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Abstract

E1cient measurement of the performance index (the distance of a loading parameter from the voltage collapse point)
is one of the key problems in power system operations and planning and such an index indicates the severity of a power
system with regard to voltage collapse. There exist many interesting methods and ideas to compute this index. However,
some successful methods are not yet mathematically justi5ed while other mathematically sound methods are often proposed
directly based on the bifurcation theory and they require the initial stationary state to be too close to the unknown turning
point to make the underlying methods practical.

This paper 5rst gives a survey of several popular methods for estimating the fold bifurcation point including the
continuation methods, bifurcation methods and the test function methods (Seydel’s direct solution methods, the tangent
vector methods and the reduced Jacobian method) and discuss their relative advantages and problems. Test functions are
usually based on scaling of the determinant of the Jacobian matrix and it is generally not clear how to determine the
behaviour of such functions. As the underlying nonlinear equations are of a particular type, this allows us to do a new
analysis of the determinants of the Jacobian and its submatrices in this paper. Following the analysis, we demonstrate
how to construct a class of test functions with a predictable analytical behaviour so that a suitable index can be produced.
Finally, examples of two test functions from this class are proposed. For several standard IEEE test systems, promising
numerical results have been achieved. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

An electrical power system can be modelled in nodal analysis by a set of ordinary diBerential
equations. The network is usually runing at an equilibrium and a planned or an unexpected change in
operating conditions can set the system to a new equilibrium. Voltage collapse in a power system is a
real world problem that can occur in association with bifurcation problems of the underlying nonlinear
power $ow equations, particularly fold bifurcations (or sometimes called saddle-node bifurcations)
[4–6,24,27,9]. We concentrate on identifying the fold bifurcation point in the nonlinear system
[12,16].

In the mathematical literature, the term ‘fold bifurcation’ is often called the turning point because
the solution turns at a fold point [10,25,28]. Adopting the usual notation, denote a nonlinear system
of equations by

f(x; �) = 0; (1)

where x∈Rn is the state vector, �∈R is the bifurcation parameter and f : Rn × R → Rn with
f(x) = [f1(x); : : : ; fn(x)]T. Assume that the current state variable is x = x0 corresponding to the
parameter �0. Away from the fold point, to 5nd the state variable x = x1 for any � = �1, we can
use the Newton method for k = 1; 2; 3 : : :

J (x(k−1)
1 )Jx(k) = −f(x(k−1)

1 );
(2)

x(k) = x(k−1) + Jx(k)

to achieve limk→∞ x
(k)
1 = x1, provided that det(J ) �= 0. For power systems, x denotes the vector of

bus voltage magnitudes and angles, � refers to the power demand and f the power balance equation
from KirchhoB laws (to be speci5ed later); see also [12,29,2].

At the fold point, the Jacobian matrix J = fx is singular and one of its real eigenvalues becomes
zero. In particular, we consider the case of a normal turning point, that is, assume that the rank of
the n× n Jacobian matrix at a fold point is (n− 1); see [18]. The obvious way of 5nding such a �
associated with the fold point is to solve det(J ) = 0. Unfortunately this is not feasible numerically,
because (i) it is not easy or e1cient to use an analytical formula for det(J ) for a large n; (ii) it is
not easy to locate the vanishing of the Jacobian (i.e. when det(J )=0) and a well-conditioned matrix
such as J =diag(0:1; : : : ; 0:1) may have a zero determinant in the numerical sense due to bad scaling;
see [13]. Test functions (usually denoted by �(�)) are useful alternatives to det(J ) because they are
smoothly behaving and zero at the fold point. It is the purpose of this paper to introduce new test
functions and show that they can give an accurate prediction of the fold parameter � starting from
any current value �0.

Section 2 of this paper discusses the nonlinear power $ow equations and re-writes them in terms
of the standard notation of nonlinear equations. Section 3 surveys several methods that may be used
for locating the fold bifurcation point. Illustration of their performance will be done for a simple
IEEE 9-bus system involving nonlinear equations of size 14. Section 4 introduces some new results
and properties of the Jacobian matrix that lead to proposal of two new test functions with sound
theoretical basis for parameter prediction. Section 5 presents more comprehensive experimental results
using more and larger standard IEEE test examples that illustrate the eBectiveness of our proposed
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method, both for a single load variation and multiple load variations. Finally, Section 6 gives a short
summary and preliminary conclusion.

2. The power �ow equations

The power $ow problem involves the calculation of voltages at all nodes of an alternating current
network when subjected to a speci5ed loading condition and subject to the power and voltage con-
straints that are applied to the system. The essential physical laws are the KCL and KVL (KirchhoB
current and voltage laws) coupled with power balance (note that the complex power S = P + iQ is
linked to the voltage V and current I via S =VI∗, where ∗ denotes a complex conjugate). The main
equations can be found in applied mathematics books e.g. [29,2] as well as in most power system
analysis books e.g. [12,16].

Here, we give a brief description to assist readers. Assume that we are dealing with an electrical
power system of m+ 1 nodes (called buses): j = 1; 2; : : : ; m; m+ 1 with the last one, m+ 1, used as
the reference bus. In nodal analysis, the novelty lies in converting (somewhat complicated) system
control quantities into equivalent quantities in terms of admittance (the reciprocals of impedance)
and equivalent circuits. At bus j, write into polar form Vj = vj exp(i�j) with vj and �j denoting the
voltage magnitude and phase angle. Similarly between any two connecting buses j and k, write the
admittance as Yjk = yjk exp(i�jk).

Then at bus j, letting the combined active and reactive power (due to other buses) equal to the
net injected active and reactive power yields the power $ow equations as follows:

Sj = VjI∗j ; (3)

that is,

Pj + iQj =Vj

m+1∑
k

(YjkVk)∗

= vj
m+1∑
k=1

yjkvk exp(�j − �k − �jk): (4)

Therefore, we can write the nonlinear equations for Qj; vj; �j as follows (Pj is usually known as
discussed below):

Pj = vj
m+1∑
k=1

yjkvk cos(�j − �k − �jk);

(5)

Qj = vj
m+1∑
k=1

yjkvk sin(�j − �k − �jk):

At a network equilibrium, the net injected power Sj = Pj + iQj is equal to the diBerence of the
generation power PGj + iQGj and the (user consumed) load power PLj + iQLj .
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In iterating the power equations or in a power disturbance, the two powers (Sj and the diBerence)
are diBerent and hence we have the term power mismatch, referring to (for bus j)

JPj = PGj − PLj − Pj = PGj − PLj − vj
m+1∑
k=1

yjkvk cos(�j − �k − �jk);

(6)

JQj = QGj − QLj − Qj = QGj − QLj − vj
m+1∑
k=1

yjkvk sin(�j − �k − �jk):

In normal circumstances, the power equations are then simply JPj = JQj = 0 that are sometimes
called the mismatch equations (a confusing usage!).

The precise number of equations to be solved depends upon the bus type:
Type 0: the slack bus (reference) j = m + 1 where vj = 1 and �j = 0 and no equation is needed;
Type 1: a PQ (load) bus at j = 1; : : : ; m1 where two power equations for vj and �j are needed;
Type 2: a PV (voltage control) bus at j = m1 + 1; : : : ; m where vj is given and only one power
equation is needed for �j.

Here m1 is the total number of PQ buses (which are assumed to be the 8rst m1 buses out of the
network). Then the power equations for the network can be written as follows:



JP1
...

JPm

JQ1
...

JQm1




=




PG1 − PL1 − P1
...

PGm − PLm − Pm

QG1 −QL1 −Q1
...

QGm1
−QLm1

−Qm1




= 0: (7)

Let n = m + m1 be the total number of unknowns and let x∈Rn denote the system state variables
i.e.

x = [x1 · · · xn]T = [�1 �2 : : : �mv1v1 · · · vm1 ]
T:

De5ne f : Rn → Rn as follows

f(x) =




f1(x)
...

fm(x)
fm+1(x)

...
fn(x)




=




JP1(x)
...

JPm(x)
JQ1(x)

...
JQm1(x)



: (8)

In the above setting of nonlinear equations, the load can be a varying parameter. When the network
is operating at a stationary equilibrium, we use Newton’s method to solve the power $ow problem
to determine the voltages of the entire network [30]. Assume the current state vector is x0 associated
with the present load [PL10 PL20 ; : : : ; PLm0 PLm+1; 0 ].

Voltage collapse occurs in power systems as a result of a sequence of events that accompany a
loss of stability where a change in system conditions causes a progressive and uncontrollable drop
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in voltage in signi5cant parts of a power system [11,3]. The main factor causing this collapse has
been shown to be the depletion of reactive load power on the power system. Mathematically, voltage
collapse is associated with fold bifurcations resulting from a loss of stability in the parameterised
nonlinear equations that describes the static power system [5]. Over the last few years many articles
and papers have been written on the subject [3].

To describe the load increase in terms of a varying parameter �, de5ne the new load as

PLj = PLj0 + ��j;
(9)

QLj = QLj0 + ��j;

where PLj and QLj are the new real and reactive loads increased after the initial state at �0 = 0; and
�j and �j describe the load increase pattern at each bus j for the real and reactive loads, respectively.
Then we may write the parameterised power $ow equations at bus j as follows:

JPj = PGj − (PLj0 + ��j) − Pj = 0;
(10)

JQj = QGj − (QLj0 + ��j) − Qj = 0;

where Pj and Qj are as de5ned in Eq. (5). Combining Eq. (10) with (6) we obtain

JPj = JPj − ��j = 0;
(11)

JQj = JQj − ��j = 0:

Now we de5ne f(:; :) :Rn × R→ Rn as follows

f(x; �) =




JP1(x; �)
...

JPm(x; �)
JQ1(x; �)

...
JQm1(x; �)




=




JP1(x) − ��1
...

JPm(x) − ��m
JQ1(x) − ��1

...
JQm1(x) − ��m1




= 0 (12)

and combining with (8) we obtain the our main system as a special case of (1)

f(x; �) = f(x) − �b= 0; (13)

where we only allow 5xed power changes to distribute the total system load change represented by
�. Here the constant vector b∈Rn denotes the system load pattern i.e. b = [�1 : : : �m �1 : : : �m1 ]

T

and is such that
∑n

k=1 bk = 1. In this paper, we also consider the special case

b=
s∑

k=1

wlk elk with wlk = 1=s; (14)

where elk is the lk th column of In×n with m+16 lk6 n i.e. we only consider variations of reactive
load for a single bus or a selection of any s load buses.
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Finally, to get familiarised with the uni5ed notation, we expand the Jacobian equation in terms
of the power quantities



@JP1

@�1
: : :

@JP1

@�m

@JP1

@V1
: : :

@JP1

@Vm1
...

...
...

...
@JPm

@�1
: : :

@JPm

@�m

@JPm

@V1
: : :

@JPm

@Vm1

@JQ1

@�1
: : :

@JQ1

@�m

@JQ1

@V1
: : :

@JQ1

@Vm1
...

...
...

...
@JQm1

@�1
: : :

@JQm1

@�m

@JQm1

@V1
: : :

@JQm1

@Vm1







J�1(x)
...

J�m(x)
Jv1(x)

...
Jvm1(x)




= −




JP1(x)
...

JPm(x)
JQ1(x)

...
JQm1(x)



: (15)

To show the performance of various methods, we use the following IEEE 9-bus system which
is in IEEE Common Data Format; see [31]. This system as shown in Fig. 1 has 9 buses: m1 = 6
load buses (Type 1: bus 1; 2; : : : ; 6), m = 8 − m1 = 2 generators (Type 2: bus 7; 8) and 1 reference
generator bus (Type 2: bus 9).

3. Bifurcation methods and test functions

To locate a fold point the usual bifurcation technique, based on the well-known ABCD lemma
[10,20,28], extends the nonlinear system by including an eigensystem for an zero eigenvalue or other
suitable equations to ensure solvability. Suppose (x∗; �∗) is a fold point of (13). While the solvability
is properly addressed at (x∗; �∗), the domain of convergence is practically small i.e. the current
parameter �0 must be close to the unknown parameter �∗ in order for the Newton method to converge.

Fig. 1. The standard IEEE 9-bus example.
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In this section, we shall 5rst discuss the bifurcation methods and continuation methods, and then
survey several test functions methods in order to highlight the relative advantages and disadvantages
of each approach.

3.1. Direct bifurcation methods

To compute the fold point we set up the extended (2n + 1) dimensional system [22,25]

G(Y) =


 f(x; �)
fx(x; �)h
hk − 1


 = 0; (16)

where

Y =



x

h

�


∈R2n+1:

Here h∈Rn is some suitable vector with the normalising condition hk =1 for some 16 k6 n. Other
normalising conditions for h such as ‖h‖2 = 1 and ‖h‖∞ = 1 can also be de5ned [25]. Notice that
at the fold point (x∗; �∗), h∗ is the right eigenvector of the Jacobian f∗x . We use Newton’s method
to solve (16). Linearising, we iterate for k¿ 0


fkx 0 fk�
fkxxh fkx fkx�h

0 eT
k 0




︸ ︷︷ ︸
Gk
Y




Jxk

Jhk

J�k




︸ ︷︷ ︸
JYk

= −



f(xk ; �k)

fx(xk ; �k)hk

hk − 1




︸ ︷︷ ︸
G k

(17)

with updates
 xk+1

hk+1

�k+1




︸ ︷︷ ︸
Yk+1

=


 xkhk
�k




︸ ︷︷ ︸
Yk

+


Jxk

Jhk

J�k




︸ ︷︷ ︸
JYk

: (18)

The main problem with direct methods is their stringent requirement of an accurate approximation
to (x∗; h∗; �∗); otherwise the formulation does not converge. While it is of interest to 5nd the exact
solution (x∗; h∗; �∗), once a bifurcation point is reached, this exercise is not as important as 5nding
an accurate approximation to �∗ which is useful for control purposes.

For illustration, Table 1 shows the results of the above bifurcation method for IEEE 9 example
with single bus variations. There “Newton steps” refer to the number of iteration steps required
to satisfy ‖f(x(k); �(k))‖6TOL = 10−5 and “∗” means no convergence. Clearly one can see that a
suitable starting value for �0 is essential. Again the point is that it is di1cult to know if a �0 is
good enough a priori.
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Table 1
Performance of the direct bifurcation method

Varied bus Known index Starting �0 Newton steps �∗ located

1 5.246842 0.0 — ∗

4.6 7 5.2579741845
2 2.447133 0.0 — ∗

2.0 9 2.4548231884
3 5.801273 0.0 10 5.8140201900
4 3.192469 0.0 — ∗

1.9 12 3.2019586939
5 5.235171 0.0 — ∗

4.9 8 5.2452563631
6 2.339682 0.0 — ∗

1.5 11 2.3426212061

3.2. Continuation methods

The convergence problem with direct bifurcation methods is well known (due to nonlinearity) and
one usually uses these methods only for accurately locating the fold point (x∗; �∗) given a good
estimate. Ideally, we want a method that has no di1culties near or passing round a fold point. This
isn’t unreasonable since there is nothing wrong geometrically with the curve but the parameter � is
not the right parameter to describe the curve. With it we can numerically trace the solution path by
generating a sequence of points satisfying a chosen tolerance criterion.

One such method that overcomes the convergence problem completely is the continuation method
as extensively discussed in the literature [1,10,25,28]. These kinds of methods together with suitable
monitoring steps for locating the fold bifurcation (e.g. computing the minimum singular value)
are very reliable in most cases. In this section, we brie$y discuss the popular pseudo-arc length
continuation method which is due to Keller [19].

Let s denote the parameter describing the solution path of (13). Suppose we have a solution
(x0; �0) of (13), then Keller’s method consists of solving the following equations for (x1; �1) close
to (x0; �0)

G(Y1; s) =

[
f(x1; �1)

x̂T
0 (x1 − x0) + �̂0(�1 − �0) − Js

]
= 0; (19)

where Y1 = (x1; �1)∈Rn+1 and G : Rn+2 → Rn+1 and (x̂0; �̂0) is the normalised tangent vector at
(x0; �0).

This system is solvable from the ABCD lemma [28] and can be solved by using a predictor-
corrector procedure as follows:

• Predictor (Euler’s Method):[
x(1)

1

�(1)
1

]
=

[
x0

�0

]
+ Js

[
x̂0

�̂0

]
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• Corrector (Newton’s Method):
for k¿ 1 iterate (note: f1x = fx(x1�1) etc.)[

(f1x)
k (f1� )k

x̂T
0 �̂0

][
Jxk

J�k

]
=

[
f(xk1 ; �

k
1)

x̂T
0 (xk1 − x0) + �̂0(�k1 − �0) − Js

]
(20)

with updates[
xk+1

1

�k+1
1

]
=

[
xk1
�k

]
+

[
Jxk1
J�k1

]
: (21)

Once (x1; �1) is located, the next tangent vector is computed from[
f1x f

1
�

x̂T
0 �̂0

][
x̂1

�̂1

]
=

[
0

1

]
: (22)

It is interesting to observe that the predictor step is simply the initial Newton step because (x0; �0)
is a point on the solution curve.

However there are at least two reasons why a continuation method is not the answer to the
practical power control problem: (1) a continuation method (either arc-length or pseudo-arc length
based) is usually expensive because many path-following steps (including monitoring steps) must be
carried out to reach a bifurcation point �∗; (2) the exact bifurcation point x∗ is not always needed
and only the parameter location �∗ is practically required in power system analysis.

Table 2 shows the performance of the Keller’s method for the IEEE 9 example. There JsI is
the initial steplength used, JsL the steplength that must be reduced to in order for the continuation
method to converge near the fold point and “C steps” refer to the total number of continuation
steps required before an interval (�∗a ; �∗b) is detected that contains the fold point and the index value
�∗ = (�∗a + �∗b)=2 is shown. Clearly the method is robust and reliable in locating the fold point but
it is expensive as many Newton steps have been used. Although there exist improved versions of
continuation methods, we shall concentrate on investigating an alternative and faster method—the
test function method.

3.3. Test functions

Since both direct methods and continuation methods cannot provide a practical solution to the
power control problem, there have been several attempts to develop a (scalar) test function �(�)
which is only zero at � = �∗ and thus gives an accurate indication of the distance of an operational
point x from the bifurcation point x∗ (this implies that all test functions may be used as monitoring
functions to detect if a bifurcation point has been reached). Obviously this test function must involve
the information of the Jacobian matrix J = fx(x; �) and a simple choice is �(�) = det(J ). However it
is in general extremely di1cult to get an analytical formula for det(J ) unless the underlying network
is a trivial one (then J is extremely sparse). The challenge is therefore to 5nd an easily computable
function �(�) which is directly or indirectly linked to det(J ) [25]. We now discuss several test
functions.

Once a test function � is proposed, the usual philosophy is to test the behaviour of �; if �
is approximately a quadratic or quartic function in terms of � (not other way around), then the
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Table 2
Performance of Keller’s method

Varied bus Known index JsI size JsL size C steps �∗ located

1 5.246842 0.05 0.05 291 5.255383
0.10 0.10 169 5.250686
1.00 0.125 95 5.246239

2 2.447133 0.05 0.05 160 2.450491
0.10 0.10 84 2.430568
1.00 0.0625 103 2.446636

3 5.801273 0.05 0.05 313 5.804349
0.10 0.10 181 5.781905
1.00 0.0625 120 5.799214

4 3.192469 0.05 0.05 201 3.193430
0.10 0.05 128 3.193541
1.00 0.0625 107 3.188414

5 5.235171 0.05 0.05 291 5.239677
0.10 0.10 168 5.212326
1.00 0.0625 117 5.237614

6 2.339682 0.05 0.05 150 2.335057
0.10 0.10 100 2.335548
1.00 0.0625 109 2.330990

following formula is used to produce a performance index �̂ (or sometimes called the load margin)—
an approximation to �∗:

�̂ = �1 − 1
c

�(�1)
d�=d�(�1)

; (23)

where c = 2 (quadratic case) and c = 4 (quartic case).

3.3.1. Method 1—Seydel’s test function
Seydel [23] proposed a test function based on a method that solves approximately the right zero

eigenvector problem by a reduced linear system solver. The method 5nds a good approximation
for the initial vector h of the extended system (16) in the following way. The homogeneous (zero
eigenvector) system with a 5xed hk = 1:

Jh = fx(x; �)h = 0 (24)

is solvable but is overdetermined; there are n equations and n − 1 unknowns. It is therefore also
solvable at the fold point (x∗; �∗) where rank(f∗x ) = n − 1. In order to construct a square system
regardless of where (x; �) is, Seydel [23] suggests that one of the n equations is removed; equivalently
replace the removed equation by a normalising condition: hk = 1. Seydel then de5nes the removed
(residue) equation to be the required test function �.

Formally, let Alk be the Jacobian J with row l replaced by ek . Then we can write

Alk = (I − eleT
l )J + eleT

k ; (25)
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where l denotes the index of the removed equation, el and ek are the lth and kth unit vectors,
respectively. A family of test functions �lk are de5ned as follows

�lk = �lk(�) = eT
l Jh = eT

l JA
−1
lk el; (26)

where h is the solution of the equation Alkh = el. The test function �lk described in (26) has the
characteristic that (i) it is a function of x and � and (ii) it is zero at (x∗; �∗) and nonzero elsewhere.
Therefore �lk is a well-de5ned test function. What is the optimal choice of indices l and k? Seydel
[23,27] suggests that l and k can be chosen such that Alk is nonsingular in order to give a good
test function and that there are many such functions. The general belief is that if the pair of indices
l and k corresponds to two nonzero positions of the left eigenvector of J at the fold point, then �lk
quali5es as a good test function.

However, our test results for the power system show that the choice of l and k is very restrictive
with most choices yielding incorrect results. We will discuss suitable choices for l and k later on.
Examples of using this test function can be found in Chiang et al. [5,17,6].

3.3.2. Method 2—the Lof test function
Simple variants of the Jacobian can be used as test functions. Lof et al. [21] proposed to use

�Lof =
det(J )
det(J1)

;

where J1, sized m × m, represents the active power mismatches and corresponds to the partition
of the Jacobian matrix J for the voltage angles [21,5]. We have tried to use this test function for
predicting indexes and found that it often gives under-estimates of the true indexes (see Section 5).

3.3.3. Method 3—Canizares test function
The Canizares test function [5,3] is de5ned as

�caniz =
det(J )
det(A)

;

where A, sized (n− 2) × (n− 2), represents the active and reactive power mismatches excluding a
particular load bus and corresponds to the partition of the Jacobian matrix J excluding two rows and
two columns. We have tested this function for predicting indexes and found that it gives reasonable
indexes (although sometimes under-estimates; see Section 5).

3.3.4. Method 4—Tangent vector function
The tangent vector computed at the current operational point (x; �) is often used for ‘early’

detection of the system critical bus [3]. It has been independently discovered and used for predicting
the fold bifurcation parameter �∗ (performance index) in [8,25]

� =
1
gk

;

where Jgk =b=ek . Here g is the tangent vector because diBerentiating the nonlinear system f(x; �)=
f(x) − �b= 0 with respect to � yields

J
dx
d�

− b= 0:
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As proved in Seydel [26], this test function is simply a special case of the general Seydel method
with l = k for the case s = 1 in (14). However this equivalence is not true if det(J ) �= 0.

3.3.5. Method 5—test functions for a transformed system
For the case of (14) with s = 1, Chiang et al [18,7] proposed to transform the usual power

system parameter � into a new # before employing test function techniques. This idea produces
new power systems, similar to continuation systems, that have nonsingular Jacobian matrices even
at �∗. A new test function �(#) is used to detect if �∗ has been reached. If the original system is
f(x; �) = f(x) − �b= 0, the new system is

g(x; #) = f(x) − #bTxb= 0;
gx(x; #)c − b= 0;
�(#) = #bTc + 1 = 0:

We remark that this method is closer to a continuation method than an index predicting method
because even if #∗ is found, one need information of x∗ before 5nding �∗. Therefore the method is
beyond the scope of this paper.

We also remark that in the discussion of [7] it is proved that the above �(#) satis5es

�(#) =
det(fx(x; �))
det(gx(x; #))

;

where det(gx(x; #)) �= 0. It is also interesting to point out that for a continuation method like (19),
Govaerts [14,15] proposed a similar test function

g(x; �) =
det(fx(x; �))
det(M(x; #))

; (27)

where M is the coe1cient matrix of (20). However as discussed below, all such functions (based
on diBerent scaled determinants of J ) require a careful study of their behaviour in terms of � before
one may consider a use for performance indexes i.e. approximations to �∗.

3.4. Approximate performance indexes

All test functions �(�), readily usable for monitoring purposes in a continuation method, may be
adapted to yield an approximate performance index (or load margin) i.e. an approximation to a true
fold bifurcation parameter �∗. However the accuracy of such an approximation (hence the reliability
of an index) relies on an assumption of the �(�) behaviour. A commonly used assumption [23,6,5]
is the following

�(�) = (b− d�)1=c; (28)

where b; c; d are some suitable (positive) constants; in particular the choice of c = 2 (quadratic) or
4 (quartic) was practically used. We remark that as known from [15], assuming the fold point is in
the neighbourhood i.e. if �∗ ≈ �0, all test functions that have a regular zero satis5es c=2. However,
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outside a neighbourhood (i.e. globally), only some test functions may satisfy c = 2 and our work
will oBer one way to construct such test functions of type (27) for certain M.

The 5rst question is, given the behaviour of � in (28), how to solve �(�)=0 to get an approximate
solution. The formula often recommended [23,6,5] is (given the present point (x1; �1))

�∗ = �1 − 1
c

�(�1)
d�=d�(�1)

: (29)

We 5nd it surprising that this Newton method like formula was not formally explained in the
literature. A use of the formula in another context can be found in [5,3]. We can prove that (29)
gives the exact performance index if the test function behaves as in (28). More precisely, because

W (�) =
1
c

�(�)
d�=d�(�)

= −b
d

+ � = 0 (30)

has the root �∗ = b=d, then using

W (�1) = −b
d

+ �1;

we can verify that (29) is the exact solution of �(�)=0. As we see later, many test functions do not
behave like (28)—this is why a seemingly reasonable test function cannot always provide a reliable
index. The second and related question is how to verify that a test function behaves like (28) for
some c. This motivates the work of next section.

4. A new study of the Jacobian matrix and its submatrices

As the determinant of the Jacobian matrix J is often used in design of indexes, we wish to know
more of its behaviour before analysing existing and proposing new indexes. In this section, we 5rst
present some analytical results on J and its submatrices and then propose two new indexes that are
based upon these results.

4.1. Behaviour of the voltage angles and magnitudes

Clearly det(J ) is a nonlinear function of voltage angles �j and magnitudes vj. To study det(J )
and its submatrices, we need some reasonable assumptions. For the case of reactive power injections
changes (i.e. vary QLj), experiments have shown that the diBerences of voltage angles �j − �k do
not vary a great deal. Also as noted in the literature, the bifurcation parameter � has a quadratic
behaviour in voltage magnitudes (this can be deduced from the main Eqs. (4) or (5))

� = a0v2
j + a1vj + a2; (31)

where the coe1cients a0; a1; a2 depend on j. This suggests that it is reasonable to assume that

vj ≈ vj − 'j = (bj − dj�)1=2 (32)

because the constant 'j = a1=(2a0) is often small in our application.
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Fig. 2. Illustration of rational functions of polynomials.

To proceed with our analysis on determinants, our main assumptions are

�j1(�) − �j2(�) ≈ 1 for any j1; j2
m∑
j=1
j �=i1

wjvj ≈ vi1 for i1 = 1; 2; : : : ; m1 (rows i1); (33)

m∑
j=1
j �=i2

vj ≈ vi2 for i2 = 1; 2; : : : ; m− m1 (rows i2 + m1);

where wj’s are generic constants independent of �. By “≈”, we mean that two quantities are at most
diBering from each other by factors that do not depend on �; e.g. if f4=6�4+5, f3=1:5�3, then f4 ≈
�f3 for �¿ 0:8. The idea of considering only leading terms of polynomials is reasonable as illustrated
in Fig. 2, where P5(t)=21t5 +t4−2t3 +t2 +3t−1 (the steep curve) and P3(t)=13t3−5t2−3t+9 (the
other curve) are plotted on the top graph. We can observe from the right graph in Fig. 2 that the
rational function of two polynomials P5(t)=P3(t) behaves like a quadratic and P5(t)=t=P3(t) behaves
linearly (for t¿ 0) so we may write P5(t)=P3(t) ≈ t2 and P5(t)=t=P3(t) ≈ t.

Here the second assumption in (33) is reasonable because at least one neighbouring voltage
magnitude behaves similarly to vi1 of load bus i1 (regardless of constants wj). The third one is
because vi2+m1 ≈ 1 remains 5xed during power load changes so the left sum is dominated by vi1
with 16 i16m1.

These facts enable us to investigate and simplify the relations between various determinants (hence
test functions) and voltage magnitudes, and consequently between test functions and the bifurcation
parameter �.

4.2. Determinants of the Jacobian matrix and its submatrices

With assumption (33) we can prove the following:
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Theorem 1. If (33) holds; the determinant of the Jacobian matrix J from (15) can be approximated
by a high order multi-variate polynomial P(v1; : : : ; vm) which has the highest and lowest order terms;
respectively

v4
1 · · · v4

m−m1
v3
m−m1+1 · · · v3

m1
v2
m1+1 · · · v2

m;

v3
1 · · · v3

m−m1
v3
m−m1+1 · · · v3

m1
v2
m1+1 · · · v2

m:

Proof. Using assumption (33), we may simplify the Jacobian matrix in (15) as

J =
[
J1 J2

J3 J4

]
≈




v1v1 · · · v1vm1 v1vm1+1 · · · v1vm v1 · · · v1
...

. . .
...

...
. . .

...
...

. . .
...

vm1v1 · · · vm1vm1 vm1vm1+1 · · · vm1vm vm1 · · · vm1

vm1+1v1 · · · vm1+1vm1 vm1+1v1 · · · vm1vm vm1 · · · vm1

...
. . .

...
...

. . .
...

...
. . .

...
vmv1 · · · vmvm1 vmvm1+1 · · · vmvm−m1 vm · · · vm

v1v1 · · · v1vm1 v1vm1+1 · · · v1vm v1 · · · v1
...

. . .
...

...
. . .

...
...

. . .
...

vm1v1 · · · vm1vm1 vm1vm1+1 · · · vm1vm vm1 · · · vm1




:

The relevant quantities �j(�0); yjk ; �jk will make this approximate Jacobian matrix diBer from the true
matrix by constant factors that are not needed in our context. Using the properties of determinants,
constant factors can come out rows or columns. Also noting that vj (m1 + 16 j6m) does not
depend on �, we obtain that

det(J ) ≈ v3
1 · · · v3

m−m1
v3
m−m1+1 · · · v3

m1
v2
m1+1 · · · v2

m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 1 · · · 1 1 · · · 1
...

. . .
...

...
. . .

...
...

. . .
...

1 · · · 1 1 · · · 1 1 · · · 1
1 · · · 1 v1 · · · 1 1 · · · 1
...

...
...

...
. . .

...
...

...
...

1 · · · 1 1 · · · vm−m1 1 · · · 1

1 · · · 1 1 · · · 1 1 · · · 1
...

. . .
...

...
. . .

...
...

. . .
...

1 · · · 1 1 · · · 1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

:

With a further simpli5cation of the determinant, the theorem is proved.

This idea of simplifying the Jacobian matrix (15) carries over to study of its submatrices. De5ne
J (‘1; : : : ; ‘s; k1; : : : ; ks) as the submatrix of J , sized (n− s)× (n− s), after taking out rows ‘1; : : : ; ‘s
and columns k1; : : : ; ks. It is feasible to study such a general submatrix; however for illustration, we
only consider some special cases. We give the following results.
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Corollary 1. Under assumption (33); the determinants of three particular submatrices J admit the
following approximations (16p6m1):

• det(J (1; 1)) ≈ det(J )=v2
1;

• det(J (m + p;m + p)) ≈ det(J )=vp;
• det(J (m + 1; : : : ; n;m + 1; : : : ; n)) ≈ det(J )=

∏m
j=1 vj.

Proof. It su1ces to consider case 1. Using the properties of determinants, take out factor v1 from
row 1 and v1 from column 1 from det(J ). Then what is left is approximately det(J (1; 1)) and so
the results are proved.

4.3. New Jacobian matrix based test functions and indexes

We 5rst remark that any function of � can be a valid test function �(�) if it is zero at �∗ and
nonzero elsewhere. This makes it relatively easy to propose a new test function e.g. by simple
manipulation of det(J ). However it is a harder problem to make use of a test function to yield
a computable, reliable and accurate performance index that approximates �∗. In the literature, the
index formula (29) is frequently used but fewer work have veri5ed that an underlying test function
satis5es (28); without (28), (29) cannot provide a good performance index even if a test function
is a valid one for monitoring purposes.

Our idea of a test function is simple: we want it to relate to det(J ) directly. The new idea is to
be able to predict the behaviour of a test function in terms of � on construction—ideally linking
(28). Then we can be justi5ed to use (29) to provide a good performance index.

To this end, using Theorem 1 and Corollary 1, we can construct test functions that possess known
behaviour in terms of vj or �. To use formula (29), a test function to be constructed should be
approximately equivalent to vj that in turn behaves like (32).

Therefore, we propose the following two new test functions if we consider the variation at bus
p (16p6m1):

1. �1(�) = det(J )=det(J (m + p;m + p));
2. �2(�) = det(J )=det(J (m + 1; : : : ; n;m + 1; : : : ; n))=

∏
j=1
j �=p

vj.

Corollary 2. The two new test functions as de8ned above will behave like vp or (32) i.e.

�1(�) ≈ (b1 − d1�)1=2 and �2(�) ≈ (b2 − d2�)1=2:

Thus for both functions; one may use formula (29) with c = 2 to produce a reliable performance
index.

Proof. Using Corollary 1, we see that both behave (≈) like vp and for our case of reactive power
changes vp (as a load bus) behaves as in (32) with j = p. The proof is complete.

Remark. It is possible to generalise �1 as

�1(�) = det(J )=det(J (‘; k));
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Fig. 3. Performance indexes by various methods for IEEE 9 bus.

however care must be taken to assess the behaviour of �1 for speci5c ‘; k before any use. For
example, with ‘ = k = 1 and using Corollary 1, we see that �1 ≈ v2

1 so one cannot use (29) with
either c = 2 or 4. We found that when considering load variations for bus p, 'p is the smallest of
all 'j’s so we recommend the choice ‘ = m + p and k¿m + 1.

5. Numerical results

We now present, some numerical results of our proposed index methods. To emphasize the ro-
bustness of our methods, we shall use standard test examples rather than specially tuned ones. In
particular, we shall consider the standard and widely available test systems:

1. IEEE 9: the number of load buses m1 = 6 and m = 8, and the Jacobian is of the size 14 × 14;
2. IEEE 14: the number of load buses m1 = 9 and m = 13, and the Jacobian is of the size 22 × 22;
3. IEEE 30: the number of load buses m1 = 24 and m= 29, and the Jacobian is of the size 53× 53;
4. IEEE 57: the number of load buses m1 =50 and m=56, and the Jacobian is of the size 106×106;
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Fig. 4. Performance indexes by various methods for IEEE 14 bus.

5. IEEE 118: the number of load buses m1 = 64 and m = 117, and the Jacobian is of the size
181 × 181;

6. IEEE 300: the number of load buses m1 = 231 and m = 299, and the Jacobian is of the size
530 × 530.

For each system, we shall test the e1ciency and robustness of our two new methods in getting
an ‘on-line’ index list for all load buses that can be used to identify the weakest bus. We shall
compare the performance of

1. M1—New test function �1;
2. M2—New test function �2;
3. M3—Seydel test function with � = det(J )=det(J1;1) [23];
4. M4—Canizares test function � = det(J )=det(Jp;m+p;p;m+p) [5];
5. M5—Lof’s test function � = det(J )=det(J1) [21].
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Fig. 5. Performance indexes by various methods for IEEE 30 bus.

The computational cost required for each case depends on the total number of conventional Newton
steps for power $ow equations.

To implement (29), the calculation of the derivative d�=d� is done by 5nite diBerences as in [17,6].
Therefore two successive Newton solves are applied at �0 =0 and �1 =10−4; for these IEEE systems
with tolerance TOL =10−5 for stopping Newton iterations, the number of such iterations is typically
small (about 5) using the simple starting values �j = 0 and vj = 1. For other systems, one may have
to use a continuous power $ow program to 5nd x0 and x1 (hence �(�0) and �(�1)) if convergence
is a problem. An alternative method for computing d�=d� may be based on semi-analytical formulas
as in Seydel [23].

In Figs. 3–8, we display the predicted indexes for each test system by the 5ve methods, compared
with the exact indexes obtained by running a continuous power $ow program. As some indexes
(mainly from M3) are over-estimates, we present each plot in two graphs with the top one showing
all predicted indexes and the bottom one excluding the outlier cases so that a better comparison is
visible for those close cases. For some larger networks, we rotate the graphs so that bus labels are
readable. For IEEE 300 bus, we only show the indexes for the 5rst 5 buses for clarity. A legend
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Fig. 6. Performance indexes by various methods for IEEE 57 bus.

list can be stated as follows:

1. Symbol ©—for M1;
2. Symbol +—for M2;
3. Symbol �—for M3;
4. Symbol ∗—for M4;
5. Symbol 
—for M5;
6. Symbol ×—for exact indexes.

Clearly we observe that two new test functions M1 and M2 provide very reliable performance
indexes for all cases considered. M4 gives a reasonable index for several cases but is less accurate
and can fail in identifying the weakest bus. M3 shows results of a typical example of adapting
generic bifurcation methods to power $ow equations—it may or may not work for arbitrary choice
of parameters of l; k. Note that Seydel [23,27] did not recommend any choice of the parameters
l; k; in fact [27, p. 6] seems to suggest that for a test system of n = 4 there are at most 16 = 42

test functions! Our analytical and numerical results have con5rmed only some choices lead to useful
indexes (e.g. l= k =m+p if p corresponds to the load bus under variations). Method M5 can also
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Fig. 7. Performance indexes by various methods for IEEE 118 bus.

provide useful pro5les re$ecting the true indexes but they are usually overestimates and thus not
reliable. The trouble with M5 is that it is ‘too close’ to det(J ) and it behaves like very high order
polynomials that cannot provide a useful index.

6. Conclusions

We gave a brief review of the recent developments in voltage stability studies in computing fold
bifurcations. The particular class of methods using test functions are investigated in details. We
found that many test functions can provide useful indicators to determine if a fold point has been
reached but are not useful in predicting the index (i.e. the distance away form the fold point).

This paper proposed a new way of analysing the behaviour of the determinants of the Jacobian
matrix and its submatrices and consequently designing determinants-based test function methods.
For a useful class of problems involving reactive power changes, we are able to propose new as
well as analyse existing test functions. The central idea is the ability to determine whether a test
function can lead to practical performance indexes. Numerical results using widely available IEEE
data (without any tuning) are promising and con5rm our theoretical predictions.
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Fig. 8. Performance indexes by various methods for IEEE 300 bus (5rst 5 load buses).

Future work will involve applications to a wider class of test systems and generalise the new
analytical and numerical methods to a wider class of problems.
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