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Abstract Scatterometry is a well established technique cur-
rently utilized in research, as well as in industrial applica-
tions, to retrieve the properties of a given scatterer (the tar-
get) by looking at how the light coming from a certain source
is diffracted in the far field. Currently the light source is
often a discharge lamp that, after wavelength filtering, can
be thought as a quasi-monochromatic, but spatially incoher-
ent, source. In the present work, benefits of using a focused
spot from a spatially coherent light source, as that emitted
by a laser, are investigated on a theoretical viewpoint. The
focused spot is scanned over the object of interest and, for
each scan position, a far-field diffraction pattern is recorded.
Our results show that spatially coherent light can sensibly
increase the accuracy of the technique with respect to the
target’s geometrical profile.

1 Introduction

One of the oldest and most challenging problems faced in
electromagnetism is represented by the requirement of re-
trieving some property of an object only looking at how
an incident radiation is scattered by the object itself. The
problem is interesting to investigate for many reasons. First
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of all, several inspection methods are essentially based on
this principle. For instance, we can recall here X-ray imag-
ing techniques, optical coherent tomography for detection
of human diseases or optical scatterometry for metrologi-
cal applications, just to name a few [1, 2]. These techniques
are very intriguing also from a theoretical viewpoint, since
they fall into the class of the so-called inverse problems and
usually require special care in their treatment. The reason
of that stems from the fact that they are nonlinear problems
where the scattered radiation is measured putting some de-
tector at a distance of several wavelengths from the scatterer
in order to minimize eventual effects on the object itself.
While this far-field regime decouples object and probe and
actually simplifies the mathematical model, when compared
to a near-field technique, it has however the drawback of
turning the problem into an improperly-posed one. In fact, it
was proven rigorously that any inverse technique in elec-
tromagnetism, that is based on far-field measurements, is
severely ill-posed. This severe ill-posedness derives from the
fact that there exists always an array of singular values of
the operator that maps the near field of a radiating solution
of Maxwell’s equations to the corresponding far field, that
approaches zero with arbitrary precision [3].

In order to stabilize the solution of a severely ill-posed
problem like this, regularization methods have to be applied
to achieve a good estimate of the object from the measured
far field. In the present work we are mainly interested in
optical scatterometry, that can be even more complicated. In
fact, since the finite integration time of any detector is too
large to resolve field oscillations at optical frequencies, only
the field intensity is usually directly accessible. This means
that the problem is not only to regularize the inversion from
the far field to the object, but also that the far field is only
partly known.
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Fig. 1 Grating profile with the
corresponding shape parameters
(midcd, swa, h) used to describe
the geometrical profile

On the other hand, the importance of the technique in
current industry processes is so high to deserve ad hoc stud-
ies in order to evaluate its real potentialities and limitations
[4–8]. As an example, optical scatterometry is used in some
applications of critical dimension (CD) metrology to deter-
mine with great precision (ranging from a few nanometers
to even a fraction of a nanometer) the profile of a diffraction
grating. The grating is usually described in terms of a finite
numbers of parameters that have to be determined through
measurements. The illuminating light is sent to the target
and the scattered light is collected back to measure it either
angularly or spectrally resolved. This spectrum is then com-
pared to a simulated one, in order to find the set of param-
eters that minimizes the difference between measurements
and simulations. The technique has several advantages: it is
not affected by the diffraction limit, is fast and the imple-
mentation is not so technically demanding if compared to
competing techniques [7]. Its use in the electronic industry
is such that one can say that is the standard de facto. How-
ever, setting the limits and finding possible improvements
is highly desirable to comply with current and near future
industry’s needs, as outlined in the ITRS roadmap of the
semiconductors industry.

In the present paper, we evaluate whether and how the
performance of optical scatterometry can be improved if
spatially coherent light is utilized as source. The analysis
is based on a comparison between the estimated uncertainty
in the measurement of shape parameters when spatially co-
herent or completely incoherent light is used as illumina-
tion.

The paper is organized as follows. In Sect. 2, a model for
the diffraction grating and the illumination is chosen, while
in Sect. 3 we discuss the statistical model used to estimate
the uncertainties on the shape parameters. In Sect. 4, the
main results of the work are discussed and then a summary
is presented in the Conclusions section.

2 Models for grating and illumination

Let us assume we have a perfectly periodic, one-dimensional,
symmetric, infinite diffraction grating with spatial period
L. By one-dimensional we mean that the grating properties
are invariant along one direction (for example, the y-axis),
while it is periodic along a perpendicular direction (x-axis).
For simplicity, and without a real loss of generality, we will
consider a simple structure as that shown in Fig. 1. The grat-
ing consists of a bulk or substrate of index of refraction nbulk

with, on top of it, a different medium of index of refraction
ntop. Generally speaking, these indices are complex-valued
quantities. The surrounding medium is assumed to be air
with n = 1. Usually, the spatial period is known with good
accuracy but not the actual shape within one period. This
shape can be parameterized in terms of a given number of
parameters representing the real unknowns that have to be
determined by the measurements. In the present case, we
consider a trapezoidal shape fully described through three
parameters: side-wall angle (swa), critical dimension at half
height (midcd) and height (h), as shown in Fig. 1.

Additionally, one has to specify the properties of the il-
lumination. A simple sketch is shown in Fig. 2. The light
coming from the source passes through a high-NA objective
and is subsequently focused onto the grating (NA, for nu-
merical aperture). After interacting with the grating, part of
the scattered light is collected again by the same objective
and directed to the detector (not indicated in the figure). The
advantage of using an objective lens resides in the fact that
it is possible to illuminate the grating with different incident
plane waves at the same time (all those plane waves that lie
within the NA). Considering that the objective is usually il-
luminated by an expanded beam, we will assume, from now
on, that in the back focal plane of the objective there is a
uniform field distribution and that the role of the lens is only
to convert the light coming from each point of that plane in
a plane wave impinging on the grating itself.
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Fig. 2 Simple sketch showing
how the incoming light is
incident on the grating through
an objective lens of numerical
aperture NA. The gratings
dimensions are not in scale for
clarity reasons. The zoomed
area simply shows the typical
structure of a focused field

The comparison between using coherent and incoherent
light will be based on a maximum likelihood estimate, as
explained in the next section.

3 Estimated uncertainties

It will be assumed that the polarization of the incident light
before the objective is oriented either along the x or y direc-
tion (with reference to Fig. 1). For any of those two orthogo-
nal incident polarizations the full scattered light is measured
without polarization selection. This leads to two far-field in-
tensity measurements, Ix and Iy say, corresponding to a x

and y incident polarized light in the pupil, respectively. For
simplicity, from now on we will group Ix and Iy in a unique
measurement output consisting of a collection of intensity
data points {I(m)

i }, i = 1, . . . ,N , with N = 2Ndet denoting
the total number of points and Ndet being the number of pix-
els on the detector. The index m recalls that it deals with
measured data.

Predictions over the possible outcomes of an experiment
are possible only when a rigorous computation method is
chosen. In our case, we use Rigorous Coupled Wave Anal-
ysis (RCWA) [9–11], which is known to be computation-
ally efficient for periodic structures. If pi denotes the known
physical conditions, like incident angles, wavelength, polar-
ization for the ith data point and a the space of shape param-
eters, the result of a simulation can be written as {I(pi ,a)}.
Since the actual values of the shape parameters a are un-
known, one cannot expect, in general, {I(m)

i } and {I(pi ,a)}
to coincide. Additionally, every experiment is affected by
noise which means that along with the data {I(m)

i } we have
also the corresponding uncertainties {σi}, i = 1, . . . ,N . For
reasons of simplicity, in the following any systematic error
is omitted and only random errors are considered. Following
the approach suggested in [12], we assume that the noise of
the measured data is normally distributed with standard de-
viations given just by the measured uncertainties {σi} [13].

Also, for simplicity it will be assumed, from now on, that
σi = σ , ∀i. It is reasonable to say that when the set of shape
parameters coincides, within some accuracy, with the real
one, then the distance between measurements and simula-
tions should be minimal. In statistical theory, a good way to
define such a distance is using the χ2 distribution

χ2 = 1

N

N∑

i=1

[
I(m)
i − I(pi ,a)

σi

]2

(1)

and to look for that set of parameters amin that minimizes
it [14]. Of course, in case of an ideal noiseless system (i.e.
σi = 0, ∀i), and the assumption that the mathematical model
is complete, the minimum of χ2 would lead exactly to the
right set of parameters without any uncertainty. However,
some noise will always be present and this raises the issue
of how good, or accurate, a parameter estimation is.

What is interesting in this approach is that all estimated
uncertainties, �a say, on the shape parameters can be de-
rived by expanding (1) in Taylor’s series around the mini-
mum. The second order derivative of such expansion is:

∂2χ2

∂aj ∂ak

= 2

N

N∑

i=1

1

σ 2
i

[
∂I(pi ,a)

∂aj

∂I(pi ,a)

∂ak

− [
I(m)
i − I(pi ,a)

]∂2I(pi ,a)

∂ak∂aj

]
. (2)

In (2) the indexes j and k refer to the shape parameters.
Usually, the term containing the second-order derivative in
(2) is neglected, since summing on a large number of points
N tends to average the difference [I(m)

i − I(pi ,a)] out. This
assumption leads to a matrix {αjk}

[
αjk

] = 1

2

∂2χ2

∂ak∂al

= 1

N

N∑

i=1

1

σ 2
i

[
∂I(pi ,a)

∂aj

∂I(pi ,a)

∂ak

]

a=amin

,

with j, k = 1,2,3, . . . , (3)
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that is related to the estimated 3-sigma uncertainties for the
shape parameters a as in the following:

�aj = 3
√

Cjj , (4)

where [Cjk] = [αjk]−1 (again, for details, the reader can re-
fer to [12]). An analysis of these uncertainties is fundamen-
tal to check how good the whole system is. In fact, large
uncertainties mean that the technique does not resolve large
variations of the shape parameters, which in turn denotes
very low sensitivity with respect to the grating’s profile.
Stated differently, large uncertainties imply that several re-
alizations of the set a are equally compatible with the mea-
surements and the technique cannot discern among them.
On the other hand, small uncertainties are an indication that
good accuracy in determining the shape parameters can be
reached. It follows that a comparison between the corre-
sponding estimated uncertainties on the shape parameters is
a way to determine whether a chosen technique is better than
another.

In the next section we are going to make such a compar-
ison, when coherent or incoherent light is used as illumina-
tion, by discussing a few examples.

4 A comparison between spatially coherent and
spatially incoherent light

Once the model for the grating and for the estimated uncer-
tainties on its shape parameters is available, one is ready to
analyze the effect of coherence. Before going into the de-
tails of the present analysis, we need to clarify one aspect.
When monochromatic, spatially incoherent light is used as a
source, a diffraction-limited spot cannot be generated. This
implies that a large spot illuminates a large portion of the
grating at once (as compared with spatially coherent illumi-
nation). However, if spatially coherent illumination of same
wavelength is used, then the spot size can be of the order of
the wavelength. It follows that if a strongly focused coher-
ent illumination is applied, in order to cover the grating, a
scanning scheme has to be implemented. Different scanning
strategies can be realized. In our case, we will suppose that
during scanning of the object there is always a good overlap
between two adjacent positions. This was recently profitably
used in the context of phase retrieval problems where it re-
sulted to be fundamental to reconstruct the original object’s
amplitude and phase from a collection of far-field intensity
measurements [15–17]. In order to make a fair comparison,
one should also take into account that since scanning adds
more additional data points, and recalling that the final un-
certainties scale with the total number N of data points as
1/

√
N , more points imply smaller uncertainties. To be more

precise, if only one position is considered in case of inco-
herent illumination and M positions for the coherent one,

then in the latter case each uncertainty has to be increased
by multiplying by a

√
M factor. This is the reason that we

have defined the χ2 distribution in (1) in a slightly different
way, with respect to the standard form found in literature,
by dividing by the number of points N . In this way we have
removed any difference in the uncertainties only originating
from having a different number of data points.

The need for scanning has further consequences. On an
experimental viewpoint it makes obviously the measure-
ment process slower, since more acquisition steps are re-
quired. On the other hand, it also affects the uncertainties
estimation analysis, as presented here. In fact, at every new
position it is necessary to solve rigorously the scattering
problem between incident field and grating, which is time
consuming. Fortunately, in case of an ideal infinite peri-
odic grating the complex amplitude Rn of the nth diffrac-
tion order in any shifted position can be derived easily from
the same original position just by adjusting the phase. For
reader’s convenience, the expression of the correct phase
correction is reported in the Appendix along with a short
derivation.

Moving now to a concrete example, let us consider a grat-
ing, as shown in Fig. 1, with L = 189 nm, midcd = 27 nm,
swa = 87◦, h = 40 nm and NA = 0.95. We choose silicon as
bulk material and polymethyl methacrylate (PMMA) resist
as grating material. We study the uncertainties on a range of
possible wavelengths in the interval λ ∈ (145 nm,450 nm).
In order to build the matrix [αjk] in (3) one has to implement
the derivatives numerically. In the present case, a central dif-
ference formula is used with an increment of 0.1 nm in case
of midcd and height variation and 0.1◦ in case of swa varia-
tion.

In the case of coherent illumination, three different po-
sitions were considered. An explicative plot is reported in
Fig. 3 (where only two positions are shown). In the subplot
(a) the incident spot is initially supposed to be centered on
one line. The other two positions (subplot (b)) correspond
to the same lateral shift �x, but in two opposite directions.
Since the absolute value of such uncertainties depends on
the noise level considered (i.e. on the {σi} introduced in the
previous section) as well as on the number of points N in the
detector, it is somehow advantageous to discuss the results
independently of these values that can change from case to
case. For this reason, in Fig. 4 the ratios between the uncer-
tainties �ainc and �acoh (see (4)) for incoherent light and
those for coherent case are shown for the three parameters
of interest.

All plots are shown as function of the dimensionless vari-
able λ/(NAL). This is convenient since it allows us to check
easily how many diffraction orders enter into the exit pupil.
In fact, when λ/(NAL) ≥ 2, only the scattered zeroth-
orders of all incident plane waves fall into the NA of the
microscope objective. Since coherence can manifest itself
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Fig. 3 Initial (subfigure (a)) and one shifted configuration (subfigure (b), shift �x) in case of coherent illumination

Fig. 4 Ratio between the uncertainties �ainc and �acoh, in case of
incoherent and coherent light respectively. L = 189 nm is the grating’s
period and λ the wavelength. NA = 0.95 is the numerical aperture. The

curves were obtained by varying λ in the range of (145 nm, 450 nm).
(a) midcd, (b) swa, (c) h. It should be noted that the dispersion relation
for the optical constants n and k is accounted for

only in terms of interference effects between overlapping
orders, in that case coherent and incoherent light behave in
the same way and eventual coherent effects cannot be seen.
When 1 ≤ λ/(NAL) < 2, also the first orders are included
in the lens pupil. In general, when λ/(NAL) < 2/s, with s

positive integer, then the first sth orders are collected by the
lens.

To analyze also the dependence on the lateral shift, we
have studied different situations. All black lines in Fig. 4

correspond to a lateral shift �x = L/2. The green ones were
computed with a shift of L/4 while the red ones again with
a lateral shift of L/2 but including also an initial bias of
midcd/2. The reason for introducing such bias is twofold
and will be clearer later on.

If we look at Fig. 4(a), black line, we see that for large
values of λ/(NAL) (larger than 2) the ratio between the
two uncertainties is unity. This means that there is no differ-
ence between the two configurations, as it should be. How-
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ever, as soon as λ/(NAL) tends to be smaller than 2, then
some difference shows up. The first orders start to be col-
lected by the lens and, as a consequence of that, the uncer-
tainty ratio departs from unity. It gets bigger than one in
the whole range of studied wavelengths reaching its maxi-
mum for λ/(NAL) = 1.17, where the uncertainty obtained
using coherent light is more that 2.5 smaller than that ob-
tainable using incoherent light. It is also important to notice
that the ratio is not a monotone function of the independent
variable λ/(NAL). Even more important is to observe that
when the lateral shift is smaller, as in the green line (shift
L/4), the difference between the two cases gets even big-
ger. In that case the maximum gain is about 3.4. To under-
stand this phenomenon, one should recall that the focused
field does not have a uniform amplitude but shows an Airy
pattern-like structure. Intuitively, we can say that the field
is more sensitive to shape changes when the central lobe is
in the vicinity of one line and/or its edges. This is not the
case for a shifted beam when the beam’s spot size is small
enough and the period L and the lateral shift �x are both
much larger than the midcd. As it has been mentioned be-
fore, in order to confirm this effect, we introduced a lateral
shift (bias) between the relative position grating-spot and we
computed the uncertainty ratio for the case when the lateral
shift is again L/2 but the incident beam is initially centered
on one line’s edge (Fig. 4(c), red curve). As expected, the
ratio is now higher. This proves that using optical coherent
scatterometry provides also information on the relative spa-
tial position between illumination and grating.

The same analysis can be repeated for the other two pa-
rameters, swa and height. In Fig. 4(b), the uncertainty ratios
for swa are presented with essentially the same features dis-
cussed before. At last, Fig. 4(c) shows the uncertainty ra-
tio for the height. Here an additional comment is necessary.
It is manifest that the difference among the three scanning
schemes is now notably reduced. But this is not surpris-
ing, since the detection of height variations is expected to
be less sensitive to the relative position grating-illumination
than changes in the midcd and swa.

For what we said so far, it follows that a coherent op-
tical scatterometer can lead to benefits only when at least
part of the first diffracted orders lie into the exit pupil.
This fixes some constraint between the wavelength λ and
the pitch L and, consequently, on the scanning scheme as
well. In fact, one has to scan one period of the grating by
keeping some overlap between adjacent spots, which has
consequences on the minimum number of scanning posi-
tions necessary within one period. Once λ and NA are fixed,
the minimum pitch to measure the first diffracted orders is
Lmin = λ/(2NA). On the other hand, the spot size can be es-
timated, using Airy’s expression, as rspot = 0.61λ/NA. This
implies that rspot/Lmin = 1.22, and it represents a constraint
for the distance between two consecutive adjacent spots,
considered that the lateral shift is a fraction of rspot.

5 Conclusions

To summarize, a theoretical analysis on a spatially coherent
optical scatterometry has been described. After considering
a specific model for the grating and for the illumination path,
we computed the expected uncertainties in the shape pa-
rameters under the assumption of Gaussian distribution for
the measurement noise and for the wavelength in the range
(145 nm,450 nm). We have shown that, once a proper strat-
egy on how to scan the sample is chosen, spatial coherence
leads to an increase in the accuracy of the grating’s profile
reconstruction. Compared with the incoherent case, it was
shown that in some circumstances the estimated uncertain-
ties on the shape parameters can be up to more than three
times smaller than those obtained using a standard discharge
lamp.
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Appendix: How to include the lateral shift into a
rigorous electromagnetic code without running
additional simulations

In Sect. 4 we stated that it is not necessary to re-run
an additional simulation, after shifting the illumination of
an amount �x, to compute the complex amplitude of all
diffraction orders, once the result in the original configu-
ration (i.e. without any shift) is available. The aim of this
Appendix is to derive the expression of the phase shift that
is needed to do that.

Let us assume that an incident field Einc(x, y, z) im-
pinges on an infinite grating that is invariant along the y

direction. Einc(x, y, z) can be any general field, but we will
focus only on one of the plane waves, u exp[i(kxx + kyy +
kzz)], representing its angular spectrum. As usual, kx, ky, kz

are the components of the wave vector of the incident wave
and u is the unit vector describing the polarization state. The
total field above the grating can be written then in terms of
the Rayleigh expansion as [18, 19]

E1(x, y, z) =
∑

n

Rn exp [i(kxnx + kyny − kznz)]

+ u exp [i(kxx + kyy + kzz)] (5)
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where kxn, kyn and kzn are the components of the wavevec-
tor of the nth plane wave, with k2

xn + k2
yn + k2

zn = k2, with
k = 2π/λ. From Bragg’s law we know that kxn, kyn and kzn

are related to kx, ky and kz through the relations

kxn = kx + 2πn

L
kyn = ky (6)

kzn =
√

k2 − k2
xn − k2

yn

with L the period of the grating. The complex amplitudes
Rn are the unknowns that have to be determined by solving
Maxwell’s equations.

If we now shift the whole (5) by �x along the x direction,
we have

E1(x − �x,y, z)

=
∑

n

R̃n exp [i(kxn(x − �x) + kyy − k1,znz)]

+ exp [i(kx(x − �x) + kyy + kzz)]u
=

∑

n

R̃n exp (−ikxn�x) exp [i(kxnx + kyy − k1,znz)]

+ exp [i(kxx + kyy + kzz)] exp (−ikx�x)u, (7)

where R̃n are the new coefficients that have to be computed
in the new configuration. Now from (7) we see that the in-
cident plane wave propagates exactly along the same di-
rection, which means that the incident wave vector is un-
changed. Hence the interaction with the infinite grating,
which is a linear process, is the same as before. The only
difference consists in having a different complex amplitude,
so that the final effect of shifting should be the presence of a
constant term exp [−ikx(�x)] in front of the scattered field.
In other words, the final result must be

E1(x − �x,y, z)

=
∑

n

exp (−ikx�x)Rn exp [i(kxnx + kyy − k1,znz)]

+ exp [i(kxx + kyy + kzz)] exp (−ikx�x)u. (8)

It is possible to get (8) from (7) under the condition

exp (−ikx�x)Rn = R̃n exp (−ikxn�x) (9)

which in turn implies, from (6),

R̃n = Rn exp (i2πn/L�x). (10)

This represents the phase correction we were looking for to
account for the lateral shift �x.
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