the $K_{3,3}-e$ in S_{j} adjacent to T_{d} is not in the same component as the resulting graph of the white vertices of T_{d}, then there is 1 additional splitting in Z^{\prime} in the vertices of T_{d} and case (a) above shows that 2 additional splittings are required in Z^{\prime} at the vertices of S_{j}, yielding $2+1+2=5$ additional splittings in Z^{\prime}. If the resulting graph in F of the white vertices of the $K_{3,3}-e$ in S_{j} adjacent to T_{d} is in the same component as the resulting graph of the white vertices of T_{d}, then the 2 additional splittings in S_{j} defined in Fig. 5(c) are required in Z^{\prime}, and the $K_{3,3}$ depicted in this figure shows that 1 additional splitting is required in Z^{\prime} in the vertices of S_{j}, yielding $2+2+1=5$ additional splittings in Z^{\prime}. Figs. 5(a) and (b) can be used,
analogously, in the analysis when the vertices of S_{j} are in a different connected component of H with respect to the vertices of a different pair of T_{a} and T_{b} in the set $\left\{T_{a}, T_{b}, T_{d}\right\}$.
(c) The third case is when the vertices of S_{j} are in a different connected component of H with respect to the vertices of exactly one of the resulting graphs from the white vertices of T_{a}, T_{b} and T_{d} in H, say T_{a}. In this case, there is 1 additional splitting in $\bigcup_{i=1}^{n} L_{i}$ in the vertices of T_{a}. If the resulting graph in F of the white vertices of one of the $K_{3,3}-e$'s of S_{j} adjacent to T_{b} or T_{d}, say in T_{b}, is not in the same component as the resulting graph of the white vertices of T_{b}, then we have 1 additional splitting in T_{b} and cases (a) and (b) above show that S_{j} requires at least 3 additional splittings in Z^{\prime}, yielding $1+1+3=5$ additional splittings in Z^{\prime}. If the resulting graph in F of the white vertices of the $2 K_{3,3}-e$'s of S_{j} adjacent to T_{b} and T_{d} are, respectively, in the same connected component as the white vertices of T_{b} and T_{d} in the resulting graph of H in F, then 4 additional splittings are required at the vertices of S_{j} in $Z^{\prime}: 2$ required by the $K_{3,3}-e$ adjacent to T_{b} and 2 required by the $K_{3,3}-e$ adjacent to T_{d}, which yields $1+4=5$ additional splittings in Z^{\prime}.
(d) The fourth case is when the vertices of S_{j} are in the same connected component as the resulting graphs from the white vertices of T_{a}, T_{b} and T_{d} in H. If the resulting graph in F of the white vertices of one of the $K_{3,3}-e$'s of S_{j} adjacent to T_{a}, T_{b} or T_{d}, say T_{a}, is not in the same connected component as the white vertices of T_{a} in the resulting graph of H in F, then there is 1 additional splitting in T_{a} and cases (a)-(c) above show that S_{j} requires at least 4 additional splittings in Z^{\prime}. If the resulting graphs in F of the white vertices of the $K_{3,3}-e$'s of S_{j} adjacent to T_{a}, T_{b} and T_{d} are respectively, in the same connected component as the white vertices of T_{a}, T_{b}, and T_{d} in the resulting graph of H in F, then 6 additional splittings are required in S_{j} in Z^{\prime}.

Hence, for each one of the c satisfied clauses at least 5 additional splittings are required besides the $4 n+6(m-c)$ splittings required in $\bigcup_{i=1}^{n} L_{i}$ and in the set of the non-satisfied clauses, this means that $4 n+5 c+6(m-c)=\left|Z^{\prime \prime}\right| \leqslant\left|Z^{\prime}\right|$.

Figs. 6(a), (b) and 7 give an example where a set Z^{\prime} of splittings defines a planar graph F from G which is the graph obtained in turn from the instance of MAX3SAT ${ }_{\overline{3}}$: $I=(U, C)=\left(\left\{u_{1}, u_{2}, u_{3}\right\},\left\{\left(u_{1} \vee \bar{u}_{2} \vee \bar{u}_{3}\right),\left(\bar{u}_{1} \vee u_{2} \vee \bar{u}_{3}\right),\left(\bar{u}_{1} \vee \bar{u}_{2} \vee u_{3}\right)\right\}\right)$. Fig. 6(a) shows the graph G. Fig. 6(b) shows the graph G^{\prime} obtained from G by a set of 4×3 splittings defined by the truth assignment $u_{1}=u_{2}=u_{3}=T$. Fig. 7 shows a plane drawing for the graph F obtained from G by a set Z^{\prime} of splittings. Note that in this example we have a satisfying truth assignment, which defines the size $\left|Z^{\prime}\right|=4 \times 3+5 \times 3+6(3-3)$.

2.2. The L-reduction

Let A and B be two optimization problems. We say that $A L$-reduces to B if there are two polynomial-time algorithms f and g, and positive constants α and β, such that for each instance I of A,

Fig. 6. Graph $G(a)$ obtained from the $\operatorname{MAX}^{(a S A T} T_{3}$ instance $I=(U, C)=\left(\left\{u_{1}, u_{2}, u_{3}\right\}\right.$, $\left.\left\{\left(u_{1} \vee \bar{u}_{2} \vee \bar{u}_{3}\right),\left(\bar{u}_{1} \vee u_{2} \vee \bar{u}_{3}\right),\left(\bar{u}_{1} \vee \bar{u}_{2} \vee u_{3}\right)\right\}\right)$. Set of 4×3 splitting. (b) defined with satisfying truth assignment $u_{1}=u_{2}=u_{3}=T$.
(1) algorithm f produces an instance $I^{\prime}=f(I)$ of B such that the optima of I and I^{\prime}, satisfy $O p t_{B}\left(I^{\prime}\right) \leqslant \alpha . O p t_{A}(I)$;
(2) given any feasible solution of I^{\prime} with cost c^{\prime}, algorithm g produces a solution of I with cost c such that $\left|c-O p t_{A}(I)\right| \leqslant \beta .\left|c^{\prime}-O p t_{B}\left(I^{\prime}\right)\right|$.

Given an instance $I=(U, C)$ for MAX3SAT $_{3}$, we first establish in Lemma 3 bounds for the size of an instance I and for the size of its optimum value.

Lemma 3. If $I=(U, C)$ is an instance of $\operatorname{MAX}^{2} \mathrm{SAT}_{3}$ with $|U|=n$ and $|C|=m$, then $\lceil n / 3\rceil \leqslant O p t_{\mathrm{MAX3SAT}_{3}}(I) \leqslant m \leqslant n$.

Proof. Consider $I=(U, C)$ an instance of MAX3SAT $\overline{3}_{\overline{3}}$ with $|U|=n$ and $|C|=m$. Since each variable occurs at most 3 times in the set of clauses, the number m of clauses satisfies $3 m \leqslant 3 n$. Therefore we have the inequality $m \leqslant n$, as required.

Now in order to establish the claimed bounds for $O p t_{\mathrm{MAX}_{3 \mathrm{SAT}_{\overline{3}}}(I) \text {, note first that }}$ $O p t_{\mathrm{MAX3SAT}_{3}}(I) \leqslant m$. Now to establish the claimed lower bound, it is enough to exhibit a truth assignment for I with $\lceil n / 3\rceil$ satisfied clauses. For each variable $u_{i} \in U$, $i \in\{1,2, \ldots, n\}$, set $u_{i}=T$, if and only its positive literal occurs in C. Note that this truth assignment for U can be defined in time polynomial in the size of I. Now to each variable u_{i} we have a corresponding literal x_{i} with value true. Let k be the minimum number of clauses that fit those n literals with value true. Since each clause has size 3 , integer k is the least integer satisfying $3 k \geqslant n$, i.e., $k=\lceil n / 3\rceil$ is the least integer greater than or equal to $n / 3$. Hence, we have at least $\lceil n / 3\rceil$ satisfied clauses, and we have the inequalities $\lceil n / 3\rceil \leqslant O p t_{\mathrm{MAX3SAT}_{5}}(I) \leqslant m$, as required.

Fig. 7. Set Z^{\prime} of $4 \times 3+5 \times 3$ splittings defining a planar graph from G.

Given an instance $I=(U, C)$ for MAX3SAT ${ }_{\overline{3}}$, the polynomial-time algorithm f produces from I a graph G. We relate in Lemma 4 the optimum value for I to the optimum value for G.

Lemma 4. If $I=(U, C)$ is an instance for $\operatorname{MAX3SAT}_{\overline{3}}$ with $|U|=n,|C|=m$, and $f(I)=G$, then

$$
O p t_{\mathrm{SN}}(G)=4 n+5 O p t_{\mathrm{MAX}^{2} \mathrm{AAT}_{3}}(I)+6\left(m-O p t_{\mathrm{MAX}^{2} \mathrm{AAT}_{3}}(I)\right) .
$$

Proof. Consider first a truth assignment for I with $O p t_{\mathrm{MAX}_{3 \mathrm{SAT}}^{3}}(I)$ satisfied clauses. By Theorem 2, there exists a feasible solution Z^{\prime} for G, i.e., a set Z^{\prime} of splittings with size: $\left|Z^{\prime}\right|=4 n+5 O p t_{\mathrm{MAX3SAT}_{5}}(I)+6\left(m-O p t_{\mathrm{MAX3SAT}_{5}}(I)\right)$, which defines a planar graph from G. This establishes the inequality: $O p t_{\mathrm{SN}}(G) \leqslant 4 n+5 O p t_{\mathrm{MAX3SAT}_{3}}(I)+$ $6\left(m-O p t_{\mathrm{MAX3SAT}_{5}}(I)\right)$.

On the other hand, let Z^{\prime} be any feasible solution for G with size $\left|Z^{\prime}\right| \leqslant 4 n+$ $5 O p t_{\mathrm{MAXXSAT}_{3}}(I)+6\left(m-O p t_{\mathrm{MAX3SAT}_{3}}(I)\right)$. Since $\left|Z^{\prime}\right| \leqslant 4 n+6 m$, by Theorem 2, there exists a truth assignment with c satisfied clauses such that $\left|Z^{\prime}\right| \geqslant 4 n+5 c+6(m-c)=$ $4 n+6 m-c \geqslant 4 n+6 m-O p t_{\mathrm{MAX3SAT}_{3}}(I)=4 n+5 O t_{\mathrm{MAX}_{3} \mathrm{SAT}_{3}}(I)+6\left(m-O p t_{\mathrm{MAX}^{2} \mathrm{SAT}_{3}}(I)\right)$, which establishes the claimed equality.

We are now ready to define parameters α and β for the L-reduction and prove:
Theorem 5. splitting number is Max SNP-hard.
Proof. Theorem 2 says that a truth assignment for U with c satisfied clauses defines a feasible solution Z^{\prime} for $f(I)=G$ with size $\left|Z^{\prime}\right|=4 n+6 m-c \leqslant 4 n+6 m$. Hence, $O p t_{\mathrm{SN}}(G) \leqslant 4 n+6 m$. Now, by applying Lemma 3 we get $O p t_{\mathrm{SN}}(G) \leqslant 4 n+6 m \leqslant 4 n+$ $6 n=10 n=30 n / 3 \leqslant 30\lceil n / 3\rceil \leqslant 30$. Opt $_{\mathrm{MAX3SAT}_{3}}(I)$, which shows that $\alpha=30$ suffices.

On the other hand, let us define algorithm g and constant β. For let Z^{\prime} be a feasible solution for G with cost c^{\prime}, i.e., $c^{\prime}=\left|Z^{\prime}\right|$ is the size of this set of splittings Z^{\prime} which defines a planar graph from G. We distinguish two cases for c^{\prime} : If $c^{\prime}>4 n+6 m$, then choose as image of Z^{\prime} under g any feasible solution for I, and let c be the number of clauses satisfied by this truth assignment. If $c^{\prime} \leqslant 4 n+6 m$, then choose by Theorem 2 as image of Z^{\prime} under g a truth assignment for U with c satisfied clauses such that $\left|Z^{\prime}\right|=c^{\prime} \geqslant 4 n+5 c+6(m-c)$. Thus, by Lemma 4 we obtain $\left|O p t_{\mathrm{MAX3SAT}_{5}}(I)-c\right|=$ $\left|-O p t_{\mathrm{MAX3SAT}_{3}}(I)+c\right|=\left|(-6+5) O p t_{\mathrm{MAX3SAT}_{3}}(I)+(-5+6) c\right|=\mid(-6+5) O p t_{\mathrm{MAX3SAT}_{3}}(I)$ $+(-5+6) c+(4-4) n+(6-6) m|=| 4 n+5 O_{1} t_{\mathrm{MAX3SAT}_{3}}(I)+6\left(m-O p t_{\mathrm{MAX}_{3} \mathrm{SAT}_{3}}(I)\right)-$ $4 n-5 c-6(m-c)\left|=\left|O p t_{\mathrm{SN}}(G)-(4 n+5 c+6(m-c))\right|\right.$. Now, since: $O p t_{\mathrm{SN}}(G) \leqslant 4 n+$ $5 c+6(m-c) \leqslant c^{\prime}$, we have that: $\left|O p t_{\mathrm{SN}}(G)-(4 n+5 c+6(m-c))\right| \leqslant\left|O p t_{\mathrm{SN}}(G)-c^{\prime}\right|$. Therefore, $\left|O p t_{\mathrm{MAX3SAT}_{3}}(I)-c\right| \leqslant\left|O p t_{\mathrm{SN}}(G)-c^{\prime}\right|$, which shows that $\beta=1$ suffices. This ends the L-reduction.

3. Splitting number, non-planar deletion and cubic graphs

In Section 2 we have established the Max SNP-hardness of splititing number. The special instance of splitting number, the graph G constructed as image of a general instance I of MAX3SAT $\overline{\overline{3}}$, is a graph of maximum degree 3 .

For graphs of maximum degree 3, we have the following relationship between the problems splitting number and non-planar deletion:

Lemma 6. Let G be a graph of maximum degree 3. Then, we have $\operatorname{Opt}_{\mathrm{SN}}(G)=$ $O p t_{\mathrm{NPD}}(G)$, where $O p t_{\mathrm{SN}}(G)$ and $O p t_{\mathrm{NPD}}(G)$ denote, respectively, the optimum values for splitting number and non-planar deletion of G.

Fig. 8. Auxiliary graph for the proof of Corollary 9.
Proof. A leaf is a vertex of degree 1. Any splitting in a graph of maximum degree 3 yields one or two leaves. In addition, a crossing in the edge incident to a leaf can always be removed by considering a different drawing in the plane. Thus, if L is the set of leaves of G, then $O p t_{\mathrm{SN}}(G)=O p t_{\mathrm{SN}}(G \backslash L)$.

Let Z be a feasible solution of splitting number for G, i.e., Z is a set of splittings which defines a planar graph H from G. Define a subset L of $V(H),|L|=|Z|$, such that L is obtained from Z by adding to L one leaf obtained in each splitting of Z. By construction, the planar graph $H \backslash L$ is isomorphic to a subgraph of G with $|E(H \backslash L)|=$ $|E(G)|-|Z|$, i.e., we have that $|Z| \geqslant O p t_{\mathrm{NPD}}(G)$ and hence $O p t_{\mathrm{SN}}(G) \geqslant O p t_{\mathrm{NPD}}(G)$.

On the other hand, let L be a feasible solution of non-planar deletion for G, i.e., L is a set of edges whose removal leaves a planar subgraph of G. Hence, a planar graph is also obtained from G by splitting, for each edge (u, v) of L one of its endpoints, say v, with degree greater than 1 , into v_{1} and v_{2}, such that $\{u\}$ is the neighborhood of v_{1}. Thus, we have that $|L| \geqslant O p t_{\mathrm{SN}}(G)$, and hence $O p t_{\mathrm{NPD}}(G) \geqslant O p t_{\mathrm{SN}}(G)$.

Corollary 7. non-planar deletion for graphs of maximum degree 3 is Max SNP-hard.
Corollary 8. splitting number and non-planar deletion are Max SNP-hard when restricted to graphs not containing a subdivision of K_{5} as a subgraph.

Proof. It follows from Theorem 5 and Corollary 7 because a graph of maximum degree 3 does not have a subdivision of K_{5} as a subgraph.

Corollary 9. splitting number and non-planar deletion are Max SNP-hard for cubic graphs.

Proof. By Lemma 6, it suffices to show that splitting number is Max SNP-hard for cubic graphs. For, we use the strategy of Theorem 5 by modifying locally the graph G in Theorem 5 as follows. Consider the auxiliary graph G_{v} depicted in Fig. 8(a). For each vertex v of degree 2 in G, we add to G a copy of G_{v}, such that w_{v} is the vertex of G_{v} adjacent to v as shown in Fig. 8(b).

4. Conclusion and further work

We have established that for cubic graphs there is a constant threshold $c>1$ such that if splitting number or non-planar deletion can be approximated in polynomial time with ratio better than c, then $\mathrm{P}=\mathrm{NP}$.

Since maximum planar subgraph and non-planar deletion are complementary problems with respect to the number of edges of the graph, for the decision versions of these two problems, every result for non-planar deletion is also a result for maximum planar subgraph. In particular, Lemma 6 says that the NP-completeness of splitting nUMber for cubic graphs [4] implies both the NP-completeness of maximum planar subgraph and of non-planar deletion for cubic graphs.

The trivial polynomial-time approximation algorithm for maximum Planar subgraph produces a spanning tree and achieves a performance ratio of $\frac{1}{3}$: every spanning tree of a connected graph on n vertices has $n-1$ edges, and every planar graph on n vertices has at most $3 n-3=3(n-1)$ edges.

Recently, Cǎlinescu et al. [3] published the first non-trivial polynomial-time approximation algorithm for maximum planar subgraph achieving a higher performance of $\frac{4}{9}$.

Note that a cubic graph on n vertices has $3 n / 2$ edges, hence the trivial polynomialtime approximation algorithm for MAXIMUM PLANAR SUBGRAPH achieves for cubic graphs a performance ratio of $\frac{2}{3}$, the best known. We are currently trying to obtain a non-trivial polynomial-time approximation algorithm for maximum planar subgraph restricted to cubic graphs.

Note that if a graph G is dense (i.e., $|E(G)|=\Theta\left(n^{2}\right)$), then $O p t_{\mathrm{NPD}}(G)=\Theta\left(n^{2}\right)$. On the other hand, if a graph G is sparse (i.e., $|E(G)|=\mathrm{O}(n)$), then $O p t_{\mathrm{NPD}}(G)$ can be $\mathrm{O}(1)$. This stands in contrast with the fact that for a general connected graph G, we have $O p t_{\mathrm{MPS}}(G)=\Theta(n)$, given that a spanning tree has $n-1$ edges and that every planar graph has at most $3 n-6$ edges. The fact that, for a given graph, the optima of non-planar deletion and maximum planar subgraph do not necessarily have the same order, implies that the identity map cannot be used as f in an L-reduction from non-planar deletion and maximum planar subgraph, and explains the difficulty in defining an L-reduction from non-planar deletion to maximum planar subgraph. Cǎlinescu et al. [3] established both the Max SNP-hardness of maximum planar subgraph and non-planar deletion by presenting two distinct L-reductions from the same variant of the traveling salesman problem.

We are also trying to exhibit an L-reduction in order to establish the Max SNPhardness, or to construct a better polynomial time approximation algorithm, for maximum planar subgraph restricted to cubic graphs. We have two conjectures concerning the Max SNP-hardness of maximum planar subgraph:

Conjecture 10. maximum planar subgraph is Max $S N P$-hard even when restricted to cubic graphs.

The girth of a graph is the size of its smallest cycle.
Conjecture 11. splitting number is Max SNP-hard for cubic graphs with girth k, for some $k \geqslant 7$.

Lemma 12. The validity of Conjecture 11 implies the validity of Conjecture 10.

Proof. Let H be a connected planar subgraph of G, with $V(H)=V(G)$. Its number of edges $|E(H)|$ satisfies $\sum_{f \in F} d(f)=2|E(H)|$, where F is the set of faces in a plane drawing of H, and $d(f)$ is the degree of a face f. Recall that the degree of a face f is defined to be the number of edges incident to its boundary with cut edges counted twice [2]. If H has girth at least 7, then $7|F| \leqslant \sum_{f \in F} d(f)=2|E(H)|$. By Euler's formula: $7|F|=7|E(H)|-7|V(G)|+14$, which implies $|E(H)| \leqslant(7|V(G)|-14) / 5$.

Note that a cubic graph G has $3|V(G)| / 2$ edges. Hence, $O p t_{\mathrm{NPD}}(G) \geqslant 3|V(G)| / 2-$ $(7|V(G)|-14) / 5=|V(G)| / 10+\frac{14}{5}$. Thus, $O p t_{\mathrm{NPD}}(G)>|V(G)| / 10$. Therefore, $30 . O p t_{\mathrm{NPD}}(G)>30|V(G)| / 10=3|V(G)|>3|V(G)| / 2 \geqslant O p t_{\mathrm{MPS}}(G)$.

Therefore, in order to define an L-reduction from non-planar deletion to maximum planar subgraph, we may take f as the identity map and $\alpha=30$ in the L-reduction. To finish the L-reduction, it remains to define g and β. For, given a feasible solution for instance G of maximum planar subgraph of cost c^{\prime}, take as its image by g the set of edges that are not in this planar subgraph. The cost of this feasible solution for non-planar deletion is $c=|E(G)|-c^{\prime}$. Since $O p t_{\mathrm{MPS}}(G)=|E(G)|-O p t_{\mathrm{NPD}}(G)$, then $\left|O p t_{\mathrm{NPD}}(G)-c\right|=\left|O p t_{\mathrm{MPS}}(G)-c^{\prime}\right|$, and $\beta=1$ suffices.

A positive evidence for the validity of Conjecture 11 is the existence of an infinite number of cubic graphs with a fixed girth $k, k \geqslant 7$ [6].

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof verification and hardness of approximation problems, in Proceedings of the IEEE Symposium on Foundations of Computer Science, FOCS'92, pp. 14-23.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
[3] G. Cǎlinescu, C.G. Fernandes, U. Finkler, H. Karloff, A better approximation algorithm for finding planar subgraphs, J. Algorithms 27 (1998) 269-302.
[4] L. Faria, C.M.H. de Figueiredo, C.F.X. Mendonça, Splitting number is NP-complete, Discrete Appl. Math. 108 (1-2) (2001) 65-83.
[5] C.H. Papadimitriou, M. Yannakakis, Optimization, approximation, and complexity classes, J. Comput. System Sci. 43 (1991) 425-440.
[6] W.T. Tutte, Connectivity in Graphs, University of Toronto Press, Toronto, 1966.
[7] M. Yannakakis, Edge-deletion problems, SIAM J. Comput. 10 (1981) 297-309.

[^0]: *) Partially supported by CNPq, CAPES, FAPERJ, FINEP, Brazilian research agencies.
 E-mail addresses: luerbio@cos.ufrj.br (L. Faria), celina@cos.ufrj.br (C.M. Herrera de Figueiredo), xavier@din.uem.br (C.F.X. Mendonça).

