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1 Introduction

A new superstring formalism, the pure spinor formalism, has been developed over the past

ten years [1–6], see [7, 8] for reviews. In this new formalism, the theory exhibits manifest

super Poincaré invariance, as in the Green-Schwarz (GS) formalism, but in contrast with

the GS string the worldsheet theory in flat target space is free, as in the Ramond-Neveu-

Schwarz (RNS) formalism, so the theory can be quantized straightforwardly (modulo the

issues with the pure spinor constraint that we discuss below). This has opened a new avenue

for better understanding string perturbation theory. Indeed, the new formalism has already

produced a number of interesting results in this direction, such as new non-renormalization

theorems and progress towards proving finiteness of perturbative string theory [3, 9], and

one may anticipate more new results to appear as the formalism is developed further. On

a different front, gauge/gravity dualities and flux compactifications render an urgent need

for a formalism that can handle curved backgrounds with Ramond-Ramond fluxes and the

pure spinor formalism is currently the best such candidate.

The new amplitude prescription has marked advantages over both the RNS and GS

formalisms. Compared to the RNS formalism, the formalism does not involve worldsheet

fermions, so there is no need to sum over spin structures and deal with supermoduli.

Moreover, computations involving external fermions and RR fields are markedly simpler

than the corresponding RNS ones and the manifest target space supersymmetry automat-

ically leads to expressions that incorporate the entire supermultiplet. The GS formalism is

also target space supersymmetry but one must use the lightcone gauge and contact term

interactions [10, 11] lead to complications in multi-loop computations. The pure spinor

superstring is free of these problems and has already been used successfully in explicit

computations [2–4, 7, 9, 12–17]. However, this formalism has not been derived by gauge

fixing a worldsheet diffeomorphism theory and as a result not all aspects of the formalism

are fully understood. From the practical point of view, one would like to develop further

the computational tools relevant for the pure spinor sector. This paper grew out of our

efforts to further develop and streamline the pure spinor formalism. In this process we
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encountered issues with decoupling of BRST exact states which is the subject of this and

of the companion paper [18].

The pure spinor superstring has two versions, the minimal [3] and the non-minimal

formalism [4]. The two formalisms are formally equivalent [19] with the former being

technically more intricate than the latter. The non-minimal formalism however is known

to have a difficulty from genus three and higher: one of the zero mode integrals in the

path integral is divergent due to poles in the composite b field [4]. Although there has

been a proposal for dealing with these divergences [5], no explicit computation in g > 2

has been completed with it to date, see however [20, 21] for recent work in this direction.

The minimal formalism on the other hand does not appear to have such a problem: the

corresponding composite b field does not have the poles that its non-minimal counterpart

has. This was one of the reasons that led us to revisit the minimal formalism.

The minimal formalism contains constant spinors (Cα) and constant tensors (Bmn) in

its amplitude prescription. These constant tensors enter the theory via certain operators,

the picture changing operators (PCO’s), which are needed to set up the amplitude pre-

scription. It was argued in [3] that amplitudes are independent of C and B, because the

Lorentz variation of PCO’s is BRST exact. In this paper we show by explicit computations

that the amplitudes do depend on the choice of the constant tensors and BRST exact states

do not decouple. This happens already at tree level, but in this case one can show that

there is a unique Lorentz invariant operator that can replace the PCO’s in the tree-level

amplitude prescription. With this replacement BRST exact terms do decouple and one

can further show that this prescription is equivalent to the tree-level prescription obtained

by integrating over C [3], which correctly reproduces known tree-level amplitudes.

Next we examine amplitudes at one loop. These should be independent of the constant

tensors B and C but we find problems with Lorentz invariance and decoupling of Q exact

states just like at tree level. These problems are not present when we integrate over B and

C, as will be discussed in the companion paper [18]. Furthermore we prove a no-go theorem

about finding new Lorentz covariant PCO’s that are BRST closed inside correlators that

could be used to replace the original PCO’s. Using such PCO’s however one finds that all

one-loop amplitudes are equal to zero.

The technical origin of the problem is that the PCO’s are BRST closed only in a

distributional sense and it turns out that the amplitudes are singular enough so that distri-

butional identities do not hold. One should contrast this with the non-minimal formalism

where the corresponding object, the so-called regularization factor, is BRST closed without

subtleties. Indeed, we show that the problems we found at tree and one-loop level in the

minimal formalism are not present in the non-minimal case.

To understand why the amplitudes are singular, let us recall that the PCO’s originate

from gauge fixing zero mode invariances [19]. The PCO’s contain eleven delta functions

of the form δ(CI
αλ

α), where CI
α are the constant spinors mentioned above. It turns out

that for any choice of CI that give an irreducible set of eleven constraints, the solution of

CI
αλ

α = 0 is given by λα = 0, which is the tip of the cone that represents pure spinor space.

As discussed in [22], the λα = 0 locus should be removed from the pure spinor space. Thus

this prescription corresponds to a singular gauge fixing condition and the problems we find

reflect that fact.
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The results in this paper that expose the problems with decoupling of BRST exact

states can best be viewed as evidence for the need of a more complete definition of the

PCO’s and a prescription that takes global issues into account and allows for a non-singular

gauge choice. Although our expectation is that BRST exact states would decouple without

integrating over C, a full discussion of this topic is beyond the scope of this paper. Fur-

thermore our results, even though they do not take global issues into account, still show

that there is a need for a new proof of the decoupling of BRST exact states and such proof

is presented in [18].

This paper is organized as follows. In the next section we review the minimal pure

spinor formalism with emphasis on the tree-level and the one-loop amplitude prescription.

Then in section 3 we demonstrate the dependence on the constant spinors, Cα, by per-

forming a tree-levelcomputation with two different choices for Cα. In section 4 it is shown

that after integrating over C BRST exact states do decouple and we show how to formu-

late the prescription such that it does not contain constant spinors anymore. Section 5

examines one-loop amplitudes with unphysical states. We analyze these amplitudes both

with and without integrating over B. In the final part of this section the computations are

compared to their non-minimal counterparts. Section 6 contains the no-go theorem, which

states that a Lorentz invariant picture changing operator leads to vanishing of all one-loop

amplitudes. In section 7 we discuss the origin of the problem as a singular fixing condition

and we comment on possible modifications such that the prescription would correspond

to a non-singular gauge. We conclude in section 8. The paper contains two appendices.

In the first appendix we provide a comprehensive and (in some cases) pedagogical review

of many technical aspects relevant for the pure spinor formalism and in appendix B we

compute several integrals needed for the one-loop discussion.

2 Review of minimal pure spinor formalism

The worldsheet action in the minimal pure spinor formalism for the left movers in conformal

gauge and flat target space is given by

S =

∫

d2z

(

1

2
∂xm∂̄xm + pα∂̄θ

α − wα∂̄λ
α

)

, (2.1)

with m = 0, . . . , 9 and α = 1, . . . , 16. The fields pα and wα have conformal weight one and

are Weyl spinors, θα and λα have conformal weight zero and are Weyl spinor of opposite

chirality. In addition λα is a pure spinor, i.e. it satisfies

λαγm
αβλ

β = 0, (2.2)

where γm
αβ are the ten dimensional Pauli matrices, which are defined in appendix A.2. The

decomposition of a Weyl spinor under the SU(5) subgroup, 16 → 1 ⊕ 1̄0 ⊕ 5, which is

used extensively throughout this work, is also discussed there. Since the worldsheet action

consists of two βγ systems quantization seems straightforward, but λα is a pure spinor and

therefore the λw part is actually a curved βγ system [22]. To deal with this, we work on

a patch in pure spinor space that is defined by λ+ 6= 0. On this patch the pure spinor
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condition expresses λa in terms of λab and λ+, with a, b = 1, . . . , 5. The solution is (in

SU(5) covariant components)

λa =
1

8

1

λ+
ǫabcdeλbcλde. (2.3)

A constraint on fields in the action induces a gauge invariance on the conjugate fields. In

this case the gauge transformations are given by

δwα = Λmγ
m
αβλ

β. (2.4)

In [3] this gauge invariance is dealt with by using gauge invariant quantities only. This

means wα can only appear in the Lorentz current Nmn, the ghost number current J and

the stress energy tensor T(λw):

Nmn =
1

2
wα(γmn)αβλ

β , J = wαλ
α, T(λw) = wα∂λ

α. (2.5)

Since the λw part of the action is not free due to the pure spinor constraint it is not obvious

what the OPE between w and λ will be. One way to proceed is by properly fixing the

gauge invariance of (2.4). In [19], following [1], it was shown, by making the gauge choice

wa = 0 and employing BRST methods, one can replace
∫

d2zwα∂̄λ
α by the free action,

∫

d2z(ω+∂̄λ
+ +

1

2
ωab∂̄λab). (2.6)

One might have expected BRST ghosts associated to the gauge fixing of wα. It turns out

these can be integrated out. As a check of the validity of this procedure the OPE of the

Lorentz currents (Nmn|wa=0) should give rise to the Lorentz algebra. Using (2.6) one finds

Nmn(z)λα(w) ∼
1

z − w

1

2
(γmnλ)α, J(z)λα(w) ∼

1

z − w
λα, (2.7)

Nmn(z)Npq(w) ∼
−3

(z − w)2
(ηn[pηq]m) +

1

z − w
(ηn[pN q]m − ηm[pN q]n),

J(z)J(w) ∼
−4

(z − w)2
, J(z)Nmn(w) ∼ regular,

Nmn(z)T (w) ∼
1

(z − w)2
Nmn(w), J(z)T (w) ∼

−8

(z − w)3
+

1

(z − w)2
J(w).

The explicit computations can be found in appendix A.4 and it should be noted that there

are subtleties regarding the double poles in the OPE. Hence even though the gauge fixing

condition is not Lorentz covariant the OPE’s of the gauge fixed currents are. The factor

of −8 of the triple pole in the JT OPE implies at tree level only correlators with total J

charge -8 will be non-zero [23]. The OPE’s for the matter variables can be straightforwardly

derived from (2.1):

xm(z)xn(w) ∼ −ηmnlog|z − w|2, pα(z)θβ(w) ∼ δα
β

1

z − w
. (2.8)

The action (2.1) is invariant under a nilpotent fermionic symmetry generated by

Q =

∮

dzλαdα, (2.9)
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where

dα = pα −
1

2
γm

αβθ
β∂xm −

1

8
γm

αβγm γδθ
βθγ∂θδ. (2.10)

The transformations it generates are given by

δxm = λγmθ, δθα = λα, δλα = 0, δdα = −Πm(γmλ)α, δwα = dα, (2.11)

where Πm = ∂xm + 1
2θγ

m∂θ is the supersymmetric momentum and again we restrict to

the left movers (so in particular, the full transformation for xm contains a similar additive

term with right moving fields). The cohomology of this operator (at ghost number one)

indeed correctly reproduces the superstring spectrum [24].

The gauge fixed action (2.6) is no longer invariant under Q =
∮

dzλαdα, but it is

invariant under Q̂ defined by

Q̂wα = dα −
da

λ+
(γaλ)α. (2.12)

On all other fields Q̂ acts the same as Q. Note the second term in (2.12) is a gauge

transformation with Λa = da

λ+ ,Λ
a = 0. This implies that when acting on gauge invariant

quantities Q = Q̂. Moreover Q̂wa = 0. So that for instance

Q̂Nmn|wa=0 = QNmn =
1

2
λγmnd. (2.13)

Q̂ also satisfies

Q̂2 = 0, (2.14)

on all fields including w, unlike Q.

It seems very natural to consider Q as a BRST operator that appeared after gauge

fixing a local worldsheet symmetry that includes diffeomorphism invariance. Despite con-

siderable work, finding such a formulation remains an open issue, see [25] for work in this

direction. There has also been work in relating the pure spinor formalism to GS and RNS

formalisms, see [6] and references therein.

In [19] we presented a different perspective. We considered the pure spinor action (2.1)

as a σ-model action with a fermionic symmetry Q and we coupled it to topological gravity

in a way that preserves Q. Gauge fixing worldsheet diffeomorphisms leads in a standard

way to a second nilpotent operator, the standard BRST operator. Then one can proceed

to derive the scattering amplitude prescription following usual BRST methods. From this

perspective the reason we start from an action with Q invariance is that the cohomology

of Q yields the correct superstring spectrum.

2.1 Tree-level prescription

In this subsection we review the tree-level amplitude prescription of [3]. The N point open

string tree-level amplitude is given by

A = 〈V1(z1)V2(z2)V3(z3)

∫

dz4U4(z4) · · ·

∫

dzNUN (zN )YC1(y1) · · ·YC11(y11)〉

– 5 –
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=

∫

[D10x][D16d][D16θ][D11λ][D11w]V1(z1)V2(z2)V3(z3)

∫

dz4U4(z4) · · ·

∫

dzNU(zN )

×YC1(y1) · · · YC11(y11)e
−S , (2.15)

where [Dφ] denotes functional integration over the field φ. The functional integration over

xm has been studied in detail and the same correlation functions appear in the RNS for-

malism. We will not include this factor in the computations in this paper because they

are not relevant for us. V and U are the integrated and unintegrated vertex operators, i.e.

they satisfy

QV (z) = 0, V (z) ∼ V (z) +QΩ(z), (2.16)

Q

∫

dzU(z) = 0,

∫

dzU(z) ∼

∫

dzU(z) +Q

∫

dzΩ′(z). (2.17)

After using the gauge invariance to set a number of components to zero the solution to

these equations is given by [24]

V = λαAα(x, θ), (2.18)

U = ∂θαAα(x, θ) + ΠmAm(x, θ) + dαW
α(x, θ) +

1

2
NmnFmn(x, θ), (2.19)

with

Aα(x, θ) = eik·x
(

1

2
am(γmθ)α −

1

3
(ξγmθ)(γ

mθ)α + · · ·

)

, (2.20)

Am =
1

8
Dαγ

αβ
m Aβ, (2.21)

W β =
1

10
γαβ

m (DαA
m − ∂mAα), (2.22)

Fmn =
1

8
Dα(γmn)αβW

β, (2.23)

where Dα = ∂
∂θα + 1

2θ
βγm

αβ∂m, am and ξα are the polarizations and km is the momen-

tum. They satisfy k2 = kmam = km(γmξ)α = 0, there is a residual gauge invariance

am → am + kmω and . . . contains products of km with am or ξα.

YC are the picture changing operators (PCO):

YC(y) = Cαθ
α(y)δ(Cβλ

β(y)), (2.24)

where Cα is a constant spinor. We want to be absolutely explicit about what we mean

by a delta function, since we will see the problems with decoupling of Q exact states are

intimately connected with these delta functions. The definition we use in section 3 to

section 5 is the usual one:
∫

dxδ(x)f(x) = f(0), xδ′(x) = −δ(x). (2.25)

The presence of the PCO’s in the amplitude prescription is explained from first principles

in [19] and is reviewed in section 7. In short, they come from fixing a gauge invariance
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due to the zero modes of the weight zero fields, λα, θα. Note the weight one fields do not

have zero modes at tree level. At higher loops there will also be PCO’s for these fields.

Since the PCO’s are introduced as a gauge fixing term, amplitudes should be independent

of the constant tensors Cα. Moreover in all computations we will choose yi = ∞ so that

the PCO’s have no non-zero OPE with any other field.

The functional integral (2.15) is evaluated by first using the OPE’s of (2.7) and (2.8).

Note that this operation reduces the total conformal dimension of the worldsheet fields

involved in the OPE. For example in the p, θ OPE, the conformal weight of pβ(z)θα(w) is

one and the conformal weight of δα
β is zero. Thus in the end the correlator only contains

worldsheet fields of weight zero. This can be evaluated by replacing the fields by their zero

modes and performing the zero mode integrations.

After integrating out the non-zero modes the amplitude reduces to

A =

∫

[dλ]d16θλαλβλγfαβγ(θ)(C1θ)δ(C1λ) · · · (C11θ)δ(C11λ), (2.26)

where fαβγ depends on all the polarizations and momenta. Note the functional integration

of xm is omitted here as will be done in all computations in this paper. A priori fαβγ

also depends on z1, z2, z3. Of course we expect the final result to be independent of these

coordinates. Also note all the fields are zero modes including those in the measure. [dλ]

is the unique Lorentz invariant measure of +8 ghost number on the space of pure spinors

(cf. appendix A.5). It is given by [3]

[dλ]λαλβλγ = dλα1 ∧ · · · ∧ dλα11(ǫT )αβγ
α1···α11

, (2.27)

where

(ǫT )αβγ
α1···α16

= ǫα1···α16γ
αα12
m γβα13

n γγα14
p (γmnp)α15α16 . (2.28)

Note no gamma trace is subtracted. This tensor is already gamma matrix traceless as

explained in appendix A.5.

2.2 One-loop prescription

Compared to a tree-level amplitude, a one-loop one exhibits three new features, (1) PCO’s

for the weight one worldsheet fields p,w, (2) zero mode integrals over p,w and (3) a

composite b ghost constructed out of the worldsheet fields from (2.1). The first two points

are direct consequences of the presence of a zero mode of weight one fields on the torus.

The new PCO’s are given in terms of the gauge invariant quantities Nmn and J :

ZB(z) =
1

2
Bmnλ(z)γmnd(z)δ(BmnN

mn(z)), ZJ(z) = λα(z)dα(z)δ(J(z)). (2.29)

All string theory amplitude prescriptions at one loop contain a b ghost which satisfies

{Q, b(z)} = T (z). (2.30)

In the RNS formalism this field appears as reparametrization antighost. In the pure spinor

formalism the b ghost is composite [3], constructed out of the worldsheet fields from (2.1),
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as explained from first principles in [19]. However, it is not possible to solve equation (2.30)

in the minimal pure spinor formalism [3], because of ghost number (J charge) conservation

combined with gauge invariance of objects containing wα. The former implies b must have

ghost number minus one and since there are no gauge invariant quantities with negative

ghost number the latter rules out any solution. A resolution to this problem is combining

the (composite) b field with a PCO, ZB , such that

{Q, b̃B(u, z)} = T (u)ZB(z). (2.31)

This equation ensures the Q variation of the b ghost vanishes after integrating over moduli

space. The solution is given by [3]

b̃B(u, z) = bB(u) + T (u)

∫ z

u

dvBpq∂N
pq(v)δ(BN(v)). (2.32)

The local b ghost, bB(u), is a composite operator, constructed out of the worldsheet fields:

bB(z) = bB0(z)δ(BN(z)) + bB1(z)δ
′(BN(z)) + bB2(z)δ

′′(BN(z)) + bB3(z)δ
′′′(BN(z)),

(2.33)

where the primes denote derivatives, BN ≡ BmnN
mn and

bB0 =
1

2
GγmndBmn −

1

2
Hαβ(γpγmn)αβΠpBmn + (2.34)

+
1

2
Kαβγ(γpγmn)βγ(γp∂θ)αBmn +

1

2
Sαβγ(γpγmn)βγ(γp∂λ)αBmn,

bB1 =
1

4
Hαβ(Bd)α(Bd)β + (2.35)

+
1

4
Kαβγ(γpγmn)βγ(Bd)αΠpBmn +

1

4
Kαβγ(γpγmn)α[β(Bd)γ]ΠpBmn +

+
1

4
Lαβγδ

[

((γpγmn)γδ(Bd)[α(γp∂θ)β] − (γpγmn)β[γ(Bd)δ](γp∂θ)α)Bmn +

−((γsγrq)α[β(γpγmn)γ]δ + (γsγrq)αδ(γ
pγmn)βγ)ΠpBmnΠsBqr

]

,

bB2 = −
1

8
Kαβγ(Bd)α(Bd)β(Bd)γ −

1

8
Lαβγδ

(

(γpγmn)γδ(Bd)β(Bd)α + (2.36)

+(γpγmn)β[γ(Bd)δ](Bd)α +
1

2
(γpγmn)α[δ(Bd)γ(Bd)β]

)

ΠpBmn,

bB3 = −
1

16
Lαβγδ(Bd)α(Bd)β(Bd)γ(Bd)δ, (2.37)

where (Bd)α ≡ Bmn(γmnd)α and G,H,K,L are given in appendix A.7.

The one-loop amplitude prescription in the minimal pure spinor formalism is given by

A(N) =

∫

d2τ〈|

∫

d2uµ(u)b̃B1(u, z1)
10
∏

P=2

ZBP (zP )ZJ(z11)
11
∏

I=1

YCI
(y)|2 (2.38)

×V1(t1)
N
∏

T=2

∫

d2tTUT (tT )〉.
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The Beltrami differential µ(u) does not depend on the worldsheet coordinates on the torus.

This implies the composite b ghost only contributes through its zero mode:

∫

d2uµτ (u)b̃(u, z) = µτ

∫

d2ub̃(u, z). (2.39)

A typical zero mode integral one encounters is given by [3]:

A =

∫

[dλ][dB][dC]

g
∏

R=1

[dNR]fB(λ,NR, JR, C,B) (2.40)

where the zero mode measure for [dN ] is given by

[dN ]λα1 · · ·λα8 = dNm1n1 ∧ · · · ∧Nm10n10 ∧ dJRα1···α8
m1n1···m10n10

, (2.41)

with

Rα1···α8
m1n1···m10n10

≡ γ((α1α2
m1n1m2m3m4

γα3α4
m5n5n2m6m7

γα5α6
m8n8n3n6m9

γα7α8))
m10n10n4n7n9

+ permutations.

(2.42)

The permutations make R antisymmetric under exchange in both mi ↔ ni and mini ↔

mjnj and the double brackets denote subtraction of the gamma trace. The zero mode inte-

gral (2.40) is only non-zero if the function fB (called f in [3]) depends on (λ,N, J,C,B) as

fB(λ,N, J,C,B) = hB(λ,N, J,C,B)∂M δ(J)

10
∏

P=1

∂LP δ(BPN)

11
∏

I=1

∂KIδ(CIλ), (2.43)

where the polynomial hB assumes the form

(λ)
P11

I=1(KI+1)(J)M (N)
P10

P=1 LP

10
∏

P=1

(BP )LP +1
11
∏

I=1

(CI)KI+1. (2.44)

The integration over the zero modes of the pure spinor variables and the constant tensors

is defined in [3] as

A = c
∂

∂λα1
· · ·

∂

∂λα3
(ǫT )α1···α3

β1···β11
Rα4···α11

m1n1···m10n10

∂

∂λα4
· · ·

∂

∂λα11

∂

∂B1
m1n1

· · ·
∂

∂B10
m10n10

(2.45)

∂

∂C1
β1

· · ·
∂

∂C11
β11

11
∏

I=1

(

∂

∂λδ

∂

∂CI
δ

)KI 10
∏

P=1

(

∂

∂BP
pq

∂

∂Npq

)LP
(

∂

∂J

)M

hB(λ,N, J,C,B),

for some proportionality constant c.

3 Tree-level amplitudes

In this section we will describe three problems with (2.15), evaluated using the defini-

tions (2.27) and (2.25). (1a) A is not Lorentz invariant or equivalently (1b) A depends on

the choice of C’s and (2) Q exact states do not decouple. The third problem involves the

position of the PCO’s on the worldsheet.
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3.1 Lorentz invariance

The prescription of (2.26) appears to be Lorentz invariant and therefore independent of

CI
α because the Lorentz variation of the PCO’s is BRST exact:

MmnYC =
1

2
(Cγmnθ)δ(Cλ) +

1

2
(Cθ)(Cγmnλ)δ′(Cλ) = Q

[

1

2
(Cγmnθ)(Cθ)∂δ(Cλ)

]

. (3.1)

This argument requires vanishing of 〈QX〉 for all X and closedness of the PCO’s. The first

condition is satisfied because after integrating out the non-zero modes 〈QX〉 reduces to

∫

[dλ]d16θλαλβλγDαfβγ(θ)C1θδ(C1λ) · · ·C11θδ(C11λ) = 0, (3.2)

because
∫

d16θDαg(θ) = 0 for any function g. In order to see whether the PCO’s are closed

consider

QYC = Cαλ
αδ(Cβλ

β). (3.3)

This seems to be zero, but if we choose Cα = δ+α , we find QYC = λ+δ(λ+). This is not zero

because the measure contains 1
(λ+)3

. All we can use is λ+4
δ(λ+) = 0. This problem is made

even more explicit in the computation below. It will be shown that choosing particular C’s

does not result into a Lorentz invariant answer.

Let us choose

C1
α = δ+α , (C2)a1a2 = δ

[a1

1 δ
a2]
2 , . . . , (C11)a1a2 = δ

[a1

4 δ
a2]
5 , all other CI

α = 0. (3.4)

Note CI
α has rank eleven for this choice, as it should. As is discussed in section 7, within

the present formalism, the results below would be valid for any other choice, see footnote 6.

The three-point tree-level function is given by

A = 〈λαA1α(z1)λ
βA2β(z2)λ

γA3γ(z3)YC1(∞) · · · YC11(∞)〉 (3.5)

=

∫

[dλ]d16θλαλβλγfαβγ(θ)C1
α1
θα1 · · ·C11

α11
θα11δ(C1

α1
λα1) · · · δ(C11

α11
λα11)

=

∫

[dλ]d16θλαλβλγfαβγ(θ)θ+θ12 · · · θ45δ(λ
+)δ(λ12) · · · δ(λ45)

=

∫

dλ+ ∧ dλ12 ∧ · · · ∧ dλ45

λ+3 d16θλαλβλγfαβγ(θ)θ+θ12 · · · θ45δ(λ
+)δ(λ12) · · · δ(λ45).

The only term that contributes is the one with αβγ = + + +, in all other cases there is an

integral of the form
∫

dλabλabδ(λab) (no sum). There is a subtlety with these integrals, for

instance
∫

[dλ](λ+)2λcdδ(λ
+)δ(λ12) · · · δ(λ45) =

∫

dλ+d10λab
λcd

λ+
δ(λ+)δ(λ12) · · · δ(λ45)

=

∫

dλ+ 1

λ+
δ(λ+)

∫

dλcdλcdδ(λcd) = ∞0. (3.6)

Note however that (3.6) has N charge one (cf. (A.21)). Since the outcome of the integral

(maybe after some regularization) must be a number, which does not transform under
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N , the integral has to vanish. In other words only integrals with zero N charge, like
∫

[dλ](λ+)3δ(λ+)δ(λ12) · · · δ(λ45) can be non vanishing. After the integration over the λ

zero modes we are left with

A =

∫

d16θf+++θ
+θ12 · · · θ45, (3.7)

where f+++ = A1
+A

2
+A

3
+ and this can be evaluated with the help of the explicit expressions

for the gamma matrices from appendix A.3.3. We choose as external states two gauginos

and one gauge boson:

A =

∫

d16θ(ξa
1θkaθ

k + ξ1kaθ
aθk)(ξb

2θlbθ
l + ξ2lbθ

bθl)θca3
cθ

+θ12 · · · θ45 = ǫabcdeξ1abξ
2
cda

3
e. (3.8)

This answer is not Lorentz invariant and different from the expected answer,

ξ1γmξ2a3
m = 2(ξ+1 ξ

a
2a

3
a + ξa

1ξ
+
2 a

3
a −

1

4
ǫabcdeξ1abξ

2
cda

3
e + ξ1abξ

a
2a

b
3 + ξa

1ξ
2
aba

b
3), (3.9)

where m is an SO(10) index and all Latin letters that come before m in the alphabet

are SU(5) indices. In conclusion this shows that using (2.27) and (2.25) does not lead to

Lorentz invariant answers.

3.2 Dependence on CI

We will now show that amplitudes are not invariant under CI
α → CI

α + δCI
α. In this

computation it also becomes clear that not all BRST exact states decouple. Consider the

same C’s as in (3.4) and δC11
α = δ1α, where the 1 is an SU(5) index. The delta only has

one non vanishing component. This changes YC11 by

δYC11 = δC11αθ
αδ(C11λ) +C11αθ

αδC11βλ
βδ′(C11λ) (3.10)

= Q(δC11αθ
αC11βθ

βδ′(C11βλ
β)) = Q(θ1θ45δ

′(λ45)).

Under this change in CI
α the tree-level three-point function changes by

δA = 〈V1(z1)V2(z2)V3(z3)YC1(∞) · · · YC10(∞)δYC11(∞)〉 (3.11)

= 〈V1(z1)V2(z2)V3(z3)Q(YC1(∞) · · · YC10(∞))θ1(∞)θ45(∞)δ′(λ45(∞))〉

=

∫

d16θ
d11λ

(λ+)3
λαλβλγA1

αA
2
βA

3
γQ(YC1 · · · YC10)θ

1θ45δ
′(λ45).

There is a total of four λα’s in the numerator (one hidden in Q) one of them has to be λ45

and the other three have to be λ+ to give a non vanishing answer. The term that contributes

comes from Q hitting θ+δ(λ+), this λ+ then cancels against a λ+ in the denominator and

the variation becomes

δA =

∫

d16θd11λA
(1
+A

2
+(A3))45θ1δ(λ+)θ12δ(λ12) · · · θ45δ(λ45) (3.12)

=

∫

d16θA
(1
+A

2
+(A3))45θ1θ12 · · · θ45.

By choosing suitable polarizations it is not difficult to see this does not always vanish.
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3.3 Position of PCO’s on the worldsheet

In the prescription of [3], PCO’s are inserted at arbitrary points on the worldsheet. The

derivative of the PCO’s however is Q exact:

∂YC(y) = Q[(C∂θ(y))(Cθ(y))δ′(Cλ(y))], (3.13)

∂ZB(z) = Q[−Bpq∂N
pq(z)δ(BN(z))], ∂ZJ(z) = Q[−∂J(z)δ(J(z))]. (3.14)

and this suggests that the amplitudes do not depend on the insertion points. As we have

seen, however, BRST exact terms do not decouple, so the amplitudes may depend on the in-

sertion points. In our computations of tree-level amplitudes we will follow [3] and insert the

PCO’s at y = ∞. This is equivalent to replacing the fields in the PCO’s by their zero modes.

4 Resolution at tree level

Obtaining amplitudes which are not Lorentz invariant is a serious problem and one might

ask why the tree-level amplitude computations [3, 15] in the minimal pure spinor formalism

gave Lorentz invariant answers and why Q exact states decoupled. Both these points are

explained in the first part of this section. In the second part we reformulate the tree-level

amplitude prescription in a way that does not contain any constant spinors.

4.1 Resolution in the literature

Lorentz invariance is restored by integrating over all possible choices of CI
α, and this also

results in decoupling of Q exact states as will become apparent in this section. The mani-

festly Lorentz invariant tree-level amplitude in the minimal formalism is given by

A =

∫

[dC]〈V1(z1)V2(z2)V3(z3)

∫

dz4U4(z4) · · ·

∫

dzNUN (zN )YC1(∞) · · · YC11(∞)〉. (4.1)

After performing the OPE’s and replacing the fields by their zero modes this becomes

A =

∫

[dC]

∫

[dλ]d16θλαλβλγfαβγ(θ)(C1θ)δ(C1λ) · · · (C11θ)δ(C11λ). (4.2)

Now one uses
∫

[dC][dλ]λαλβλγC1
β1

· · ·C11
β11
δ(C1λ) · · · δ(C11λ) = (ǫT )αβγ

β1···β11
. (4.3)

This is justified by Lorentz invariance, because the l.h.s. is Lorentz invariant and the only

invariant tensor with the appropriate symmetries is1 (ǫT ), as can be verified with [26].

1Incidentally, the following related integral can also be computed using Lorentz invariance:
Z

[dC]dλα1 ∧ · · · ∧ dλα11C
1
β1

· · ·C11
β11
δ(C1

λ) · · · δ(C11
λ) (4.4)

= c1δ
[α1

β1
· · · δα11]

β11
+ c2γ

[α1α2

mnp γ
mnp

[β1β2
δ

α3

β3
· · · δα11]

β11] ,

where c1 and c2 are non-zero numerical constants. This structure follows from the fact Asym11
16 ⊗

Asym11
16

′ contains two scalars (see appendix A.3.1 for explanation about the notation and the argument).

The constants can be computed using judicious choices of the indices. For example, the integral vanishes

for the choice α1 = β1, · · · , α11 = β11 = +, 12, . . . , 35, 5, implying that one needs a non-zero constant c2.

Equation (4.4) corrects formula (3.25) of [3].
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Thus

A = (ǫT )αβγ
α1···α11

∫

d16θfαβγ(θ)θ
α1 · · · θα11. (4.5)

The amplitude A is manifestly Lorentz invariant.

This prescription also ensures the decoupling of unphysical states. We will use B to

denote amplitudes with unphysical states throughout this paper, while A is used for any

amplitude, so at tree level with V1 = QΩ,

B =

∫

[dC]〈QΩ(z1)V2(z2)V3(z3)

N
∏

i=4

∫

dziU(zi)C
1
α1
θα1 · · ·C11

α11
θα11δ(C1λ) · · · δ(C11λ)〉.

(4.6)

This can be written in the following form:

B =

∫

[dC]〈λα(z2)λ
β(z3)gαβ(d, θ,N)Q(C1

α1
θα1 · · ·C11

α11
θα11)δ(C1λ) · · · δ(C11λ)〉

∼

∫

[dC]〈λα(z2)λ
β(z3)gαβ(d, θ,N)C1

α1
λα1 · · ·C11

α11
θα11δ(C1λ) · · · δ(C11λ)〉. (4.7)

where in going from the first to the second line we omitted an overall numerical factor of

eleven. Such overall inconsequential factors will be neglected throughout this work. After

using the OPE’s to integrate out the non-zero modes one gets:

B =

∫

[dC]d16θ[dλ]λαλβfαβ(θ)C1
α1
λα1C2

α2
θα2 · · ·C11

α11
θα11δ(C1λ) · · · δ(C11λ)

=

∫

d16θfαβ(θ)(ǫT )αβα1
α1···α11

θα2 · · · θα11 = 0, (4.8)

where fαβ(θ) is some function of θ zero modes and we used (4.3). The integral vanishes

because2 126 ⊗ Asym1016 does not contain a scalar (see appendix A.3.1 for explanation

about the notation and the argument), in other words

(ǫT )β1βγ
β1···β11

= 0. (4.9)

In this case one can also write out (ǫT ) explicitly and check that its trace contains a

contraction of an antisymmetric tensor (ǫ) and a symmetric one (γαβ
m ).

4.2 Lorentz invariant tree-level prescription without constant spinors

We now present a new prescription for a tree-level amplitude, which does not contain any

constant spinors and is manifestly Lorentz invariant. This new prescription is equivalent

to the one given in [3], when the integral over C in included. The prescription is given by

A = 〈V1(z1)V2(z2)V3(z3)

∫

dz4U4(z4) · · ·

∫

dzNUN (zN )Λαβγ(∞)

(ǫT )αβγ
β1···β11

θβ1(∞) · · · θβ11(∞)〉. (4.10)

2Note 126 denotes a gamma matrix traceless symmetric rank two tensor (recall that λαλβ ∼
λγmnpqrλγαβ

mnpqr).
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In other words, we have replaced the eleven PCO’s YC by Λαβγ(∞). After integrating out

the non-zero modes and replacing the fields by their zero modes A reduces to

A =

∫

d16θ[dλ]λαλβλγfαβγ(θ)(ǫT )δ1δ2δ3
β1···β11

θβ1 · · · θβ11Λδ1δ2δ3 . (4.11)

The tensor Λαβγ is defined by

∫

[dλ]λαλβλγΛα′β′γ′ = δ
(α
α′ δ

β
β′δ

γ)
γ′ −

1

40
γ(αβ

m γm
(α′β′δ

γ)
γ′) ≡ δ

((α
α′ δ

β
β′δ

γ))
γ′ , (4.12)

and is a function of the λ’s only. More accurately, all components contain eleven delta

functions or derivatives thereof. The precise form of (4.12) follows from the fact that the

integral must be an invariant tensor combined with the pure spinor constraint. Detailed

arguments are provided in appendix A.6. To see what conditions (4.12) imposes on Λ+++

note that choosing αβγ = + + + gives

∫

[dλ]λ+3
Λ+++ = 6. (4.13)

Moreover this is the only condition because for all other choices the l.h.s. of (4.12) is not

invariant under M , the generator of a U(1) subgroup of Lorentz group (see appendix A.3

for the definition of M). Therefore the l.h.s. is equal to zero. In fact for all choices that lead

to non-zero M charge the r.h.s. vanishes by the charge conservation property of invariant

tensors (cf. appendix A.3.1). The solution is given by

Λ+++ = 6δ(λ+)δ(λ12) · · · δ(λ45). (4.14)

To determine whether this object is indeed part of a representation of the Lorentz group

one needs to check the Lorentz algebra holds when acting on Λ+++. First note

(NS)abΛ+++ = NabΛ+++ = 0, NΛ+++ =
15

4
Λ+++, (4.15)

Nmn denote the realization of Lorentz generators Mmn in terms of pure spinors, see ap-

pendix A.4 for the precise expressions. All Latin indices from the beginning of the alphabet

are SU(5) indices. The nontrivial commutation relations that remain to be checked are

[Nab, N
cd]Λ+++ = −

1

2
δ
[c
[aN

d]
b]Λ+++ = −

1

5
δc
[aδ

d
b]NΛ+++ = −

3

4
δc
[aδ

d
b]Λ+++, (4.16)

[Na
b, N

cd]Λ+++ =
1

2
δ
[c
b N

d]aΛ+++. (4.17)

Because of the symmetric form of Λ+++ it suffices to check

[N12, N
12]Λ+++ = −

3

4
Λ+++, (4.18)

[N12, N
13]Λ+++ = 0, (4.19)

[N1
2, N

23]Λ+++ = −
1

2
N13Λ+++. (4.20)
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Let us start with the l.h.s. of (4.18)

[N12, N
12]Λ+++ = N12N

12Λ+++ = N12

[

1

2
6λ+δ(λ+)δ′(λ12)δ(λ13) · · · δ(λ45)

]

=

(

−
1

2
w+λ12 −

1

4

1

λ+
wabλabλ12 +

1

2

1

λ+
wabλ1aλ2b

)[

1

2
6λ+δ(λ+)δ′(λ12)δ(λ13) · · · δ(λ45)

]

=

(

0 −
9

4
+

6

4

)

Λ+++ = −
3

4
Λ+++, (4.21)

Note that N12 does not contain factors of (λ12)
2 (possible such factors cancel out). This is

useful when acting with N12 in this second line. In going from the second to the last line

we used xδ′(x) = −δ(x) twice. (4.19) and (4.20) follow along the same lines.

It is instructive to compute the next two levels (distinguished by N charge) of the

components of Λαβγ . For the components on the second (N = 11
4 ) level consider

Na1a2Λ+++ = −
1

2
Λa1a2

++ −
1

2
Λ a1a2

+ + −
1

2
Λ a1a2

++ = −
3

2
Λa1a2

++ ⇒ (4.22)

Λa1a2
++ = −

2

3
Na1a2Λ+++.

The factor of −1
2 is consistent with Nabw+ = −1

2w
ab. Going to the next level (N = 7

4)

N b1b2Λa1a2
++ = −

1

2
ǫa1a2b1b2eΛe++ −

1

2
Λa1a2b1b2

+ −
1

2
Λa1a2 b1b2

+ (4.23)

= −
1

2
ǫa1a2b1b2eΛe++ − Λa1a2b1b2

+.

This seems to leave freedom to define one of the two components, which would indeed be

true if Λαβγ was just a symmetric rank three tensor and nothing more. However Λαβγ is

gamma matrix traceless,

γαβ
m Λαβγ = 0. (4.24)

This imposes one additional condition that relates components of equal N charge to each

other. Consequently all components of Λαβγ are uniquely fixed in terms of Λ+++. Note that

this is consistent with the discussion under (A.98), where Lorentz invariance arguments

were used to come to the same conclusion.

4.2.1 Decoupling of Q exact states

The new insertion Λαβγ was motivated by manifest Lorentz invariance, but it also results

in a prescription in which Q exact states decouple. Indeed, the tree-level amplitude with

one BRST exact state,

B = 〈QΩ(z1)V2(z2)V3(z3)

N
∏

i=4

∫

dziU(zi)(ǫT )δ1δ2δ3
β1···β11

θβ1 · · · θβ11(∞)Λδ1δ2δ3(∞)〉, (4.25)

can be written in the following form:

B = 〈λα(z2)λ
β(z3)fαβ(θ)Q((ǫT )δ1δ2δ3

β1···β11
θβ1 · · · θβ11Λδ1δ2δ3)〉 (4.26)

= 〈λα(z2)λ
β(z3)fαβ(θ)(ǫT )δ1δ2δ3

β1···β11
λβ1θβ2 · · · θβ11Λδ1δ2δ3〉. (4.27)
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After using the OPE’s to integrate out the non-zero modes one gets:

B =

∫

d16θ[dλ]λαλβfαβ(θ)(ǫT )δ1δ2δ3
β1···β11

λβ1θβ2 · · · θβ11Λδ1δ2δ3 (4.28)

=

∫

d16θfαβ(θ)(ǫT )αββ1

β1···β11
θβ2 · · · θβ11 = 0. (4.29)

The last line vanishes because all traces of (ǫT ) vanish (cf. (4.9)).

5 One-loop amplitudes

In this section we investigate one-loop amplitudes with one unphysical state both in the

prescription with an integral over B and without. We first show that all such amplitudes

are proportional to certain zero mode integrals. Decoupling of BRST exact states would

follow if these zero mode integrals vanished. However, these integrals do not vanish after

the λ and N integrations have been performed as one would expect based on Q invariance

of the PCO’s, (3.3). We then focus on four-point functions, these being the first two non-

vanishing one-loop amplitudes. We will find decoupling of unphysical states in this case.

In the prescription without an integral over B, however, these amplitudes vanish because

none of the remaining terms after the λ, N integrals contain precisely sixteen distinct

components of the zero modes of dα. Preliminary analysis suggests that this mechanism

is not operational in higher-point functions. Furthermore, even the four-point functions

are not Lorentz invariant. The four-point function containing one unphysical state with an

integral over B is also analyzed and we prove it vanishes. In the companion to this paper [18]

we show using a different argument that unphysical states decouple to all orders, when one

integrates over B and C.

Note that the picture raising operators, ZB , are Q-closed without subtleties:

QZB =
1

4
Bmnλγ

mndBm′n′λγm′n′

dδ′(BpqN
pq) =

1

4
(Bmnλγ

mnd)2δ′(BpqN
pq) = 0. (5.1)

This vanishes because it contains the square of a fermionic quantity, so one may anticipate

that the problems are due to picture lowering operators Y not being Q-closed. Let us also

record the Lorentz variation of ZB,

MmnZB = Q[2ηp[mδn]
r BpqN

qrδ(BN)]. (5.2)

5.1 Amplitudes with unphysical states without integrating over B

A one-loop amplitude with one unphysical state is given by

B(N) = 〈QΩ1(z1)
N
∏

i=2

∫

dziUi(zi)

∫

duµ(u)b̃B1(u,w)(λB2d)(y) · · · (λB10d)(y)(λd)(y)

δ(B1N(y)) · · · δ(B10N(y))δ(J(y))Λδ1δ2δ3(y)(ǫT )δ1δ2δ3
β1···β11

θβ1(y) · · · θβ11(y)〉, (5.3)

where λBd = Bmnλγ
mnd. Note that we have replaced the YC insertions by the Lorentz

invariant insertion, Λαβγ , as in the tree-level computation. This is equivalent with inserting
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YC and integrating over C. On the torus we cannot insert the PCO’s such that all their

OPE’s would vanish. We inserted them at some arbitrary point y. For later convenience

we inserted b̃ at a different point, w.

We now integrate Q by parts. When Q acts on b̃ we get a total derivative in moduli

space, as usual. If this total derivative is non-vanishing the theory has a BRST anomaly.

These total derivative terms will be suppressed below because they are not important for

our discussion.

The terms that are important for us are the ones one gets by acting with Q on the

rest of the terms in (5.3). Formally, there should not be any such terms. The reason is

that both the vertex operators and the PCO’s are BRST closed. More precisely, the BRST

variation of the PCO contains delta functions of λ and N (cf. (3.3), (5.1)), so the terms

obtained by acting with Q on the PCO should vanish after integrating over λ and N . The

main result in this section is that this does not happen. In contrast, as we will see in

section 5.3, these terms are indeed zero in the non-minimal formulation.

More precisely, after integrating Q by parts the amplitude (5.3) becomes,

B(N) = 〈Ω1(z1)
N
∏

i=2

∫

dziUi(zi)

∫

duµ(u)b̃B1(u,w)(λB2d)(y) · · · (λB10d)(y)(λd)(y) (5.4)

δ(B2N(y)) · · · δ(B10N(y))δ(J(y))Λδ1δ2δ3(y)(ǫT )δ1δ2δ3
β1···β11

(y)λβ1(y)θβ2(y) · · · θβ11(y)〉.

where we emphasize again that we suppress the total derivative term in moduli space

originating from Q acting on b̃. In this subsection we will evaluate B(N) without integrating

over B. The choice we make is:

(B1)ab = δ[1a δ
2]
b , . . . , (B

10)ab = δ[4a δ
5]
b , (BI)ab = (BI)ab = 0 (5.5)

We demonstrate below that all such one-loop amplitudes can be written as a sum of

terms proportional to a certain zero mode integral Iβ2···β11. This is done by using the

OPE’s to remove all fields of non-zero weight, in particular Nmn. This is a non trivial step

because of the complicated form of the b ghost.

Had the zero mode integral Iβ2···β11 vanished, this would have proven that BRST exact

states decouple at one loop (again modulo the total derivative term from Q acting on b̃).

Non-vanishing of Iβ2···β11 does not prove that there exists a non-vanishing amplitude with

a Q-exact state, because there may be additional cancellations when one performs the

remaining integrals. It does show however that the PCO’s are not Q closed.

Zero mode integral. We will show below that all one-loop amplitudes (5.4) can be

written as a sum of terms that are proportional to the following zero mode integral,

Iα1
β1β2···β11

≡

∫

[dλ][dN ]λα1(λγ13d) · · · (λγ45d)(λd)δ(N12) · · · δ(N45)δ(J)Λαβγ (ǫT )αβγ
β1···β11

.

(5.6)
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Moreover we will show all one-loop amplitudes with an unphysical state can be written as

a sum of terms proportional to the trace of Iα1
β1···β11

which we call Iβ2···β11 :

Iβ2···β11 ≡ Iα1
α1β2···β11

(5.7)

=

∫

[dλ][dN ]λβ1(λγ13d) · · · (λγ45d)(λd)δ(N12) · · · δ(N45)δ(J)Λαβγ (ǫT )αβγ
β1···β11

.

Thus (5.7) is the one-loop analog of (4.28) (or (4.8)). Note that, in spite of the notation,

Iα1
β1β2···β11

is not manifestly Lorentz invariant. Whether it is Lorentz invariant remains to

be seen. Our first task is to evaluate Iβ2···β11 .

After using expression (A.95) for [dN ] to evaluate the N integral in Iβ2···β11 we find

Iβ2···β11 =

∫

[dλ]
1

(λ+)8
λβ1(λγ13d) · · · (λγ45d)(λd)Λαβγ (ǫT )αβγ

β1···β11
. (5.8)

In this form it becomes apparent that the problems with factors of λ+ in the denominator

only become bigger at one loop. At this point we can only surmise this. To find a definitive

answer we have to evaluate the λ integral. This can be done by expanding the integrand

by powers of λ+:

1

(λ+)8
(λγ13d) · · · (λγ45d)(λd) = (λ+)2D12d+ + (5.9)

+
1

2
λ+λa1a2

(

D12d
a1a2 +

1

2
ǫaba1a2cdcD12abd

+

)

+
1

8
λa1a2λa3a4

(

D12ǫ
aa1a2a3a4da +

+ǫaba1a2cdcD12abd
a3a4 +

1

2
ǫaba1a2cǫdea3a4fdcdfD12abded+

)

+

+
1

32

1

λ+
λa1a2λa3a4λa5a6

(

ǫaba1a2cdcD12abǫ
da3a4a5a6dd + ǫaba1a2cǫdea3a4fdcdfD12abded

a5a6 +

+
1

2
ǫaba1a2cǫdea3a4f ǫgha5a6jdcdfdjD12abdeghd+

)

+
6
∑

k=4

1

(λ+)k−2
λa1a2 · · ·λa2k−1a2k

Y a1···a2k ,

where

D = d12 · · · d45, Da1···ak
=

∂

∂dak−1ak
· · ·

∂

∂da1a2
D. (5.10)

The Y ’s can be expressed in terms of the d’s just like in the first four terms. Note that the

minimal number of da’s in Y a1···a2k is k − 1. This is the reason the series stops at k = 6.

The maximum number of da’s in Y a1···a2k is k. The λ integration of (5.9) can be evaluated

term by term. Iβ2···β11 then becomes

Iβ2···β11 =

6
∑

k=0

(Ik)a1···a2kβ2···β11Y
a1···a2k . (5.11)

The integrals Ik are investigated order by order in the sequel of this subsection.

For k = 0, 1, 2 one can use (4.12) and (4.9) to show the λ integrals vanish:

(I0)β2···β11 =

∫

[dλ]λβ1(λ+)2Λδ1δ2δ3(ǫT )δ1δ2δ3
β1···β11

= (ǫT )++β1

β1···β11
= 0, (5.12)
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(I1)a1a2β2···β11 =

∫

[dλ]λβ1λ+λa1a2Λδ1δ2δ3(ǫT )δ1δ2δ3
β1···β11

= (ǫT )+β1

a1a2 β1···β11
= 0, (5.13)

(I2)a1···a4β2···β11 =

∫

[dλ]λβ1λa1a2λa3a4Λδ1δ2δ3(ǫT )δ1δ2δ3
β1···β11

= (ǫT )β1

a1a2a3a4 β1···β11
= 0. (5.14)

If k > 2, however, there are also factors of λ+ in the denominator. As shown in appendix B.1

the λ integrals do not vanish anymore. M charge conservation implies that I3 can only be

non vanishing if

β2, . . . , β11 = +, b1b2, . . . , b9b10, c1, c2, c3, c4 or β2, . . . , β11 = b1b2, . . . , b13b14, c1, c2, c3.

(5.15)

This is explained in detail in the first part of appendix B. We explicitly compute I3 for

the first case. Since Sym31̄0⊗ Asym510 ⊗ Asym45̄ contains one scalar, one finds

(I3)
b1b2···b9b10

a1···a6+c1c2c3c4
=

∫

[dλ]
1

λ+
λβ1λa1a2 · · ·λa5a6Λαβγ(ǫT )αβγ b1···b10

β1+c1c2c3c4

= c1ǫa1a2a3a4b14ǫb16a5a6b11b12(ǫ10)
b1···b20ǫc1c2c3c4b17ǫb13b15b18b19b20 + 2 perms, (5.16)

where (ǫ10)
b1···b20 is antisymmetric under both b2i−1 ↔ b2i and b2i−1b2i ↔ b2j−1b2j and

(ǫ10)
12131415232425343545 = 1. The two permutations add terms to make the r.h.s. symmetric

under a2i−1a2i ↔ a2j−1a2j . The constant c1 is computed in appendix B.2 and is given by

c1 =
129

2
. (5.17)

We will not compute any components of I4 here. Going to the next level, the only choice

of β2, . . . , β11 that leads to a non-zero answer for I5 is

(I5)
b3···b12

a1···a10 12345 =

∫

[dλ]
1

(λ+)3
λβ1λa1a2 · · · λa9a10Λδ1δ2δ3(ǫT )δ1δ2δ3 b3···b12

β1 12345

= −
2

5
ǫb13a1a2a3a4ǫb15a5a6a7a8ǫb17a9a10b1b2(ǫ10)

b1···b20ǫb14b16b18b19b20 + 14 perms. (5.18)

The details are given in appendix B.2. Finally I6 can be evaluated as:

(I6)a1···a12β2···β11 =

∫

[dλ]
1

(λ+)4
λβ1λa1a2 · · ·λa11a12Λαβγ(ǫT )αβγ

β1···β11
(5.19)

= ǫb1a1a2a3a4ǫb2a5a6a7a8ǫb3a9a10a11a12(ǫT )b1b2b3
+β2···β11

+ permutations = 0.

This vanished because (ǫT )b1b2b3
+β2···β11

= 0 and that follows from the M charge conservation

rule for invariant tensors. In other words it is not possible to choose β2, . . . , β11 such that

the total M charge of the components is zero (cf. equation (A.25)). This concludes the

computation of the pure spinor zero mode integrals that appear at one loop.

Non-zero mode integration. We now demonstrate that all one-loop amplitudes with

an unphysical state can be written as a sum of terms proportional to Iβ2···β11 . After this

proof we indicate how the argument can be modified to prove that A(N) can be written as

– 19 –



J
H
E
P
0
1
(
2
0
1
0
)
0
4
1

a sum of terms proportional to Iα
β1···β11

. In general the amplitude, B(N), becomes a sum of

terms of the form

B
(N)
i1···ik

=

∫

[Dλ][DN ][Dd][Dθ]

( N
∏

i=2

∫

dzi

)

fm1n1···mknk
(z1, . . . , zN ) (5.20)

×Nm1n1(zi1) · · ·N
mknk(zik)(λγ13d)(y) · · · (λγ45d)(y)(λd)(y)λβ1(y)Λαβγ(y)(ǫT )αβγ

β1···β11

×θβ2(y) · · · θβ11(y)

∫

duµ(u)b̃B1(u,w)δ(N13(y)) · · · δ(N45(y))δ(J(y))e−S ,

where the indices in the PCO’s are SU(5) indices, ij ∈ {2, . . . , N} and fm1···nk
does not

contain any λ’s or w’s. The number k indicates how many vertex operators provide an

Nmn. The functional integrals over λ and N can be evaluated by performing the OPE’s to

remove all fields of non-zero weight. Then one replaces the fields by their zero modes and

performs the integration over these modes. In order to perform the OPE between Nmn

and δ(BN) we have to Taylor expand δ(BN), as discussed in [3],

δ((BN(y)) = δ(BN0ω(y) +BN̂(y)) (5.21)

= δ(BN0ω(y)) + (BN̂(y))δ′(BN0ω(y)) +
1

2
(BN̂(y))2δ′′(BN0ω(y)) + · · · ,

where N̂ denotes N after omission of the zero mode. The holomorphic one form ω(y) is

constant on the torus:

ω(y) =
1

4π2τ2
, (5.22)

where τ2 is the imaginary part of the modulus τ . The b ghost also contains Nmn’s which

have to be taken into account if one is removing all fields of non-zero weight. We first focus

on the first term, the local b ghost, bB(u). The second term of b̃(u, y), with the integration

in it, will be dealt with later. After replacing b̃(u, y) by b(u) in the amplitude, B
(N)
i1···ik

,

becomes a sum over n, which counts the number of Nmn’s the local b ghost provides, of

the following objects:

B
(N)
i1···ik,n =

∫

[Dλ][DN ][Dd][Dθ]

( N
∏

i=2

∫

dzi

)
∫

duµ(u)
3
∑

j=0

fjm1n1···mk+nnk+n
(z, u,w)

×Nm1n1(zi1) · · ·N
mknk(zik)Nmk+1nk+1(w) · · ·Nmk+nnk+n(w)(λγ13d)(y) · · · (λγ45d)(y)

×(λd)(y)λβ1(y)(ǫT )αβγ
β1···β11

Λαβγ(y)θβ2(y) · · · θβ11(y)

×δ(j)(N12(w))δ(N13(y)) · · · δ(N45(y))δ(J(y))e−S , (5.23)

where δ(j) denotes the jth derivative of the delta function and the sum runs from zero to

three because b does not contain δ(4)(B1N) or higher derivatives.

The product of the eleven delta functions, including the one from b, becomes a sum of

products of eleven δ(j)(BIN0) after the Taylor expansion. We start with the first term in

this sum, i.e. the one without N̂ ’s and no derivatives on the delta functions. In this case

the Nmjnj(zj)’s from (5.20) have OPE’s with themselves and with the λ’s from the PCO’s.
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We first concentrate on the term in which all Nmn’s get contracted with an explicit λ.

That term is given by3

C
(N)
i1···ik,n =

∫

[dλ][dN ][D16d][D16θ]

[

N
∏

i=2

∫

dzi

]

∫

dufm1n1···mk+nnk+n
(z1, . . . , zN , u)

×

[

k
∏

l=1

F (zil , y)

]

F (w, y)nNm1n1 · · · Nmk+nnk+nλ
β1
0 (λ0γ

13d(y)) · · · (λ0γ
45d(y))(λ0d(y))

×(Λ0)αβγ(ǫT )αβγ
β1···β11

θβ2(y) · · · θβ11(y)δ(N12
0 ) · · · δ(N45

0 )δ(J0)e
Spθ , (5.24)

where

F (z, y) = ∂zlogE(z, y) (5.25)

and E(z, y) is the holomorphic prime form, which goes like z − y when z → y [27, 28].

Nmn are abstract Lorentz generators for the λ,w sector and they act to the right. They

should not be thought of as containing (zero) modes of the λ or w worldsheet fields. The

Nmn merely multiply every index on a λ or w they hit by a two form gamma matrix. Up

to now we only considered contractions between Nmn and the explicit λ’s, but if two or

more Nmn’s contract with each other in B
(N)
i1···ik,n we get a term of the form C

(N)
i1···il,m

, with

l +m < k + n, where the poles in zi − zj are included in the unspecified function f .

The last step of our argument is showing all terms with derivatives on the delta func-

tions can also be written as a sum of terms of the form C
(N)
i1···ik,n. To see this note that if

a derivative acts on δ(Nab) one of the Nmn must provide this zero mode, otherwise the

integral vanishes. This step just reduces the number of Nmn’s in B
(N)
i1···ik,n that must be

contracted, so in fact it becomes of the form C
(N)
i1···il,m

where k + n − l −m is the number

derivatives acting on the delta functions. Since the zero mode measures [dλ] and [dN ] are

Lorentz invariant we can pull the N out of these integrals. This concludes the main part

of the argument that a one-loop amplitude can be written as a sum of terms proportional

to Iβ2···β11.

We still need to consider the second term in b̃(u,w). This was not included in the

above discussion because it contains ∂Nmn(v). This does not change the argument much,

after the OPE’s this part of the amplitude will also have the form of C
(N)
i1···ik,n where the

effect of the v derivative and the integral over v are included in f .

To see A(N) can be written as a sum of terms proportional to Iα1
β1···β11

one can use

the above reasoning with a slight adjustment. This consists of replacing λβ1(y) by λα1(z1)

in (5.20) and adding an α1 index to f . The only effect this has is the replacement of some

F (zi, y) by F (z1, zi) in (5.24), apart from the fact α1 and β1 are not contracted anymore.

Thus we have shown that amplitudes with unphysical states do not vanish by the

λ,N integration, opposite to expectations, but nevertheless let us press on and explicitly

compute a one-loop four-point amplitude with an unphysical state. Perhaps we will find

some other mechanism that makes these amplitudes vanish.

3Since the distinction between worldsheet fields and their zero modes plays a central role in the argument,

zero modes are denoted in an explicit way, unlike in other parts of this work.
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5.1.1 Four point function without integrating over B

In this subsection we investigate two properties of the four-point one-loop function (2.38) in

the minimal pure spinor formalism, namely decoupling of unphysical states and its Lorentz

invariance in the formulation without integrating over B. We will find decoupling ofQ exact

states, in spite of the results of the previous section. The vanishing is achieved after the in-

tegral over the d zero modes. Lorentz invariance, however, does not follow in the same way.

Decoupling of unphysical states. The one-loop four-point amplitude is an example

of an amplitude in which only the zero modes contribute (cf. [3]). It turns out only three

terms have enough factors of dα and Nmn to give a non vanishing answer. This will become

clear in equation (5.27) below. Thus we can immediately replace all the fields in (5.3) by

their zero modes:

B(4) =

∫

[dλ][dN ]d16dd16θQΩ
4
∏

i=2

Uib̃B1(λB2d) · · · (λB10d)(λd) (5.26)

×δ(B1N) · · · δ(B10N)δ(J)Λαβγ (ǫT )αβγ
β1···β11

θβ1 · · · θβ11.

The only terms of bB1 that contributes are the ones with four d’s and there are only three

such terms:

(bB)|d4 = −
1

1536
γαβ

mnp(dγ
mnpd)(Bd)α(Bd)βδ

′(BN) (5.27)

−
1

8
c1

γδαρ
mn Nmndρ(Bd)α(Bd)β(Bd)γδ

′′(BN)

−
1

16
c4

δγβα
mnpqN

mnNpq(Bd)α(Bd)β(Bd)γ(Bd)δδ
′′′(BN),

where the invariant tensors c1 and c4 can be read off from (2.34)–(2.37) and (A.111)–

(A.114). Note the N integration will only be non vanishing if the fourth vertex operator

provides an Nmn zero mode. Moreover there are no terms in the b ghost with three d’s

and no derivatives on δ(BN). Such terms could have contributed here. The three terms

above turn out to all be proportional to (for Bab = δ1[aδ
2
b], B

a
b = Bab = 0)

d12d3d4d5δ
′(N12). (5.28)

For the first term this follows from direct computation using the gamma matrices as

listed in appendix A.3.3. Actually, one could have predicted the fact that three of the four

dα’s are da’s and one is a dab, by looking at the M charge of the full term. δ′(N12) has

M charge two and since γαβ
mnp(dγmnpd)(Bd)α(Bd)βδ

′(BN) has M charge zero, the d part

must have M charge minus two. The only way four d’s can give M charge minus two is

when three of them are a da (M charge −3
4) and the fourth is a dab (M charge 1

4).

The second term can be reduced as follows:

(c1)
γβαρ
mn Nmndρ(Bd)α(Bd)β(Bd)γδ

′′(BN) (5.29)

= (c1)12 a1···a8d
a7a8

1

2
ǫa1a212ada

1

2
ǫa3a412bdb

1

2
ǫa5a612cdcδ

′(N12),
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where we used the M charge conservation property of invariant tensors together with

(Bd)a = 0. After observing that (c1)aba1···a8 is an SU(5) invariant tensor that is antisym-

metric in the middle three pairs of indices (a1a2, a3a4, a5a6) and there is only one invariant

tensor with these symmetries [26], namely (ǫaba1a2[a3
ǫa4]a5a6a7a8

+ 5 perms), we find that

the second term in the b ghost is proportional to

(c1)12343545a7a8d
a7a8d3d4d5δ

′(N12) = d12d3d4d5δ
′(N12). (5.30)

The same logic can be applied to the third term although this case is slightly simpler.

α, β, γ, δ has to be +, ab, cd, ef and since (Bd)+ = d12 we automatically get this factor.

The third integrated vertex operator must provide an N12 zero mode. It then follows

that B(4) is proportional to Iβ2···β11. This integral can be written as a sum over k just as

in (5.9). In this sum the k = 0, 1, 2, 6 terms vanish because of the λ integration and the

k = 4, 5 terms vanish due to the d integration (note that bB1 contains three da’s and Y4, Y5

contain at least three da’s). The k = 3 term is given by

(bB1)|d4(I3)a1···a6β2···β11(Y3)
a1···a6 = d12d3d4d5

(

1

32
ǫaba1a2cdcD12abǫ

da3a4a5a6dd + (5.31)

+
1

32
ǫaba1a2cǫdea3a4fdcdfD12abded

a5a6 +
1

64
ǫaba1a2cǫdea3a4f ǫgha5a6jdcdfdjD12abdeghd+

)

∫

[dλ]
1

λ+
λβ1λa1a2λa3a4λa5a6Λδ1δ2δ3(ǫT )δ1δ2δ3

β1···β11

= −
1

4
d12d3d4d5ǫ

aba1a2cdcddD12ab

∫

[dλ]λβ1λdλa5a6Λδ1δ2δ3(ǫT )δ1δ2δ3
β1···β11

+

−d12d3d4d5ǫ
aba1a2cdcdfD12ab

∫

[dλ]λβ1λa1a2λ
fΛδ1δ2δ3(ǫT )δ1δ2δ3

β1···β11
= 0,

where we used

D12abcdd
ef = −δ[ec δ

f ]
d D12ab − δ

[e
1 δ

f ]
2 Dabcd − δ[ea δ

f ]
b Dcd12 (5.32)

and the integral vanishes because ǫT is traceless.

Thus, for the four-point one-loop amplitudes with a BRST exact state the terms that

do not vanish after the λ,N integral now vanish because they contain a square of fermionic

quantity, namely dαdα (no sum). One may wonder whether the same mechanism would

work in higher point functions. While we do not have a definite answer to this, preliminary

results suggest that this is not the case. For example, the zero mode contribution to the

5-point function with a Q-exact state does not vanish in this way, but we should emphasize

that our analysis does not exclude possible cancellations between the contributions of zero

and non-zero modes.

Lorentz invariance. In this subsection we study the Lorentz invariance of the ampli-

tudes. Recall that the Lorentz variation of the PCO’s is Q exact (cf. (5.2)). Thus one

expects that the amplitude is Lorentz invariance. We have seen earlier however that Q

exact states may not decouple, so we will proceed to check explicitly whether the Q exact

terms obtained from the Lorentz variation of the PCO’s evaluate to zero. We will focus
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on the term obtained by the Lorentz variation of a single PCO. This term should be zero

by itself because it is Q exact. Integrating Q by parts one obtains a total derivative in

moduli space when Q acts on b̃, which will be suppressed as in our earlier discussion, and

a number of terms when Q acts on the other PCO’s. These terms should evaluate to zero

after the λ and N integrals are performed, but we will see that they do not.

For the choice of the constant B tensor in (5.5), the PCO are invariant under Mab

and under the SU(5) generators (MS)ab transform into a Q-exact term (cf. (5.2)) (see ap-

pendix A.3 for the definition of the generators). More specifically, the SU(5) transformation

of ZB2 = (λγ13d)δ(N13) is given by

(MS)ab((λγ
13d)δ(N13)) = Q(δ

[1
b N

3]aδ(N13)). (5.33)

As explained before the non-zero modes can be integrated out trivially in the four point

one-loop function:

A(4) =

∫

[dλ][dN ]d16dd16θλαAα

4
∏

i=2

Uib̃B1(λB2d) · · · (λB10d)(λd) (5.34)

×δ(B1N) · · · δ(B10N)δ(J)Λαβγ (ǫT )αβγ
β1···β11

θβ1 · · · θβ11.

The Lorentz variation of the four point function can be written as a sum with one term

for each ZB :

(MS)abA
(4) =

∑

I

(A
(4)

BI )
a
b , (5.35)

and using (5.33) we obtain

(A
(4)
B2)

a
b =

∫

[dλ][dN ]d16dd16θλαAα

4
∏

i=2

Uib̃B1Q(δ
[1
b N

3]aδ(N13))(λB3d) · · · (λB10d) (5.36)

×(λd)δ(B1N) · · · δ(B10N)δ(J)Λαβγ(ǫT )αβγ
β1···β11

θβ1 · · · θβ11.

with similar formulas for the other terms.

Each of (A
(4)

BI )
a
b should be zero separately, so we focus on (5.36). After integrating Q

by parts and writing out the b ghost one finds

(A
(4)
B2)

a
b =

∫

d16dd16θfα(θ, x)(A
(4)
B2,λN

)αa
b , (5.37)

for some fα and

(A
(4)
B2,λN

)αa
b = δ3b δ

a
2

∫

[dλ][dN ]λαd12d3d4d5δ(N
12) · · · δ(N45)δ(J) (5.38)

×(λγ14d) · · · (λγ45d)(λd)Λδ1δ2δ3(ǫT )δ1δ2δ3
β1···β11

λβ1θβ2 · · · θβ11.

This integral can be evaluated in exactly the same fashion as the one appearing in the

four-point function with a Q exact state. The first step is to perform the N integrations

and then expand the integrand in powers of λ+:

(A
(4)
B2,λN

)α2
3 = d12d3d4d5

∫

[dλ]Λδ1δ2δ3(ǫT )δ1δ2δ3
β1···β11

[

λαλβ1λ+D1213d+ + (5.39)
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+λαλβ1λa1a2

(

1

2
D1213d

a1a2 +
1

4
D1213abǫ

aba1a2cdc

)

+

+λαλβ1
1

λ+
λa1a2λa3a4

(

1

8
D1213ǫ

a1a2a3a4ada +
1

8
D1213abǫ

aba1a2cdcd
a3a4 +

+
1

16
D1213abcdǫ

aba1a2eǫcda3a4fdedfd+

)

+

+λαλβ1
1

(λ+)2
λa1a2λa3a4λa5a6

(

1

32
D1213abǫ

aba1a2cdcǫ
a3a4a5a6ddd +

+
1

32
D1213abcdǫ

aba1a2eǫcda3a4fdedfd
a5a6

)]

θβ2 · · · θβ11,

all other terms vanish because they contain 6 or more da’s. The first two terms in the λ+

expansion vanish by using (4.12) and (4.9). The next term reduces to

d12d3d4d5

∫

[dλ]λαλβ1
1

λ+
λa1a2λa3a4

(

1

8
D1213abǫ

aba1a2cdcδ
a3

[1 δ
a4

3] + (5.40)

+
1

16
D1213abcdǫ

aba1a2eǫcda3a4fdedfd+

)

Λδ1δ2δ3(ǫT )δ1δ2δ3
β1···β11

θβ2 · · · θβ11.

≡ (J3)
α
β2···β11

θβ2 · · · θβ11.

To show that this contribution is non-zero, it suffices to prove that one of its components

(J3)
α
β2···β11

is non-zero. We will consider the case,

α = a5a6, β2, . . . , β11 = +, b1b2, . . . , b9b10, c1, c2, c3, c4. (5.41)

To evaluate the λ integral we use (5.16). The first term vanishes after the λ integration

due to the d’s and the second term gives

129

2

1

16
d12d3d4d5D1213abcdǫ

aba1a2eǫcda3a4fdedfd+(ǫa1a2a3a4b14ǫb16a5a6b11b12(ǫ10)
b1···b20

ǫc1c2c3c4b17ǫb13b15b18b19b20 + 2 perms). (5.42)

Finally, we have the term containing λαλβ1λa1a2λa3a4λa5a6 . This term however does not

contain a factor of d+, so it cannot interfere with (5.42) (prior to the integration over d).

Thus we get a non-vanishing result after integrating over λ,N , opposite to expecta-

tions. Note that (5.42) contains 13 d zero modes. The remaining three d zero modes

can be provided by the vertex operators, so the Lorentz variation does not vanish in a

similar fashion as in the discussion in the previous subsection, although in principle there

may still be a cancellation between this term and terms originating from the term with

λαλβ1λa1a2λa3a4λa5a6 in (5.39) after integrating over d.

5.2 Prescription including an integral over B

At tree level decoupling of unphysical states was restored after integrating over the constant

spinors C. In this section we analyze whether this is also the case at one loop, namely

whether unphysical states decouple after integrating over C and B. Similar to the tree-

level case we show that all amplitudes are proportional to a certain invariant tensor (at
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tree level this was (ǫT )) and amplitudes with Q exact states are proportional to the trace

of this invariant tensor. However, at one loop the trace of this tensor does not vanish.

Following the same steps as in the previous subsection (section 6 contains details of

these steps), one can show that all amplitudes can be written as a sum of terms proportional

to the following zero mode integral

Xα1···α11
β1···β11m1n1···m10n10

≡

∫

[dB][dC][dλ][dN ]λα1 · · ·λα11 (5.43)

×B1
m1n1

· · ·B10
m10n10

C1
β1

· · ·C11
β11
δ(C1λ) · · · δ(C11λ)δ(B1N) · · · δ(B10N)δ(J).

Proportional here means in the sense of tensor multiplication: in the terms that appear

after contractions, the tensor X is multiplied by gamma matrices. Evaluating the integrals

in (5.43) is much easier than one might have anticipated, because we know that X must be

an invariant tensor, that is symmetric and gamma matrix traceless in the α’s, antisymmetric

in the β’s and antisymmetric in both mi ↔ ni and mini ↔ mjnj. To find out how many

independent invariant tensors with these properties exist, we compute the number of scalars

in the relevant tensor product, which is one (see also section A.3.2). As a matter of fact

we already know such a nonvanishing tensor:

(ǫTR)α1···α11
β1···β11m1n1···m10n10

≡ (ǫT )
((α1α2α3

β1···β11
R

α4···α11))
m1n1···m10n10 , (5.44)

where the double brackets denote gamma matrix traceless, see appendix A.6. We stress

that Lorentz invariance has completely fixed X, there is no freedom remaining.

Starting from a correlator with an unphysical state and integrating Q by parts, it will

hit a θ from a PCO (where again we suppress the total derivative in moduli space obtained

when Q acts on b̃, which does not play a role here). This means all amplitudes with an

unphysical state can be written as a sum of terms proportional to the trace of (ǫTR):
∫

[dB][dC][dλ][dN ]λα2 · · · λα11B1
m1n1

· · ·B10
m10n10

λβ1C1
β1
C2

β2
· · ·C11

β11

×δ(C1λ) · · · δ(C11λ)δ(B1N) · · · δ(B10N)δ(J) = (ǫTR)α1···α11
α1β2···β11m1n1···m10n10

. (5.45)

There are two independent invariant tensors with indices and symmetries of the trace of

(ǫTR), so one expects a non-vanishing trace. Indeed, it is proven in section 6.1 that this

trace does not vanish, which implies the PCO is not Q closed. One might want to replace

(ǫTR) by its traceless part to restore Q invariance, but this is not possible since all invariant

tensors with the symmetries and indices of X are proportional to (ǫTR). In other words

removing the trace of (ǫTR) would set the entire tensor to zero.

We conclude that the proof of decoupling of unphysical states at tree level does not

generalize to one loop and one needs a new argument. Such a new argument is presented

in [18], where it is shown that unphysical states decouple to all loop order.

5.3 Comparison to non-minimal formalism

In this subsection we briefly compare with the non-minimal formalism [4]. None of the

problems that were found, when we examined the prescription without integration over B,

are present in this case.
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In the non-minimal formalism one introduces a set of non-minimal variables, the com-

plex conjugate λ̄α of λα, a fermionic constrained spinor rβ satisfying

λ̄αγ
αβ
m λ̄β = 0, λ̄αγ

αβ
m rβ = 0 (5.46)

and their conjugate momenta, w̄α and sa. Analogous to the minimal formalism these

conditions induce a gauge invariance:

δw̄α = Λ̄m(γmλ̄)α − φm(γmr)
α, δsα = φm(γmλ̄)α. (5.47)

This implies w̄α and sα can only appear in the gauge invariant quantities

N̄mn =
1

2
(λ̄γmnw̄ − sγmnr), J̄ = λ̄w̄ − sr, Tλ̄w̄ = w̄α∂λ̄α − sα∂rα, (5.48)

Smn =
1

2
sγmnλ̄, S = sλ̄.

The action (2.1) is modified by the addition of the term Snm:

S → S + Snm, Snm =

∫

d2z
(

−w̄α∂̄λ̄α + sα∂̄rα
)

(5.49)

and the generator Q by

Q→ Q+

∮

dzw̄αrα. (5.50)

This acts on the non-minimal variables as follows

δλ̄α = rα, δrα = 0, δsα = w̄α, δw̄α = 0. (5.51)

These transformation rules imply that the cohomology is independent of the non-minimal

variables. In other words the vertex operators can always be chosen such that they do not

include these variables.

The non-minimal variables can also be understood as originating from the BRST treat-

ment of the gauge freedom due to shifts of the zero modes of the worldsheet fields [19].

This also explains why vertex operators do not depend on the non-minimal fields and why

only the zero modes of these fields appear in the path integral. Furthermore the OPE’s

given in section 2 still comprise a complete list, since the new fields do not have non-zero

modes. Note however that in more recent work [20] that aims at dealing with divergences

as λ̄λ→ 0, non-zero modes of λ̄ do play a role. It would be interesting to understand how

this fits with the discussion in [19].

In the non-minimal formalism the PCO’s are replaced by

N = e−(λλ̄+rθ+ 1
2
NmnN̄mn+ 1

4
Smnλγmnd+JJ̄+ 1

4
Sλd). (5.52)

This is invariant under Q:

QN =

(

λr − λr + N̄mn 1

2
λγmnd− N̄mn 1

2
λγmnd+ J̄(λd) − J̄(λd)

)

N = 0. (5.53)

Thus, all problematic terms of the minimal formalism are manifestly absent here and BRST

exact states decouple. In other words, these amplitudes vanish because two equal terms

are subtracted.
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6 A no-go theorem for Lorentz invariant Q-closed PCO’s

This section is a result of an investigation into possibilities of replacing the PCO’s by

ones that are Lorentz invariant and Q closed. It turns out that any such PCO’s would

trivialize the entire formalism. More precisely if all formal properties of the picture changing

operators were to hold then all one-loop amplitudes would vanish.

A Lorentz invariant Q closed PCO is defined as an operator Y that satisfies

• Y = fβ1···β11(λ)θβ1 · · · θβ11,

• fβ1···β11(λ) has ghost number −11,

• fβ1···β11(λ) is a Lorentz tensor,

• QY = 0.

The original proposal in [3] is the special case where the function f is given by4

fβ1···β11 =

∫

[dC]C1
[β1

· · ·C11
β11]δ(C

1λ) · · · δ(C11λ). (6.2)

This satisfies the first three conditions, but although QY ∼ λδ(λ) the fourth bullet does

not hold for (6.2), as we have seen.

Using the fact that f is a Lorentz tensor one finds,

∫

[dB][dλ][dN ]λα1 · · ·λα11B1
m1n1

· · ·B10
m10n10

fβ1···β11(λ)δ(B1N) · · · δ(B10N)δ(J)

= c1(ǫTR)α1···α11
β1···β11m1n1···m10n10

, (6.3)

for some c1. This follows from the fact that (ǫTR) is the unique Lorentz tensor with the

indicated tensor structure. Now the crucial observation is that for functions f such that

QY = 0 the integral (6.3) must be equal to zero. Indeed, using

0 = QY = fβ1···β11(λ)λβ1θβ2 · · · θβ11. (6.4)

we compute

0 =

∫

[dB][dλ][dN ]λα2 · · ·λα11B1
m1n1

· · ·B10
m10n10

(

fβ1···β11λ
β1θβ2 · · · θβ11

)

×δ(B1N) · · · δ(B10N)δ(J) = c1(ǫTR)α1···α11
α1β2···β11m1n1···m10n10

θβ2 · · · θβ11. (6.5)

We will show shortly that the trace of (ǫTR) does not vanish, so we conclude that

c1 = 0. (6.6)

4The C integral can be evaluated to give

fβ1···β11
= (ǫT )αβγ

β1···β11
Λαβγ . (6.1)
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To prove that this implies vanishing of all one-loop amplitudes the above result is not

enough, because there are also zero mode integrals with derivatives on the delta functions

andN insertions. After the non-zero mode integration is performed, an arbitrary amplitude

is reduced to a sum of zero mode integrals, all of which are of the form

Eα1···α11p1q1···pLqL

β1···β11m1n1···m10n10r1s1···rLsL
(6.7)

=

∫

[dB][dN ][dλ]

L
∏

j=1

Npjqj

L1
∏

i1=1

B1
ri1

si1

L1+L2
∏

i2=L1+1

B2
ri2

si2
· · ·

L
∏

i10=L1+···+L9+1

B10
ri10

si10

×λα1 · · ·λα11fβ1···β11(λ)B1
m1n1

· · ·B10
m10n10

δ(L1)(B1N) · · · δ(L10)(B10N)δ(J),

where all the fields are zero modes and L =
∑10

P=1 LP and δ(m)(x) denotes the m-th

derivative of δ(x). In the previous section we saw all zero mode integrands had to be of

the form (2.43), (2.44) for a non vanishing answer. In writing down the above zero mode

integrand we started from fB, hB and used the following four arguments.

• For each P the total number of BP ’s outside the delta functions is equal to the

number of derivatives on δ(BPN) plus one. This can be inferred from the explicit

form of the b ghost, (2.33), and the Taylor expansion of the delta functions. This is

reflected in (6.7) because LP appears in two places.

• For a non-zero answer the total number of N zero modes must equal the total number

of derivatives on the delta functions. This gives the restriction L =
∑

LP .

• One might have expected derivatives on δ(J) as well, but for a non vanishing answer

there must also be enough J zero modes, so one can always reduce the amplitude to

contain only δ(J).

• Compared to (2.43) the λ dependence is less general. It is possible to restrict to this

class of integrands because fβ1···β11(λ) is a Lorentz tensor. To see this note the OPE’s

of N and J with f do not introduce derivatives:

Nmn(z)fβ1···β11(λ(w)) ∼
11
∑

i=1

(γmn)αβi
fβ1···α···β11(λ(w))

1

z − w
, (6.8)

J(z)fβ1···β11(λ(w)) ∼ −11fβ1···β11(λ(w))
1

z − w
, (6.9)

where the α index is in the ith position.

Note that the free indices on E can be either contracted among each other or with d or θ

zero modes. The integral in (6.7) can be evaluated by using the definition of B integration

in (2.45). Let us call the integrand of (6.7) g and write it as

g(λ,N, J,BP ) = λα1 · · ·λα11hβ1···β11
α1···α11

(N,J,BP )
10
∏

P=1

δ(LP )(BPN)fβ1···β11(λ), (6.10)
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where h is a polynomial depending on (N,J,B) as

(N)L
10
∏

P=1

(BP )LP +1. (6.11)

It also contains other fields (e.g. θ, d) but these are suppressed.

The integrations can be performed using (2.45):
∫

[dB][dλ][dN ]g(λ,N, J,BI ) ≡
∂

∂λα1
· · ·

∂

∂λα11
(ǫTR)α1···α11

β1···β11m1n1···m10n10
(6.12)

∂

∂B1
m1n1

· · ·
∂

∂B10
m10n10

10
∏

P=1

(

∂

∂BP
pq

∂

∂Npq

)LP

λγ1 · · ·λγ11hβ1···β11
γ1···γ11

(λ,N, J,BP )

=(ǫTR)α1···α11
β1···β11m1n1···m10n10

∂

∂B1
m1n1

· · ·
∂

∂B10
m10n10

10
∏

P=1

(

∂

∂BP
pq

∂

∂Npq

)LP

hβ1···β11
α1···α11

(λ,N, J,BP )

This reduces to (2.45) with KI = 0 if one chooses fβ1···β11(λ) as in (6.2) and uses

hβ1···β11
α1···α11

=
∂

∂C1
β1

· · ·
∂

∂C11
β11

(hB)α1···α11 . (6.13)

Using the above definition the integral in (6.7) can be evaluated as

Eα1···α11p1q1···pLqL

β1···β11m1n1···m10n10r1s1···rLsL
= cL1···L10δ

([p1
r1

δq1]
s1

· · · δ[pL
rL
δqL])
sL

(ǫTR)α1···α11
β1···β11m1n1···m10n10

+symmetrization in([rLP−1+1, sLP−1+1], . . . , [rLP
, sLP

], [mPnP ]), (6.14)

for some constant cL1···L10 . Note the round brackets denote symmetrization in

[p1q1], . . . , [pLqL]. (6.15)

Also note the second line above includes ten symmetrizations, one for each P . E is sym-

metric in these indices because they all appear on BI . (Note that by definition L0 = 0).

To get some insight how to obtain (6.14) consider the case L1 = L = 1. In that case the

rhs of (6.7) is given by

(ǫTR)m′

1n′

1···m
′

10n′

10

∂

∂B1
p′q′

∂

∂Np′q′

∂

∂B1
m′

1n′

1

· · ·
∂

∂B10
m′

10n′

10

NpqB1
r1s1

B1
m1n1

· · ·B10
m10n10

, (6.16)

where the spinor indices on (ǫTR) are suppressed. The last nine B differentiations are

trivial resulting in:

(ǫTR)m′

1n′

1m2n2···m10n10

∂

∂B1
p′q′

∂

∂Np′q′

∂

∂B1
m′

1n′

1

NpqB1
r1s1

B1
m1n1

. (6.17)

Now we first perform the N differentiation followed by the last two B differentiations:

(ǫTR)m′

1n′

1m2n2···m10n10

∂

∂B1
pq

∂

∂B1
m′

1n′

1

B1
r1s1

B1
m1n1

= (ǫTR)m′

1n′

1m2n2···m10n10
δ([pr1

δq]
s1
δ
[m′

1
tm1

δ
n′

1])
n1

= δ[pr1
δq]
s1

(ǫTR)m1n1···m10n10 + (r1s1 ↔ m1n1), (6.18)
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which agrees with (6.14). The above computation clarifies the appearance of the Kro-

necker delta’s. It is a consequence of the fact ∂
∂B1

pq
and ∂

∂Npq appear contracted. The

symmetrizations in (6.14) follow from the product rule of differentiation.

With these preliminaries we are ready to prove that if QY = 0 then all one-loop

amplitudes vanish:

No go theorem.

QY = 0 =⇒ cD1···D10 = 0, (6.19)

cD1···D10 = 0 =⇒ all one loop amplitudes vanish, (6.20)

Proof of (6.19). In terms of f the condition on the l.h.s. of (6.19) reads

0 = QY = fβ1···β11(λ)λβ1θβ2 · · · θβ11. (6.21)

This implies

0 = Eα1···α11p1q1···pLqL

α1β2···β11m1n1···m10n10r1s1···rL1
sL1

(6.22)

= cL1···L10δ
([p1
r1

δq1]
s1

· · · δ[pL
rL
δqL])
sL

(ǫTR)α1···α11
α1β2···β11m1n1···m10n10

+symmetrization in([rLP−1+1, sLP−1+1], . . . , [rLP
, sLP

], [mPnP ]),

As we discuss below the trace tr(ǫTR) of (ǫTR) does not vanish, so in particular tr(ǫTR)

has at least one non vanishing component. Let us denote this index choice by hats. If one

chooses

risi = m̂P n̂P , i = LP−1 + 1, . . . , LP , (6.23)

piqi = m̂P n̂P , i = LP−1 + 1, . . . , LP , (6.24)

the tensor on the r.h.s. of (6.22) is non vanishing. Therefore

cL1···L10 = 0. (6.25)

Proof of (6.20). As explained around (6.7) all amplitudes can be written as a sum of terms,

where all terms contain a cL1···L10 .

6.1 Non vanishing of the trace of (ǫTR)

In this subsection we compute the trace tr(ǫTR) of the tensor (ǫTR). To show that this

trace does not vanish we define a tensor Y and an operator X̂ :

Ym1···n10 ≡ λ̄α4 · · · λ̄α11R
α4···α11
m1···n10

, (6.26)

X̂ ≡ ψβ12 · · ·ψβ16 λ̄α1 · · · λ̄α3T
β12···β16,α1α2α3ψα

∂

∂λ̄α

, (6.27)

where ψα is a fermionic Weyl spinor and λ̄α is a pure spinor of opposite chirality to λα. Note

that, because λ̄α is a contrained spinor, ∂
∂λ̄α

is only defined up to a gauge transformation

δ
∂

∂λ̄α

= Am(γmλ̄)α. (6.28)
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The operator X̂, however, is well defined, since it is gauge invariant. This follows from

λ̄γqψψβ12 · · ·ψβ16 λ̄α1 · · · λ̄α3T
β12···β16,α1α2α3 = 0. (6.29)

That can be shown be noting there are no scalars in Asym616′ ⊗ 10 ⊗ Gam416′, where

Gam means the symmetric and gamma matrix traceless tensor product. Note we can use

∂

∂λ̄α

λ̄β = δα
β (6.30)

when ∂
∂λ̄α

is part of a gauge invariant quantity, Sα
∂

∂λ̄α
, because

Sα
∂

∂λ̄α

λ̄γmλ̄ = Sγmλ̄ = 0, (6.31)

the last equality is a consequence of gauge invariance.

First we show that X̂Y 6= 0. We finish the argument by proving this implies the trace

of (ǫTR) does not vanish. Consider the following component of X̂Y in a Lorentz frame in

which the only non-zero component of λ̄ is λ̄+:

X̂Ya1b1a2b2···a10b10 = (λ̄γmψ)(λ̄γnψ)(λ̄γpψ)(ψγmnpψ) (6.32)

[2(ψγa1b1a2a3a4 λ̄)(λ̄γa5b5b2a6a7 λ̄)(λ̄γa8b8b3b6a9 λ̄)(λ̄γa10b10b4b7b9 λ̄)

2(λ̄γa1b1a2a3a4 λ̄)(ψγa5b5b2a6a7 λ̄)(λ̄γa8b8b3b6a9 λ̄)(λ̄γa10b10b4b7b9 λ̄)

2(λ̄γa1b1a2a3a4 λ̄)(λ̄γa5b5b2a6a7 λ̄)(ψγa8b8b3b6a9 λ̄)(λ̄γa10b10b4b7b9 λ̄)

2(λ̄γa1b1a2a3a4 λ̄)(λ̄γa5b5b2a6a7 λ̄)(λ̄γa8b8b3b6a9 λ̄)(ψγa10b10b4b7b9 λ̄) + permutations],

where the permutations make the r.h.s. antisymmetric in aibi ↔ ajbj . This reduces, up to

an overall constant which is not zero,5 to

X̂Ya1b1a2b2···a10b10 = ǫc1···c5ψc1 · · ·ψc5(λ̄+)10ψ+γ
++
a1b1a2a3a4

γ++
a5b5b2a6a7

(6.35)

γ++
a8b8b3b6a9

γ++
a10b10b4b7b9

+ permutations = ǫc1···c5ψc1 · · ·ψc5(λ̄+)10ψ+(ǫ10)a1···b10 6= 0.

What remains is to show the non vanishing of this tensor implies the non vanishing of the

trace of (ǫTR).

X̂Ym1n1···m10n10 = ǫβ1···β16 [(ǫT )
((α1α2α3

β1···β11
ψα11ψβ12 · · ·ψβ16 ]R

α4···α11))
m1n1···m10n10 λ̄α1 · · · λ̄α10 . (6.36)

For the term in the square brackets we can move the α11 to (ǫT ) by using

0 = (ǫT )α1α2α3

[β1···β11
ψβ12 · · ·ψβ16ψα11] (6.37)

= 6(ǫT )α1α2α3

[β1···β11
ψβ12 · · ·ψβ16]ψα11 + 11(ǫT )α1α2α3

α11 [β1···β10
ψβ11 · · ·ψβ16].

5We omitted constants in the following two relations:

(λ̄γmψ)(λ̄γnψ)(λ̄γpψ)(ψγmnp
ψ) ∝ ǫ

c1···c5ψc1 · · ·ψc5(λ̄+)3, (6.33)

(γ++
a1b1a2a3a4

γ
++
a5b5b2a6a7

γ
++
a8b8b3b6a9

γ
++
a10b10b4b7b9

+ permutations) ∝ (ǫ10)a1b1···a10b10 . (6.34)
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The first line is zero because we are fully antisymmetrizing seventeen indices that only take

sixteen values.

X̂Ym1n1···m10n10 = ǫβ1···β16 [(ǫT )
((α1α2α3

α11β1···β10
ψβ11 · · ·ψβ16 ]R

α4···α11))
m1n1···m10n10 λ̄α1 · · · λ̄α10 . (6.38)

Since (ǫTR)α1···α11
α11β2···β11m1n1···m10n10

is fully antisymmetric in β2 · · · β11 and symmetric and

gamma matrix traceless in α1 · · ·α10, we can conclude from the non vanishing of X̂Y that

(ǫT )
((α1α2α3

α11β1···β10
R

α4···α11))
m1n1···m10n10 6= 0. (6.39)

7 Origin of the problems and possible resolutions

To understand the origin of the problems encountered when one does not integrate over C

(and B), we go back to the first principles derivation of the amplitude prescription in [19].

We will see that there is a singular gauge choice implicit in the prescription of [3].

7.1 Derivation of the amplitude prescriptions

In [19] the minimal and non-minimal amplitude prescriptions were derived by coupling the

pure spinor sigma model to topological gravity and then proceeding to BRST quantize this

system. Following [29], the BRST treatment included the gauge invariance due to zero

modes. The singular gauge fixing refers to the gauge fixing of the invariance due to pure

spinor zero modes.

The BRST quantization led to the following generating functional of scattering ampli-

tudes

Z[ρi] =

∫

dµσdµ exp (−S − L1 − L2 − L3) , (7.1)

where ρi are sources that couple to vertex operators, dµσ is the path integral measure for

the original sigma model fields, dµ is the path integral measure for the fields introduced

in the BRST quantization procedure and S is the worldsheet action with two dimensional

coordinate invariance. L1 contains the gauge fixing terms due to the diffeomorphism and

Weyl symmetry and L2 contains the gauge fixing terms for the invariances due to the zero

modes of the ghost fields. In the case of the bosonic string [29], L1 leads to the usual ghost

action and L2 to the usual ghost and antighost insertions in the path integral. In our case

these contributions cancel out. To understand the cancellations recall that the pure spinor

sigma model has a fermionic nilpotent symmetry generated by Q, the pure spinor BRST

operator. After coupling to topological gravity and gauge fixing all symmetries, there is a

second nilpotent operator QV , the standard BRST operator related with gauge fixing local

symmetries. QV in particular contains the standard terms related to diffeomorphisms and

Weyl transformations and it also has terms related to the invariance due to zero modes

of the worldsheet fields. Since we want to keep the Q symmetry manifest, all fields are

introduced in Q-pairs. In particular, together with the b, c ghosts we also introduce their Q

partners, β, γ. These have opposite statistics and it turns out these fields can be integrated

out and the b, c part cancels against the β, γ part. Even though all terms related to gauge
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fixing of worldsheet diffeomorphism cancel out, this procedure explains why the pure spinor

amplitude prescription is so similar to the bosonic string amplitude prescription.

The main object of interest here is L3, which is related to gauge fixing of the invariance

due to the zero modes of λα and its conjugate momentum wα. The part relevant to the λ

zero modes is given by

L3 = QVQ(bαθ
α) = QV (−bαλ

α + b̃αθ
α) = παλ

α + π̃αθ
α + bαc

α + b̃αγ
α. (7.2)

The field πα is the BRST auxiliary field that enforces the gauge fixing condition for the

invariance due to zero modes of λ. Since there are eleven zero modes we need eleven gauge

fixing conditions and the BRST auxiliary field πα must contain only eleven independent

components. The gauge condition implicit in (7.2) will be discussed shortly. (bα, c
α) and

their Q-partners (b̃α, γ
a) are the corresponding BRST ghosts. These fields can be integrated

out and cancel each other. Then we are left with

L′
3 = παλ

α + π̃αθ
α. (7.3)

Minimal formalism. To express the fact that πα and π̃α have eleven independent com-

ponents we parametrize them as follows

πα = pIC
I
α, π̃α = p̃IC

I
α, I = 1, . . . , 11. (7.4)

where CI
α is a matrix that must have maximal rank. Thus the gauge fixing condition is

given by

CI
αλ

a = 0 (7.5)

We will shortly show that this is a singular gauge condition.

The eleven constant spinors CI
α are the ones that enter in the minimal pure spinor

prescription. Indeed, using (7.4) we find that the path integral contains

∫

[dpI ][dp̃I ] exp
(

pIC
I
αλ

a + p̃IC
I
αθ

α
)

=

11
∏

I=1

(CI
αθ

α)δ(CI
αλ

α) (7.6)

which are the eleven picture changing operators YC we discussed earlier.

Implicit in (7.6) there is an analytic continuation in the field variables. Recall that

the solution to the pure spinor constraint (2.2) requires that λ is complex and in the

minimal formulation only the holomorphic part appears. In equation (7.6) one analytically

continues λ to be real and considers πI to be purely imaginary. This can be done if the

explicit expressions appearing in the amplitude computations are not singular. Typical

integrals in the minimal formalism at tree level are of the form

∫ i∞

−i∞
[dp]

∫ ∞

−∞
[dλ]f(λ)epICI

αλa

=

∫ ∞

−∞
[dλ]f(λ)δ(C1λ) · · · δ(C11λ). (7.7)

where f(λ) contains λ but not its complex conjugate. For this expression to be well-defined

f(λ) should not contain any (CIλ) poles and moreover there should not be any poles that

obstruct the analytic continuation of λ to real values.
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At higher loops the conjugate momentum has zero modes as well and gauge fixing this

invariance leads exactly to the insertion of PCO’s ZB , ZJ , where the tensors Bmn enter

through the gauge fixing condition, see [19] for the details. In addition, one needs a compos-

ite b field satisfying (2.30). In the minimal formulation, a solution of (2.30) is given by [30]

b =
λαGα

Cαλα
(7.8)

where Gα is given in (A.111). This is however too singular to be acceptable. One can obtain

a non-singular b̃ field by combining the b field with the PCO and solving instead (2.31).

Note that this b̃ field now depends on the Bmn constant tensors but not on Cα.

Non-minimal formalism. We now show that the same expression (7.3) leads to the so-

called regularization factor in (5.52). This time we choose πα to be a pure spinor of opposite

chirality to λα, usually called λ̄α. This indeed has 11 independent components, as required.

The field π̃α, usually called rα, automatically follows because it is the Q variation of πα,

rα = Qλ̄α. (7.9)

This leads to the non-minimal formalism. To see this explicitly note that the factor e−L3

in (7.1), which is given by

e−λ̄αλα−rαθα

, (7.10)

is precisely N . The additional factors NmnN̄
mn + 1

4Smnλγ
mnd+JJ̄ + 1

4Sλd originate from

gauge fixing the zero modes of wα, see [19] for the details.

Note that λ is now holomorphic and πα ≡ λ̄α is considered as its complex conjugate

variable. Typical integrals one encounters at tree level in the non-minimal formalism are

therefore ∫

[dλ][dλ̄]f(λ)e−λ̄λ. (7.11)

At higher loop order we also need the b field. In the non-minimal formalism, equa-

tion (2.30) has a solution that depends on both λ and λ̄. It is however singular as λ̄λ→ 0

and this causes problems starting from three loops. Note that the b field does not depend

on how we treat the gauge invariances due to the zero modes of wα. This is similar to the

b field in (7.8) but different than b̃ which depends on the gauge fixing of the invariance due

to zero modes of the conjugate momentum through Bmn.

To summarize, the minimal and non-minimal are related by field redefinitions and an

analytic continuation in field space. In particular, starting from the non-minimal formalism

one obtains the minimal formalism by taking λ̄α = CI
απ

I and analytically continuing πI

to be imaginary while at the same time analytically continuing λ to be real. There are

similar redefinitions and analytic continuations in the sector related with the conjugate

momentum. Furthermore, the non-minimal b field combined with part of N is related to

b̃. Clearly, the two formalisms would be equivalent if the analytic continuations had not

been obstructed by singularities in the amplitudes. Finally, note that the underlying gauge

choice for the invariance due to pure spinor zero modes is the same: the gauge fixed action

is the same, only the reality condition of the fields is different.
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7.2 Toy example

Given the formal equivalence between the minimal and non-minimal formalisms one may

wonder why we found problems at one loop in the one formalism but not the other. We

discuss this issue here by analyzing a toy example that has almost all features of the actual

case. Consider the following integral

I =

∫

dxdpe−xp. (7.12)

To compare with the expressions in the previous subsection p corresponds to the BRST

auxiliary field and x to the pure spinor.

If one wants to evaluate the above integral, contours have to be chosen for x and p. If

we choose p = ip1 and x = x1 with p1, x1 real, we get

I = i

∫

dx1dp1e
ix1p1 = i

∫ ∞

−∞
dx12πδ(x1) = 2πi. (7.13)

Another choice is to consider x complex and take p = x∗. In this case I becomes

I =

∫

dxdx∗e−xx∗

= 2i

∫ ∞

0
rdr

∫ 2π

0
dθe−r2

= 2πi. (7.14)

This agrees nicely with the general property of contour integrals, that one is free to deform

them as long as no poles are encountered. Note that (7.13) resembles a zero mode integral

in the minimal formalism and (7.14) a non-minimal one.

The difference between the two prescriptions is exposed by considering the integral I

with a function f in the integrand.

Imin[f ] = i

∫ ∞

−∞
dx1

∫ ∞

−∞
dp2e

ix1p1f(x1) = i

∫ ∞

−∞
dx12πδ(x1)f(x1) = 2πif(0). (7.15)

Now rotate the contour, p = x∗, so that the integral becomes

Inon−min[f ] =

∫

dxdx∗e−|x|2f(x) = 2i

∫ ∞

0
rdre−r2

∫ 2π

0
dθf (reiθ), (7.16)

Imin is the analogue of (7.7) and Inon−min the analogue of (7.11). Imin and Inon−min give

exactly the same answer if f(x) is non singular but (7.15) is ill defined for any choice of

singular f(x) whereas (7.16) may be well defined. For example, for the function

f(x) =
1

x
, (7.17)

(7.15) yields ∞ but (7.16) gives 0. More precisely, (7.16) is well defined for all functions

f(z) =
∑

n cnz
n, with cn = 0 for n < −1. For the n < −1 terms the θ integral vanishes

and the r integral diverges, which makes Inon−min ambiguous for these kind of functions.

A third representation is obtained by noticing that the θ integral can be rewritten as

a contour integral
∫ 2π

0
dθ = −i

∮

C

dz

z
(7.18)
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where z = reiθ and the contour C is a circle of radius r. Thus for any meromorphic function

f(z) the integral over theta is independent of r and

I[f ] = 2i

(
∫ ∞

0
rdre−r2

)(

−i

∮

C

dz

z
f(z)

)

=

∮

C

dz

z
f(z) (7.19)

The expression (7.19) are well-defined for all meromorphic functions f(z) whereas (7.15)

and (7.16) are not.

Going back to pure spinors and working on the patch with λ+ 6= 0 we see that because

of the factor (λ+)−3 in the measure (cf. (A.91)) the minimal formalism is expected to have

a singularity unless the integrand provides a factor of (λ+)3, but the expressions (7.16)

and (7.19) are not necessarily singular.

7.3 Singular gauge and possible resolution

We show in this subsection that the gauge (7.5) is singular for any choice of the constant

spinors CI
α. To see this, recall that the space of pure spinors can be covered with 16

coordinate patches and on each patch at least one of the components of λα is non-zero.

Let us call this component λ+ and solve the pure spinor condition as in (2.3). Then,

0 = CI
αλ

α = CI
+λ

+ + CI,abλab + CI
aλ

a = CI
+λ

+ + CI,abλab +
1

8
CI

aǫ
abcdeλbcλde

1

λ+
(7.20)

⇒ CI
+(λ+)2 + CI,abλ+λab +

1

8
CI

aǫ
abcdeλbcλde = 0.

This system of equations however does not have a solution with λ+ 6= 0 and the gauge is

singular. To see this, we first solve ten of the above equations to obtain λab as a function

of λ+. A scaling argument implies that these functions are linear in λ+. Then we plug

the relation λab = babλ
+ in the eleventh equation to find that λ+ vanishes. Thus we find

that for any choice CI
α of maximal rank , the path integral localizes at the λα = 0 locus,6

which is the point that should be excised from the pure spinor space for the theory to be

non-anomalous [22].

As discussed above, the minimal and non-minimal formalisms are related by analytic

continuation in field space. In the toy example in the previous subsection, we saw that the

analytic continuation from the “minimal variables” x1, p1 to the “non-minimal variables”

x, x∗ sets to zero certain singular contributions (functions f(x) ∼ x−1) but the integral still

localizes at x = 0. One would thus expect that the zero mode integrals in the non-minimal

formalism localize at the λα = 0 locus, as the minimal ones do, and the problems with the

λ̄λ poles at 3 loops and higher are a manifestation of this fact.

To avoid these problems7 one must find a way to gauge fix the zero mode invariances

such that the zero mode integrals do not localize at λα = 0. Let us discuss how to

achieve this in the minimal formulation. First, in order to avoid the unnecessary analytic

6This also shows that the choice of C in (3.4) that manifestly leads to a factor δ(λ+) is not special. Any

other choice of C will also contain this factor.
7We would like to thank Nathan Berkovits and Nikita Nekrasov for discussions and suggestions about

this point.
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continuation to real λ one should work with the analogue of the contour representation of

the delta function in (7.19) which is appropriate for holomorphic λ (and is less singular

than (7.15) and (7.16)) In this language the choice of C’s translates into a choice of position

of poles. Secondly, one must take global issues into account. In particular, as mentioned

above, the space of pure spinors can be covered with sixteen coordinates patches. In order

to avoid landing in the singular gauge discussed above, one should arrange such that the

expression for the path integral insertions valid in any given patch always contains at least

one pole that lies in another patch. We also refer to [31] for related relevant work.

8 Conclusion

In this paper we have studied tree-level and one-loop amplitudes in the minimal pure spinor

formalism, in particular those with a Q exact state. The amplitude prescription includes

constant spinors CI
α and constant tensors BJ

mn that are used to define the picture changing

operators which are necessary to absorb the zero modes of the worldsheet fields. Ampli-

tudes should be independent of these constant tensors because the Lorentz variation of the

PCO’s is Q exact. The first computation we performed demonstrated that this argument

does not hold, because a tree-level amplitude does depend on the choice of C’s and a certain

amplitude for a given choice of CI
α is not Lorentz invariant. In the subsequent section it was

shown that integrating over the C’s, which was originally done to make the formalism man-

ifestly Lorentz invariant, results in a prescription that decouples Q exact states. We also

introduced a formulation of the minimal formalism at tree level in which the insertions of

the picture changing operators are replaced by a (unique) Lorentz tensor, so the formalism

is manifestly Lorentz invariant. BRST exact states are shown to decouple and it also turned

out that this formulation is equivalent to the formulation in which one integrates over CI
α.

At one loop we found similar problems in the case we did not include the integral over

B. Although the Lorentz variation of the PCO’s is Q exact, the Lorentz variation of a

one-loop amplitude does not vanish. At least not after the λ,N integrations, as one would

expect. One expects the Lorentz variation to vanish after the λ,N integrals because the

formal argument for decoupling of Q exact states uses that picture changing operators are

BRST closed. In the minimal formalism however the picture changing operators are BRST

closed in a distributional sense, QY ∼ xδ(x) with x that depends on λ and N , so the

amplitudes should vanish if distributional identities hold and this requires performing the

integrations of λ,N but none of the other integrations.

The case with an integral over B is dealt with in the companion paper [18]. That paper

contains a proof of decoupling of unphysical states in the minimal pure spinor formalism

including an integral over B. We also expect that decoupling of BRST exact states can

also be established without integrating over B and C by formulating the theory in a non-

singular gauge. Such a prescription is likely to require taking into account global issues, in

particular taking into account all patches in the pure spinor space.

In the tree-level case one could reformulate the prescription so that the picture changing

operators are replaced by a BRST closed Lorentz tensor, as mentioned above. So one may

wonder whether something similar can also be done at one loop. We showed in section 6
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that this is not possible. More precisely, we showed that if the picture changing operators

are Lorentz invariant and BRST closed then all one-loop amplitudes vanish.

Note that the problems we find in the minimal formulation at tree level and one loop

are not present in the non-minimal formalism. In this formalism the PCO’s are replaced

by the regularization factor N . In contrast to the PCO’s, N is Q closed without subtleties.

Hence the non-minimal formalism does not suffer from such problems.

In [19] we showed that both the PCO’s and the regularization factor N come from a

proper BRST treatment of fixing the gauge invariance generated by shifting the zero modes

of the worldsheet fields. The difference between the minimal and non-minimal formalism

can be understood as choosing different contours for the zero modes integrations. As

became apparent in this work the choice that leads to the minimal formalism gives rise to

anomalies. Moreover we saw that the gauge condition implicit in the current formulation

of the amplitude prescriptions is singular and localizes the pure spinor zero mode integrals

at the λα = 0 locus, which should be excised from the pure spinor space for the theory to

be non-anomalous. We suspect that the three-loop problems in the non-minimal formalism

are also due to this singular gauge choice. To avoid these problems one should reformulate

the theory in a non-singular gauge. We hope to report on this in the future.
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A Definitions, conventions and technical results

This appendix contains detailed derivations of arguments we used in the main text. The

purpose of the first subsection is to explain the notion of an invariant tensor and the mean-

ing of the position of indices, which are important for the main text. The second subsection

introduces spinors and in particular pure spinors. Moreover it contains details about the de-

composition of SO(10) representations under its SU(5)×U(1) subgroup. The following two

subsections deal with the Lorentz generators and measures for the pure spinor sector. Their

main purpose is to set the conventions, however they contain more than just that. The fifth

subsection is about gamma matrix traceless invariant tensors. Finally there is a subsection

on the chain of operators that is used in the construction of the composite b ghost.

A.1 Invariant tensors

Before we give the definition of an invariant tensor it is useful to recall what a representation

of SO(N) is. A generic d dimensional representation can be denoted as

va → (g(A))abv
b, a, b = 1, . . . , d (A.1)
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where A ∈ SO(N) and g(A) is a linear map from C
d → C

d. The fundamental representation

is given by d = N and g is the identity map (g(A) = A):

va → Aa
bv

b, (A.2)

A second representation of SO(N) is given by

va → vb(A
−1)ba or v → (A−1T )v. (A.3)

In fact this can be generalized to construct a second representation from any given one.

One just replaces v → g(A)v by

v → (g(A))−1T v. (A.4)

This is called the conjugate representation. Note the position of the indices on the conjugate

representation is opposite to the original representation. This is very convenient because

together with the rule that indices can only be summed over if one is up and one is down,

tensors transform as indicated by their free indices. In particular combinations without

free indices are invariant. For example for an arbitrary representation and its conjugate

wav
a → wb((g(A)−1)bag(A)acv

c = wbδ
b
cv

c = wav
a. (A.5)

An invariant tensor is a tensor that transforms into itself under all elements of the

group. For example δa
b is an invariant tensor for any representation. Note the range of a

and b depends on the (dimension of the) representation. Its transformation is given by

δa
b → g(A)acδ

c
d((g(A)−1)db = δa

b . (A.6)

For SO(N) δab is also an invariant tensor where a, b denote the vector representation,

hence they run from 1 to N . Invariant tensors can be used to construct invariants from

tensors. Objects that consist of (covariant) tensors and invariant tensors transform accord-

ing to their free indices. In particular combinations without free indices are invariant. For

example,

vawbδ
ab → vcwd(B

−1)ca(B
−1)dbδ

ab = vcwdδ
cd, (A.7)

where the definition of SO(N) was used.

The complex conjugate of a representation, g(A), is given by g∗(A). One can check

this always defines a representation if g(A) did. If a representation is equivalent to its

complex conjugate it is real. For SU(N) the conjugate of the fundamental representation

is equivalent to the complex conjugate because A−1T = A∗.

A.2 Clifford algebra and pure spinors

The Clifford algebra in ten dimensions with Euclidian signature is given by

{Γm,Γn}a
b = 2δmnδ

a
b , m, n = 0, . . . , 9 a, b = 1, .., 32. (A.8)

These Γm’s can be used to construct a representation of the Lorentz algebra and by expo-

nentiating also of the Lorentz group. Σmn = 1
4 [Γm,Γn] satisfy the Lorentz algebra. This
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representation is the (Dirac) spinor representation. Furthermore (Γm)
a
b is an invariant

tensor. A proof for the four dimensional case can be found in [32]. The Clifford algebra

has a representation in which the 32 by 32 components Γ matrices are off diagonal:

Γm =

(

0 γmαβ

γm
αβ 0

)

, (A.9)

where α, β = 1, . . . , 16. The Lorentz generators Σ become

Σmn =
1

4

(

(γ[mγn])αβ 0

0 (γ[mγn]) β
α

)

. (A.10)

This implies the representation of the Lorentz group is reducible:

32 = 16 ⊕ 16′ (A.11)

The sixteen dimensional representation is the Weyl representation and it is not equivalent

to its conjugate, hence the prime. The γm
αβ are invariant tensors with respect to Weyl

representation.

Note the Clifford algebra now reduces to

γ(mαβ
γ

n)
βγ = 2δmnδα

γ . (A.12)

In particular (γm)αβ is the inverse of (γm)αβ . An explicit solution to (A.12) is given in the

next section.

A.3 The SU(N) subgroup of SO(2N)

In this section we show that SO(2N) has an SU(N) subgroup and discuss how several

representations of SO(10) decompose into representations of SU(5). Part of this analysis

is based on [33]. To start, let us define for any SO(2N) vector v:

va =
1

2
(v2a − iv2a+1), va =

1

2
(v2a + iv2a+1), a = 1, . . . , N. (A.13)

We now express the SO(2N) algebra in terms of generators labelled by the indices defined

in (A.13),

[Mab,Mcd] = −
1

2
δ
[a
[cM

b]
d], a, b, c, d = 1, .., N, (A.14)

[Ma
b,M

c
d] =

1

2
(δa

dM
c
b − δc

bM
a
d), (A.15)

[Ma
b,M

cd] =
1

2
δ
[c
b M

d]a, [Ma
b,Mcd] = −

1

2
δa
[cMd]b, (A.16)

[Mab,M cd] = [Mab,Mcd] = 0. (A.17)

From (A.15) we see that the SO(2N) algebra has an N2 dimensional subalgebra. This

subalgebra contains a U(1) generated by M ≡Ma
a and the other N2 − 1 generators,

U(1) : M ≡Ma
a, SU(N) : (MS)ab ≡Ma

b −
1

5
δa
bM

c
c, (A.18)
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The generators (MS)ab are traceless and generate an SU(N),

[(MS)ab, (MS)cd] = −
1

2
(δa

d(MS)cb − δc
b(MS)ad). (A.19)

The U(1) charges of the generators are given by

[M,Mab] = −Mab [M,Ma
b] = 0 [M,Mab] = Mab. (A.20)

Every representation of SO(2N) can be decomposed into representations of SU(N).

In our case we will be interested in decomposition of representations the (Wick rotated)

Lorentz group SO(10) under SU(5). For several cases of interest the decomposition reads,

16 → 1− 5
4
⊕ 1̄0− 1

4
⊕ 5 3

4
λα → λ+, λa1a2 , λ

a, (A.21)

16′ → 1 5
4
⊕ 10 1

4
⊕ 5̄− 3

4
wα → w+, w

a1a2 , wa, (A.22)

10 → 5− 1
2
⊕ 5̄ 1

2
vm → va, va, (A.23)

45 → 10 ⊕ 240 ⊕ 10−1 ⊕ 1̄01 Mmn →Ma
a, (MS)ab,M

ab,Mab. (A.24)

where the subscripts are the U(1) charges.

A.3.1 Charge conservation and tensor products

The M charge conservation property of invariant tensors can be used to prove that a large

number of components of invariant tensors is zero, which is very useful if one is doing com-

putations by using the explicit expressions of the tensors. An invariant tensor Tαβ
γδ satisfies

0 = MT
αβ
γδ = (Mu(α) +Mu(β) +Md(γ) +Md(δ))Tαβ

γδ , (A.25)

where Mu(+) = −5
4 ,M

u(a1a2) = −1
4 ,M

u(a) = 3
4 , Md(+) = 5

4 ,M
d(a1a2) = 1

4 ,M
d(a) =

−3
4 . The u is for up and the d for down. This refers to the position of the Weyl index

not the SU(5) indices. So if the M charges of the indices of a components do not sum up

to zero the component vanishes. In this case one can for instance conclude T+
b1b2,c,d = 0,

because the M charge of the components is −1
4(5 + 1 + 3 + 3) 6= 0.

In this paper we are often interested in questions like: how many independent invariant

tensors Tmδ
(αβγ) exist? The upper index δ denotes the Weyl representation, the lower indices

stand for the conjugate Weyl representation andm is the ten dimensional vector. To answer

this question first of all note that the space of all tensors with the index structure and

symmetries of T forms a representation of SO(10). The question how many independent

invariant tensors exist in that space now translates to what the dimension of the invariant

subspace is. This number can be obtained by computing the number of scalars in the

relevant tensor product. This is one of the features of the computer algebra program

LiE [26]. For the case of T we compute

10 ⊗ 16 ⊗ Sym316′ = 1 ⊕ 45⊕ 45 ⊕ 45 ⊕ · · · , (A.26)
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where the dots are higher dimensional irreducible representations. The above decomposi-

tion shows that the space of invariant tensors with the symmetries of T is one dimensional.

Based on this result we can for example conclude

γm
(αβδ

δ
γ) ∝ γn

(αβγ
m
γ)ǫγ

ǫδ
n . (A.27)

In order to find the constant of proportionality, computing a single component on both

sides suffices.

A.3.2 Dynkin labels and gamma matrix traceless tensors

Throughout this work we denote irreducible representations by their dimensions. This is

slightly ambiguous, therefore we clarify what we mean exactly by specifying the Dynkin

labels of the highest weight state of the representation.

10 ↔ (1, 0, 0, 0, 0), 16 ↔ (0, 0, 0, 1, 0), 16′ ↔ (0, 0, 0, 0, 1), 45 ↔ (0, 1, 0, 0, 0).

(A.28)

There is one further irreducible representation of interest, which is given by symmetric and

gamma matrix traceless tensors:

T ((α1···αn)) ↔ (0, 0, 0, n, 0) ↔ Gamn16, (A.29)

where the Dynkin labels are specified. These representations are discussed in more detail

in [34]. There are three gamma matrix traceless tensors that interest us in particular:

(T1)
((α1α2α3))
[β1···β11] , (T2)

((α1 ···α8))
[[m1n1],...,[m10n10]], (T3)

((α1 ···α11))
[β1···β11][[m1n1],...,[m10n10]]. (A.30)

For the three tensors above the computer algebra program LiE can be used to conclude

there is only one independent invariant tensor. Note this is consistent with the arguments

in [35], where it is argued that a tensor which is symmetric and gamma matrix traceless,

let us say in some indices αi, is completely specified by the components where the α’s are

all +. In order to see that this implies there is only one independent invariant tensor of

the form of T1 note that for an invariant tensor the components

(X1)
+++
β1···β11

(A.31)

are only nonvanishing if

β1, . . . , β11 = +, 12, 13, . . . , 45. (A.32)

This follows from the charge conservation property of invariant tensors. By antisymmetry

of the β’s there is only one independent component in (A.31). Thus the argument of [35]

implies that the entire invariant tensor is completely specified by a single component and

therefore the space of invariant tensors of the form of T1 is one dimensional. The above

argument applies equally well to T2 and T3.
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A.3.3 Explicit expression for gamma matrices and pure spinors

A solution to (A.12) is given by

(γk)αβ =







0 0 δk
b

0 −ǫka1a2b1b2 0

δk
a 0 0






, (γk)αβ =







0 0 0

0 0 δ
[a1

k δ
a2]
b

0 δ
[b1
k δ

b2]
a 0






, (A.33)

(γk)αβ =







0 0 0

0 0 δk
[a1
δb
a2]

0 δk
[b1
δa
b2] 0






, (γk)

αβ =







0 0 δb
k

0 −ǫka1a2b1b2 0

δa
k 0 0






. (A.34)

Note these matrices are skew diagonal, this is a consequence of the charge conservation

property of invariant tensors.

A pure spinor is a Weyl spinor that satisfies

λαγm
αβλ

β = 0. (A.35)

After plugging in the explicit expression for the gamma matrices this becomes

2λ+λa −
1

4
ǫabcdeλbcλde = 0, (A.36)

2λbλab = 0. (A.37)

These equations are solved by

λa =
1

8

1

λ+
ǫabcdeλbcλde (A.38)

The explicit expression of the three form gamma’s is:

(γk1k2k3)
αβ =

1

6
(γ[k1

γk2γk3])
αβ =







0 ǫk1k2k3b1b2 0

−ǫk1k2k3a1a2 0 0

0 0 0






(A.39)

(γk1
k2k3

)αβ =
1

6
((γk1γ[k2

γk3])
αβ − (γ[k2

γk1γk3])
αβ + (γ[k2

γk3]γ
k1)αβ)

=
1

2







0 0 −δk1

[k2
δb
k3]

0 δk1

[a1
ǫa2]k2k3b1b2 − δk1

[b1
ǫb2]k2k3a1a2

0

δ
[k1

k2
δ
a]
k3

0 0






, (A.40)

(γk1k2
k3

)αβ =
1

6
((γ[k1γk2]γk3)

αβ − (γ[k1γk3γ
k2])αβ + (γk3γ

[k1γk2])αβ) (A.41)

=







0 0 0

0 0 δk1

[a1
δk2

a2]δ
b
k3

+ 1
2δ

b
[a1
δ
[k1

a2]δ
k2]
k3

0 −δk1

[b1
δk2

b2]δ
a
k3

− 1
2δ

a
[b1
δ
[k1

b2] δ
k2]
k3

0






,

(γk1k2k3)αβ =
1

6
(γ[k1γk2γk3])αβ =







0 0 0

0 0 0

0 0 −ǫk1k2k3ab






. (A.42)
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A.4 Pure spinor Lorentz generators

In our computations we often need the explicit form of the pure spinor Lorentz generators,

Nmn, which are given by

Nmn =
1

2
wα(γmn)αβλ

β, γmn =
1

2
(γmγn − γnγm). (A.43)

In this subsection these components are given in terms of the SU(5) components of λ and

w in the gauge wa = 0. The SU(5) components of (A.43) are given by

Nkl =
1

4
wα(γ[k)

αβ(γl])βδλ
δ, (A.44)

Nk
l =

1

4

(

wα(γk)αβ(γl)βδλ
δ − wα(γl)

αβ(γk)βδλ
δ
)

, (A.45)

Nkl =
1

4
wα(γ[k)αβ(γl])βδλ

δ. (A.46)

The explicit gauge invariant form is obtained by plugging in the expressions for γ

Nkl = −
1

2
w−λkl −

1

4
wabǫabcklλ

c, (A.47)

Nkl =
1

2
wklλ+ +

1

4
waǫ

abcklλbc, (A.48)

Nk
l = −

1

4
δk
l λ

+w− −
1

4

1

2
δk
l w

abλab +
1

2
wakλal +

1

4
waλ

aδk
l −

1

2
wkλ

l, (A.49)

N = Nk
k = −

5

4
w−λ+ −

1

4

1

2
wabλab +

3

4
waλ

a, (A.50)

(NS)kl = Nk
l −

1

5
δk
l N (A.51)

= −
1

10
δk
l w

abλab +
1

2
wakλal +

1

10
waλ

aδk
l −

1

2
wlλ

k.

After using the pure spinor solution and setting wa to zero

Nkl = −
1

2
w−λkl −

1

4

wabλklλab

λ+
+

1

2

wabλkaλlb

λ+
, (A.52)

Nkl =
1

2
wklλ+, (A.53)

N = −
5

4
w−λ+ −

1

4

1

2
wabλab, (A.54)

(NS)kl =
1

2

(

−
1

5
δk
l w

abλab +wakλal

)

. (A.55)

J in terms of the free variables is given by

J = wαλ
α = w−λ+ +

1

2
wabλab + waλ

a. (A.56)

In the gauge wa = 0 this becomes

J = w−λ+ +
1

2
wabλab. (A.57)
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A.4.1 Lorentz currents with unconstrained spinors

As mentioned in section 2 the action for the eleven independent components of λ and their

conjugate variables can be used to prove the pure spinor OPE’s from (2.7). This will be

demonstarted below. First we consider two unconstrained bosonic Weyl spinors. The OPE

for such fields is given by

yα(z)ξβ(w) ∼ δβ
α

1

z − w
. (A.58)

The OPE of the pure spinor Lorentz current with itself is given by

Mm1m2(z)Mn1n2(w) ∼
1

4

1

z − w
(−yα(z)γm1m2α

βγ
n1n2β

γξ
γ(w) + (A.59)

+yα(w)γn1n2α
βγ

m1m2β
γξ

γ(z)) −
1

4

Tr(γm1m2γn1n2)

(z − w)2
.

Using identities,

[

1

2
γm1m2 ,

1

2
γn1n2

]

=
1

2
(ηn1[m2γm1]n2 − ηn2[m2γm1]n1), (A.60)

Tr(γm1m2γn1n2) = −16ηm1[n1ηn2]m2 , (A.61)

the MM OPE reduces to

Mm1m2(z)Mn1n2(w) ∼
−(ηn1[m2Mm1]n2 − ηn2[m2Mm1]n1)

z − w
− 4

ηm1n2ηm2n1 − ηm1n1ηm2n2

(z − w)2
.

(A.62)

We can read off the algebra of the Lorentz charges from the single pole in the OPE

[Mm1m2 ,Mn1n2 ] = −(ηn1[m2Mm1]n2 − ηn2[m2Mm1]n1). (A.63)

In case the worldsheet fields are fermionic, the OPE remains the same:

pα(z)θβ(w) ∼ δβ
α

1

z − w
. (A.64)

The Lorentz generator for the fermionic variables has a minus sign:

Mmn = −pγmnθ. (A.65)

This sign is necessary to reproduce the commutation relation (A.63). As a consequence

the sign in the double pole in the OPE changes from -4 to +4. This coefficient is called the

level. We would like the Lorentz current of the combined p, θ and λ,w sector to have level

one, since this is the level of the ψ sector in the RNS formalism. This implies the N(λw)

generators must have level −3. In the next subsection we explain how such currents can

be obtained from the pure spinor action after gauge fixing.
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A.4.2 Currents containing pure spinors

In [19] we discuss how to gauge fix the gauge invariance for w by setting wa = 0. We ended

up with a free action for the eleven independent components of λ and their conjugate

variables. One may anticipate that one can set wa = 0 in all (gauge invariant) operators

that depend on wα without Lorentz invariance being lost, and we will see that this is indeed

the case. We first study the OPE’s of N and J with λ and find no problems. Secondly we

look at the NN OPE. Here we find that the single pole is the same as in (A.62), but the

level of the OPE depends on which SU(5) components one chooses. This spoils Lorentz

invariance, but it can be cured as demonstrated below.

The OPE of J and Nmn with λ are given by

J(z)λα(w) ∼
1

z − w
λα(w), Nmn(z)λα(w) ∼

1

z − w

1

2
γmnα

βλ
β(w). (A.66)

In order to check these OPE’s we set wa = 0 and use the free field OPE’s

w−(z)λ+(w) ∼
1

z − w
, wab(z)λcd(w) ∼

1

z − w
δ[ac δ

b]
d . (A.67)

Let us start with J :

J(z)λ+(w) = w−λ+(z)λ+(w) ∼
1

z −w
λ+(w) (A.68)

and similarly for λab. λ
a is more involved. By using

w−(z)
1

λ+
(w) ∼

1

z − w

−1

(λ+)2(w)
, (A.69)

we can reproduce the Lorentz invariant answer:

J(z)λa(w) =

(

w−λ+ +
1

2
wabλab

)

(z)
ǫabcdeλbcλde

8λ+
(w) ∼

1

z − w

1

8λ+
ǫabcdeλbcλde(w). (A.70)

Let us continue with the trace of Nmn. In terms of unconstrained spinors it is given by

N = −
5

2
λ+w− −

1

2

1

2
wabλ

ab +
3

2
waλa. (A.71)

From here we can see that the expected charge of λa is 3
2 . The OPE of N with λ+ or λab

trivially reproduces the Lorentz invariant result, the OPE of N with λa is

N(z)λa(w) =

(

−
5

2
λ+w− −

1

2

1

2
wabλ

ab

)

(z)
ǫabcdeλbcλde

8λ+
(w) (A.72)

∼
1

z − w

(5
2 − 1

2 − 1
2)ǫabcdeλbcλde

8λ+
(w).

All other components of the Nλ OPE can be checked along the same lines. The NmnNpq

OPE is a different story. The single pole always leads to the correct Lorentz algebra, but

the coefficient of the double pole depends on which SU(5) components we choose to take.

For instance

N(z)N(w) ∼ −
35

16

1

(z − w)2
= −

7

4
ηk

lη
l
k

1

(z − w)2
(A.73)
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N12(z)N12(w) ∼
1

4

1

(z − w)2
+

1

z − w

1

2
(N1

1(w) +N2
2(w)) (A.74)

= −1
1

(z − w)2
(−η1

1η
2
2) +

1

z − w

1

2
(N1

1(w) +N2
2(w)).

The first OPE would imply a Lorentz current level of −7
4 and the second one −1. It will

be shown below that it is possible to deform the currents in equations (A.52)-(A.55) by

conserved quantities such that the level of the NmnNpq OPE is minus three [7]. This fixes

the total derivatives one has to add to (A.57) in order for the JN OPE to be regular.

Demanding Nmn is a primary field of weight one determines the total derivatives in the

stress energy tensor. If one now computes the JT OPE, a ghost number anomaly value of

minus eight follows. This cannot be adjusted.

The deformations are most easily given after bosonization of λ and w, which is given by

λ+ ∼= eχ−φ, w− ∼= e−χ+φ∂χ, λ+w− ∼= ∂φ, (A.75)

where φ, χ are chiral bosons satisfying

φ(z)φ(0) ∼ −lnz, χ(z)χ(0) ∼ lnz. (A.76)

Now define

s = χ− φ, 2t = φ+ χ↔ φ =
1

2
(2t− s), χ =

1

2
(s+ 2t) (A.77)

The OPE’s for these new variables are

s(z)s(0) ∼ regular, t(z)t(0) ∼ regular t(z)s(0) ∼ lnz. (A.78)

The original worldsheet fields λ and w can be expressed in terms of s, t as

λ+ ∼= es, w− ∼=
1

2
e−s(∂s+ 2∂t), λ+w− ∼=

1

2
(2∂t − ∂s). (A.79)

The Lorentz currents of (A.52)-(A.55) in bosonized form are given by8

N = −
5

8
(2∂t− ∂s) −

1

8
wabλab, (A.81)

Nab =
1

2
eswab, (A.82)

(NS)ab =
1

2

(

wacλbc −
1

5
δa
bw

cdλcd

)

, (A.83)

Nab = e−s

[

−
1

2

(

1

2
∂sλab + ∂tλab

)

−
1

4
wcdλabλcd +

1

2
wcdλacλbd

]

. (A.84)

8In [7] the Lorentz currents which we call (NB)mn have a different normalization. The relation with

ours is given by

N = −
√

5

2
N

B
, N

ab =
1

2
(NB)ab

, (NS)a
b =

1

2
(NB

S )a
b, Nab =

1

2
(NB)ab. (A.80)
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The deformations one should add to (A.52)-(A.55) to make the NN OPE Lorentz invariant

are given by:

∆N = −
5

8
∂s, (A.85)

∆Nab = 0, (A.86)

∆(NS)ab = 0, (A.87)

∆Nab = e−s

(

−
3

4
∂sλab + ∂λab

)

= ∂(e−sλab) −
1

4
(∂e−s)λab. (A.88)

Note that the field equations imply the ∂̄ operator annihilates these deformations. Hence

the deformed charges are still conserved. Furthermore the deformations do not modify the

Nλ OPE, which is manifest in the s, t variables.

A.5 Lorentz invariant measures

The Lorentz invariant measures for both the weight zero field, λα, and the weight one field,

Nmn, are discussed below. Both these measure were first introduced in [3] and the λ zero

mode measure is also discussed in [31].

A.5.1 Measure for the zero modes of λ

From the ghost number anomaly in the JT OPE (2.7) we know a tree-level correlator can

only be non-zero is the J charge of the insertions is -8. Since there are no w (or Nmn)

zero modes at tree level, the measure for the λ zero modes must have ghost number +8.

In addition it must be Lorentz invariant. This results in

[dλ]λαλβλγ = X
αβγ
β1···β11

dλβ1 ∧ · · · ∧ dλβ11 (A.89)

for some invariant tensor X. The number of invariant (3, 11) tensors with spinor indices

that are symmetric in the upper indices and antisymmetric in lower ones is one [26]. In

other words there is only one possibility for X which is given in (2.28). Because the l.h.s.

of (A.89) is zero when contracted with γm
αβ , the r.h.s. should vanish too. It does because

there are no scalars in 10 ⊗ 16 ⊗ Asym1116′. Thus

γm
αβX

αβγ
β1···β11

= 0. (A.90)

In equation (A.89) one is free to choose αβγ. Different choices lead to different guises

of the measure. In [22] it was shown all these are related to each other by a coordinate

transformation in pure spinor space. On the patch defined by λ+ 6= 0 there is only one

choice for αβγ that results in a well defined measure on the whole patch which is αβγ =

+ + +. This gives [dλ] as

[dλ] =
dλ+ ∧ dλ12 ∧ · · · ∧ dλ45

λ+3 , (A.91)

where we used (ǫT )+++
β1···β11

is only non-zero if β1, . . . , β11 = +, b1b2, b3b4, . . . , b19b20. This is

a consequence of the M charge conservation property of invariant tensors.
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A.5.2 Measure for the zero modes of Nmn

The ghost number anomaly and Lorentz invariance imply the measure for the zero modes

of N must be of the form

[dN ]λα1 · · · λα8 = Xα1···α8
m1n1···m10n10

dNm1n1 ∧ · · · ∧ dNm10n10 ∧ dJ. (A.92)

There exists only one independent invariant tensor of this kind (cf. A.3.2) and since (2.42)

provides an example of such tensor we obtain:

[dN ]λα1 · · ·λα8 = Rα1···α8
m1n1···m10n10

dNm1n1 ∧ · · · ∧ dNm10n10 ∧ dJ. (A.93)

A more explicit form of [dN ] is obtained by choosing all α’s equal to +. The relevant

gamma matrix components are

γ++
a1···a5

= ǫa1···a5 , γa1···a5
++ = ǫa1···a5 , (A.94)

all other components of γ++
mnpqr vanish. Using these one sees [dN ] can be expressed as

[dN ]λ+8
= ǫa1b1a2a3a4ǫa5b5b2a6a7ǫa8b8b3b6a9ǫa10b10b4b7b9dN

a1b1 ∧ · · · ∧ dNa10b10 ∧ dJ

= dN12 ∧ · · · ∧ dN45 ∧ dJ = λ+11
d10wabdw+ ⇒ [dN ] = (λ+)3dw+d

10wab,(A.95)

where the gauge condition wa = 0 is imposed in the first equality of the second line.

A.6 Gamma matrix traceless projectors

The operator Λαβγ is introduced in (4.12). This equation has a special form and in this

subsection we explain it. First note that Iαβγ
α′β′γ′ ≡

∫

[dλ]λαλβλγΛα′β′γ′ must be a Lorentz

invariant tensor. An invariant tensor forms invariant combinations with covariant objects

if and only if all indices are contracted, otherwise the total object transforms according

to the free indices. So if all indices on
∫

[dλ]λαλβλγΛα′β′γ′ are contracted with covariant

objects the total object is Lorentz invariant. After performing the integral the object is

of course still Lorentz invariant and therefore I must be an invariant tensor. Furthermore

I
αβγ
α′β′γ′ must be symmetric in both its upstairs and downstairs indices and since λ is a pure

spinor I must satisfy γm
αβI

αβγ
α′β′γ′ = 0. The SO(10) invariant tensors of the form T

(αβγ)
(α′β′γ′)

form a vector space which is two dimensional as can be computed by counting the number

of scalars in Sym316 ⊗ Sym316′ [26]. A basis of this vector space is given by

{

δ
(α
α′ δ

β
β′δ

γ)
γ′ , γ

(αβ
m γm

(α′β′δ
γ)
γ′)

}

. (A.96)

Hence ∫

[dλ]λαλβλγΛα′β′γ′ = c1δ
(α
α′ δ

β
β′δ

γ)
γ′ + c2γ

(αβ
m γm

(α′β′δ
γ)
γ′)
. (A.97)

Since λ is a pure spinor

0 =

∫

[dλ]λαγm
αβλ

βλγΛα′β′γ′ = c1γ
m
αβδ

(α
α′ δ

β
β′δ

γ)
γ′ + c2γ

m
αβγ

(αβ
n γn

(α′β′δ
γ)
γ′) (A.98)

= (c1 + 40c2)δ
γ
(α′
γm

β′γ′),
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where we used (cf. (A.27))

γγα
n γm

α(α′γ
n
β′γ′) = 2δγ

(α′
γm

β′γ′). (A.99)

We could have anticipated ending up with one equation for c1, c2 because 10⊗16⊗Sym316′

contains one scalar.

In summary the number of scalars in Sym316 ⊗ Sym316′ determined the number of

degrees of freedom (ci) and the number of scalars in 10 ⊗ 16 ⊗ Sym316′ determined the

number of relations between them.

A.6.1 Arbitrary rank

The tensor in equation (A.98) can be denoted as

δ
((α
α′ δ

β
β′δ

γ))
γ′ . (A.100)

There is a unique such tensor because the number of scalars in Gam316 ⊗ (16′)3 is one

(cf. (A.29) for the meaning of Gam). In fact there is one scalar in Gamn16⊗ (16′)n for any

n. In order to write an explicit expression for δ
((α1

β1
· · · δ

αn))
βn

for any n we look for a basis

of rank (n, n) invariant tensors that are symmetric in both their upper and lower indices.

For even n the number of scalars in Symn16 ⊗ Symn16′ is n
2 + 1. For odd n the number

of scalars in Symn16⊗ Symn16′ is n−1
2 + 1. Since odd n is of more relevance to this work

we explicitly give the basis for odd n. The n−1
2 + 1 basis elements are given by

T1 = δ
(α1

β1
· · · δ

αn)
βn

, T2 = γ(α1α2
m γm

(β1β2
δα3
β3

· · · δ
αn)
βn) (A.101)

up to

Tk+1 = γ(α1α2
m1

γm1

(β1β2
· · · γαn−2αn−1

mk
γ

mk

βn−2βn−1
δ
αn)
βn)

(A.102)

where k = n−1
2 . In order to see these tensors are independent compute the following

components:

T+···+
+···+ , T

a1+···+
b1+···+ , . . . , T

a1···ak+···+
b1···bk+···+ . (A.103)

We can conclude

δ
((α1

β1
· · · δ

αn))
βn

= c1T1 + · · · + ckTk, (A.104)

for some coefficients ci, which can be explicitly computed as we did for the n = 3 case.

Note the above is for odd n. Even n works very much in the same way, the only difference

is the last δ in all the T ’s. If one removes this, the T ’s form a basis for the even case.

A.7 Chain of operators for b ghost

The following chain of operators plays an important role in the b ghost:

QGα = λαT, (A.105)

QHαβ = λαGβ + g((αβ)), (A.106)

QKαβγ = λαHβγ + h
((αβ))γ
1 + h

α((βγ))
2 , (A.107)

QLαβγδ = λαKβγδ + k
((αβ))γδ
1 + k

α((βγ))δ
2 + k

αβ((γδ))
3 , (A.108)
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0 = λαLβγδρ + l
((αβ))γδρ
1 + l

α((βγ))δρ
2 + l

αβ((γδ))ρ
3 + l

αβγ((δρ))
4 . (A.109)

the last equation implies there exists an Sαβγ such that

Lαβγδ = λαSβγδ + s
((αβ))γδ
1 + s

α((βγ))δ
2 + s

αβ((γδ))
3 . (A.110)

The text below is essentially a summary of section 3 of [36]. The primary fields of weight

two that solve the above equations are given by

Gα =
1

2
Πm(γmd)

α −
1

4
Nmn(γmn∂θ)α −

1

4
J∂θα +

7

2
∂2θ, (A.111)

Hαβ =
1

16
γαβ

m

(

NmnΠn −
1

2
JΠm + 2∂Πm

)

(A.112)

+
1

96
γαβγ

mnp

(

1

4
dγmnpd+ 6NmnΠc

)

,

Kαβγ = −
1

48
γαβ

m (γnd)
γNmn −

1

192
γαβ

mnp(γ
md)γNnp (A.113)

+
1

192
γβγ

m

[

(γnd)
αNmn +

3

2
(γmd)αJ − 6(γm∂d)α

]

−
1

192
γβγ

mnp(γ
md)αNnp,

L[αβγδ] = −
1

3072
(γmnp)

[αβ(γmqr)γδ]NnpNqr. (A.114)

NB1: Only the antisymmetric part of Lαβγδ is given because in [36] the full Lαβγδ is not

given in terms of gauge invariant objects. An explicit expression is known within the Y

formalism [36–38] and it is also proven all Y dependence from Lαβγδ disappears when

contracted with Zαβγδ. In [3] Lαβγδ is given as

Lαβγδ = c4
αβγδ
mnpqN

mnNpq + c5
αβγδ
mn JNmn + c6

αβγδJJ + c7
αβγδ
mn Nmn + c8

αβγδJ, (A.115)

with unknown coefficients.

NB2: the coefficients of the total derivative terms depend on the normal ordering

prescription and the ones above are only consistent with the prescription of [36].

B Detailed computations of Ik

This appendix contains the details of the λ integrals that appear at one loop. We are

especially interested in those that appear in computations involving a Q exact state.

A typical integral one encounters in an amplitude in subsection 5.1 is given by

(Ik)a1···a2kβ2···β11 =

∫

[dλ]
1

(λ+)k−2
λβ1λa1a2 · · ·λa2k−1a2k

Λδ1δ2δ3(ǫT )δ1δ2δ3
β1···β11

. (B.1)

By charge conservation we can conclude at most two choices for β2, . . . , β11 lead to a non

vanishing I ′k for any k. This follows from

0 = N(Ik)a1···a2kβ2···β11 =

[

(k − 3)
5

4
+ k

(

−
1

4

)

+N(β2 · · · β11)

]

(Ik)a1···a2kβ2···β11 . (B.2)
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There are only two choices we can make. For example for k = 3 equation (B.2) implies only

the components with N(β2 · · · β11) = −1
2 are non vanishing. Thus β2 · · · β11 must consist

of either seven 10 indices and three 5̄ or a +, five 10’s and four 5̄’s.

In section B.1 we first compute all integrals of the form

(I ′k)
β1

a1···a2kδ1δ2δ3
=

∫

[dλ]
1

(λ+)k−2
λβ1λa1a2 · · ·λa2k−1a2k

Λδ1δ2δ3 . (B.3)

Since Ik vanishes for k < 3 (cf. (5.12)-(5.14)), we are only interested in I ′k for k ≥ 3. By

a similar argument the I ′k’s are also only non vanishing for at most two choices of δ1δ2δ3.

In the last subsection half of the non vanishing components of I3 and all components of I5
are computed.

B.1 Coefficients in λ integrals

For a given k at most two components of Λ give non vanishing results. We can make three

choices for β1 in I ′k, all three choices lead to an integral of the form (not necessarily for the

same k):

(I ′′k )a1···a2kδ1δ2δ3 =

∫

[dλ]
1

(λ+)k−3
λa1a2 · · ·λa2k−1a2k

Λδ1δ2δ3 . (B.4)

After some algebra one finds the only non vanishing components of the I ′′k ’s are:

(I ′′4 )a1···a8+d1d2 =
1

20
ǫa1a2a3a4(d1

ǫd2)a5a6a7a8
+ 2 perms, (B.5)

(I ′′4 ) d1d2d3d4
a1···a8 d5

=
1

5
ǫa1a2a3a4d5δ

[d1
a5
δd2]
a6
δ[d3
a7
δd4]
a8

+ 11 perms, (B.6)

−
1

20
ǫa1a2a3a4d5δ

[d1
a5
δd2
a6
δd3
a7
δd4]
a8

+ 5 perms

(I ′′5 ) d3d4
a1···a10d1d2

=
1

20
ǫ(d1|a1a2a3a4|ǫd2)a5a6a7a8

δ[d3
a9
δd4]
a10

+ 14 perms, (B.7)

(I ′′6 )a1···a12d1d2d3 =
1

60
ǫ(d1|a1a2a3a4|ǫd2|a5a6a7a8|ǫd3)a9a10a11a12

+ 14 perms. (B.8)

The first step to obtain these results is finding the number of invariant tensors with the

appropriate symmetries, this is one in all cases but the second. Finding the coefficients

requires more work, this is done in subsection B.1. All these coefficients are fixed by (4.12),

including the overall factor. Two corollaries are

(I ′3)
b d3d4
a1···a6d1d2

= (5δb
(d1
ǫd2)a1a2a3a4

δ[d3
a5
δd4]
a6

+ δb
[a5
δ
[d3

a6]δ
d4]
(d1
ǫd2)a1a2a3a4

) + 2 perms, (B.9)

(I ′4)
b
a1···a8d1d2d3

=
1

12
δb
(d1
ǫd2|a1a2a3a4|ǫd3)a5a6a7a8

+ 2 perms. (B.10)

Proof of equations (B.5) and (B.6) By Lorentz invariance we can write
∫

[dλ]
1

λ+
λa1a2 · · ·λa7a8Λ+d1d2 = c3ǫa1a2a3a4(d1

ǫd2)a5a6a7a8
+ 2 perms (B.11)

and
∫

[dλ]
1

λ+
λa1a2 · · ·λa7a8Λ

d1d2d3d4
d5

= c4(ǫa1a2a3a4d5δ
[d1
a5
δd2]
a6
δ[d3
a7
δd4]
a8

+ 11 perms) (B.12)

+c5(ǫa1a2a3a4d5δ
[d1
a5
δd2
a6
δd3
a7
δd4]
a8

+ 5 perms).
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for some coefficients c3, c4, c5. They can be determined from the defining equation of

Λαβγ , (4.12). After evaluating the r.h.s. of that equation for the relevant components we find
∫

[dλ]λaλbλ+Λ+d1d2 = δ
(a
d1
δ
b)
d2

−
2

5
δ
(a
d1
δ
b)
d2

=
3

5
δ
(a
d1
δ
b)
d2
, (B.13)

∫

[dλ]λaλbλ+Λd1d2d3d4
d5

=
1

5
ǫd1d2d3d4(aδ

b)
d5
, (B.14)

∫

[dλ]λa1a2λa3a4λ
aΛd1d2d3d4

d5
= (δd1

[a1
δd2

a2]δ
d3

[a3
δd4

a4]δ
a
d5

+ 1 perm) −
1

5
δd1

[a1
δd2
a2
δd3
a3
δd4

a4]δ
a
d5

+

+

(

1

5
δa
[a1
δ
[d1

a2]δ
d2]
d5
δ[d3
a3
δd4]
a4

+ 3 perms

)

. (B.15)

If we now use equations (B.11) and (B.12) to evaluate the l.h.s. of the above integrals we

completely determine the values of c3, c4, c5. In fact we find more than three equations,

but they include only three independent conditions as they should. To obtain c3 one has

to write out λa and λb in (B.13) and then perform all the contractions of the two ǫ’s with

the r.h.s. of (B.11):

3

5
δ
(a
d1
δ
b)
d2

=

∫

[dλ]λaλbλ+Λ+d1d2 = 12c3δ
(a
d1
δ
b)
d2

⇒ c3 =
1

20
. (B.16)

Finding c4 and c5 is more involved. The l.h.s. of (B.14) can be evaluated as

1

5
ǫd1d2d3d4(aδ

b)
d5

=

∫

[dλ]λaλbλ+Λd1d2d3d4
d5

= (4c4 + 12c5)δ
(a
d5
ǫb)d1d2d3d4 . (B.17)

This gives us the first equation for c4, c5. In order to completely determine them, we have

to work out the l.h.s. of (B.15):

1

8
ǫaa5a6a7a8

∫

[dλ]
1

λ+
λa1a2λa3a4λa5a6λa7a8Λ

d1d2d3d4
d5

(B.18)

=
c4

8
((24δa

d5
δ[d1
a1
δd2]
a2
δ[d3
a3
δd4]
a4

+ 1 perm) + 8ǫad1d2d3d4ǫa1a2a3a4d5

+16(δa
d5
δ[d1
a1
δd2]
a2
δ[d3
a3
δd4]
a4

+ 1 perm) + (8δa
[a1
δ
[d3

a2]δ
d4]
d5
δ[d1
a3
δd2]
a4

+ 3 perm))

+
c5

8
(24δa

d5
δ[d1
a1
δd2
a2
δd3
a3
δd4]
a4

+ 24ǫad1d2d3d4ǫa1a2a3a4d5 + 16δa
d5
δ[d1
a1
δd2
a2
δd3
a3
δd4]
a4

+(8δa
[a1
δ
[d3

a2]δ
d4
d5
δd1
a3
δd2]
a4

+ 1 perm)).

We want to be able to read off equations for the c’s when we compare to (B.15). It turns

out the space of invariant tensors with the indices and symmetries of (B.15) is four dimen-

sional. We now write out our tensors on a basis that contains the three invariant tensors

that are present in (B.15). We are free to choose the fourth one as long as it does not lie

in the span of the first three. After using

ǫad1d2d3d4ǫa1a2a3a4d5 = δa
d5
δ[d1
a1
δd2
a2
δd3
a3
δd4]
a4

+ (δa
[a1
δ
[d1

a2]δ
d2
d5
δd3
a3
δd4]
a4

+ 1 perm), (B.19)

(B.18) becomes

(5c4δ
a
d5
δ[d1
a1
δd2]
a2
δ[d3
a3
δd4]
a4

+ 1 perm) + (c4δ
a
[a1
δ
[d3

a2]δ
d4]
d5
δ[d1
a3
δd2]
a4

+ 3 perm) (B.20)

+(8c5 + c4)δ
a
d5
δ[d1
a1
δd2
a2
δd3
a3
δd4]
a4

+ ((c4 + 4c5)δ
a
[a1
δ
[d3

a2]δ
d4
d5
δd1
a3
δd2]
a4

+ 1 perm).
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Now we can read off four equations for c4, c5 by comparing to (B.15). Combined with the

equation we already found:

5c4 = 1, c4 + 8c5 = −
1

5
, c4 =

1

5
, c4 + 4c5 = 0, 4c4 + 12c5 =

1

5
. (B.21)

These equations are solved by

c4 =
1

5
, c5 = −

1

20
. (B.22)

The coefficients in equations (B.7) and (B.8) follow in the same way.

B.2 Computing the Ik’s

The idea of this section is simple, use the explicit form of the gamma matrices and the λ

integrals (B.5)-(B.10) to evaluate Ik. In practice this involves a lot of computation. We

already know I0, I1, I2 and I6 all vanish. By the charge conservation property there is only

one choice of β2 · · · β11 for which I5 does not vanish. For I3 and I4 we can make two choices.

We explicitly compute I3 for

β2, . . . , β11 = +, c1, c2, c3, c4, b1b2, . . . , b9b10. (B.23)

I3 consists of three terms, two for β1 = b1b2 and one for β1 = b1. The relevant components

of ǫT are9

(ǫT )+d1d2 b11b12 b1b2···b9b10
+ c1c2c3c4

(B.24)

=
1

16
8(ǫ10)

b1···b20ǫc1···c5γ
k1d1

b13b14
γk2d2

b15b16
γ +c5

k3
(γ k3

k1k2
)b17b18b19b20

= −
1

2
8(ǫ10)

b1···b20ǫc1c2c3c4b17δ
d1
b14
δd2
b16
ǫb13b15b18b19b20 ,

(ǫT ) d5 b11b12 b1b2···b9b10
d1d2d3d4 + c1c2c3c4

(B.25)

= 8
1

16
2(ǫ10)

b1···b20ǫc1···c5γk1d1d2b13b14γk2d3d4b15b16γ
k3d5
b17b18

(γk1k2
k3

) c5
b19b20

+8
1

16
(ǫ10)

b1···b20ǫc1···c5γ
k1c5
d1d2

γk2d3d4b13b14γ
k3d5
b15b16

(γ k2
k1 k3

)b17b18b19b20 + (d1d2 ↔ d3d4)

= 8
1

4
2(ǫ10)

b1···b20ǫc1c2c3c4b17ǫb19d1d2b13b14ǫb20d3d4b15b16δ
d5
b18

+8
1

4
(ǫ10)

b1···b20ǫc1c2c3c4b19ǫd1d2b13b14[b20ǫb17]d3d4b15b16δ
d5
b18

+8
1

4

1

2
(ǫ10)

b1···b20ǫc1c2c3c4[d2
ǫd1]b15b19b20b18ǫb17d3d4b13b14δ

d5
b16

+ (d1d2 ↔ d3d4),

(ǫT )d1d2 b1···b10
d3d4 b+ c1c2c3c4

(B.26)

= −8
1

32
(ǫ10)

b1···b20ǫc1c2c3c4bγ
k1d1
b11b12

γk2d2
b13b14

γk3d3d4b15b16(γ
k3

k1k2
)b17b18b19b20

= 8
1

4
ǫc1c2c3c4bǫd3d4b15b16b17ǫb11b13b18b19b20δ

d1
b12
δd2
b14
,

9To evaluate ǫT the following convention for ǫβ1···β16
is used, (ǫ16)

b1b2···b19b20
+a1···a5

=

(ǫ5)a1···a5
(ǫ10)

b1···b20
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where we extracted the factor of eight coming from the SU(5) decomposition (cf. (A.13))

and a power of 1
2 , which compensates for double counting in expressions like xaby

ab, in

each line. Using the explicit form of the components of (ǫT ) and the λ integrals, I3 can be

written out as

I3 =
1

2
3

∫

[dλ]
1

λ+
λb11b12λa1a2λa3a4λa5a6Λ+d1d2(ǫT )+d1d2 b11b12 b1···b10

+ c1c2c3c4
(B.27)

+
1

8
3

∫

[dλ]
1

λ+
λb11b12λa1a2λa3a4λa5a6Λ

d1d2d3d4
d5

(ǫT ) d5 b11b12 b1···b10
d1d2d3d4 + c1c2c3c4

+3
1

2

∫

[dλ]
1

λ+
λbλa1a2λa3a4λa5a6Λ

d3d4
d1d2

(ǫT )d1d2 b1···b10
d3d4 b+ c1c2c3c4

=
3

40
(ǫa1a2a3a4(d1

ǫd2)a5a6b11b12 + 2 perms)

×

[

−
1

4
(ǫ10)

b1···b20ǫc1c2c3c4b17δ
d1
b14
δd2
b16
ǫb13b15b18b19b20

]

+
3

40
((ǫa1a2a3a4d5δ

[d1
a5
δd2]
a6
δ
[d3

b11
δ
d4]
b12

+ 11 perms))

+[4(ǫ10)
b1···b20ǫc1c2c3c4b17ǫb19d1d2b13b14ǫb20d3d4b15b16δ

d5
b18

+2(ǫ10)
b1···b20ǫc1c2c3c4b19ǫd1d2b13b14[b20ǫb17]d3d4b15b16δ

d5
b18

+(ǫ10)
b1···b20ǫc1c2c3c4[d2

ǫd1]b15b19b20b18ǫb17d3d4b13b14δ
d5
b18

+ (d1d2 ↔ d3d4)]

+
3

2
(5δb

(d1
ǫd2)a1a2a3a4

δ[d3
a5
δd4]
a6

+ δb
[a5
δ
[d3

a6]δ
d4]
(d1
ǫd2)a1a2a3a4

+ 2 perms)

×[2ǫc1c2c3c4bǫd3d4b15b16b17ǫb11b13b18b19b20δ
d1
b12
δd2
b14

]

= −
3

5
ǫa1a2a3a4b14ǫb16a5a6b11b12(ǫ10)

b1···b20ǫc1c2c3c4b17ǫb13b15b18b19b20 + 2 perms

+
12

5
(ǫ10)

b1···b20ǫb11b12a3a4b18ǫc1c2c3c4b17ǫb19a1a2b13b14ǫb20a5a6b15b16 + 2 perms

+
3

5
(ǫ10)

b1···b20ǫb11b12a3a4b18ǫc1c2c3c4b19ǫa1a2b13b14[b17ǫb20]a5a6b15b16 + 2 perms

+
6

5
ǫa1a2a3a4b16(ǫ10)

b1···b20ǫc1c2c3c4b12ǫb11b15b18b19b20ǫb17a5a6b13b14 + 2 perms

+
6

5
ǫb11b12a1a2b16(ǫ10)

b1···b20ǫc1c2c3c4[a4
ǫa3]b15b18b19b20ǫa5a6b13b14b17 + 2 perms

+60(ǫ10)
b1···b20ǫb14a1a2a3a4ǫc1c2c3c4b12ǫa5a6b15b16b17ǫb11b13b18b19b20 + 2 perms

+12ǫb14a1a2a3a4(ǫ10)
b1···b20ǫc1c2c3c4[a5

ǫa6]b12b15b16b17ǫb11b13b18b19b20 + 2 perms

=

(

−
3

5
(1) +

12

5

(

−
1

2

)

+
3

5
(−1) +

6

5
(−1) +

6

5

(

27

2

)

+ 60(1) + 12(0)

)

×ǫa1a2a3a4b14ǫb16a5a6b11b12(ǫ10)
b1···b20ǫc1c2c3c4b17ǫb13b15b18b19b20 + 2 perms

=
129

2
ǫa1a2a3a4b14ǫb16a5a6b11b12(ǫ10)

b1···b20ǫc1c2c3c4b17ǫb13b15b18b19b20 + 2 perms.

Since Asym510 ⊗ Sym31̄0 ⊗ Asym45̄ contains one scalar all seven tensors in the penulti-

mate step are proportional to each other. The constants of proportionality are obtained

by computing components.
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I5 is only non vanishing if we choose

β2, . . . , β11 = b3b4, . . . , b11b12, 1, 2, 3, 4, 5. (B.28)

This component of I5 consists of two terms, one for β1 = b1b2 and one for β1 = +:

(I5)
b3···b12

a1···a10 12345 =

∫

[dλ]
1

(λ+)2
λa1a2 · · ·λa9a10Λδ1δ2δ3(ǫT )δ1δ2δ3 b3···b12

+ 12345 (B.29)

+
1

2

∫

[dλ]
1

(λ+)3
λb1b2λa1a2 · · ·λa9a10Λδ1δ2δ3(ǫT )δ1δ2δ3 b1b2b3···b12

12345.

The relevant components of ǫT are given by

(ǫT )d1d2d3 b1···b12
12345 = −8

1

16
2(ǫ10)

b1···b20γad1
b13b14

γbd2
b15b16

γcd3
b17b18

γ +
abcb19b20

+ (B.30)

−
1

16
8(ǫ10)

b1···b20 1

2
γ

(d1
a +γ

|b|d2

b13b14
γ
|c|d3)
b15b16

γa
bcb17b18b19b20

= −(ǫ10)
b1···b20δa

[b13
δd1

b14]δ
b
[b15

δd2

b16]δ
c
[b17

δd3

b18](−1)ǫabcb19b20 +

−
1

4
(ǫ10)

b1···b20δ(d1
a δ

|b|
[b13

δd2

b14]δ
|c|
[b15

δ
d3)
b16]δ

a
[b17

ǫb18]bcb19b20 ,

(ǫT )d1d2 b3b4···b11b12
d3d4+ 12345 = −8

1

32
(ǫ10)

b3···b22γad3d4b13b14γ
bd1
b15b16

γcd2
b17b18

γa
bcb19b20b21b22

(B.31)

= −
1

4
(ǫ10)

b3···b22(−1)ǫad3d4b13b14δ
b
[b15

δd1

b16]δ
c
[b17

δd2

b18]2δ
a
[b19

ǫb20]bcb21b22 ,

where we extracted the factor of eight and the powers of 1
2 again. In summary the two

relevant components of (ǫT ) are given by

(ǫT )d1d2d3 b1···b12
12345 = −8

1

2
5(ǫ10)δ

d1
b13
δd2
b15
δd3
b17
ǫb14b16b18b19b20 (B.32)

and

(ǫT )d1d2 b3b4···b11b12
d3d4+ 12345 = 8

1

4
ǫ10ǫb17d3d4b15b16ǫb18b1b13b19b20δ

d1
b2
δd2
b14
. (B.33)

I5 becomes

I5 =

∫

[dλ]
1

(λ+)3
λβ1λa1a2 · · ·λa9a10Λδ1δ2δ3(ǫT )δ1δ2δ3 b3···b12

β1 12345 (B.34)

=
1

2
3

∫

[dλ]
1

(λ+)2
λa1a2 · · · λa9a10Λ

d3d4
d1d2

(ǫT )d1d2 b3···b12
d3d4 + 12345 +

+
1

2

∫

[dλ]
1

(λ+)3
λb1b2λa1a2 · · · λa9a10Λd1d2d3(ǫT )d1d2d3 b1···b12

12345

=
3

40
(ǫ(d1|a1a2a3a4|ǫd2)a5a6a7a8

δ[d3
a9
δd4]
a10

+ 14 perms)(ǫT )d1d2 b3···b12
d3d4 + 12345 +

+
1

120
(ǫ(d1|a1a2a3a4|ǫd2|a5a6a7a8|ǫd3)a9a10b1b2 + 14 perms)(ǫT )d1d2d3 b1···b12

12345

=
3

20
(ǫd1a1a2a3a4ǫd2a5a6a7a8δ

[d3
a9
δd4]
a10

+ 14 perms)(ǫT )d1d2 b3···b12
d3d4 + 12345

+
1

20
(ǫd1a1a2a3a4ǫd2a5a6a7a8ǫd3a9a10b1b2 + 14 perms)(ǫT )d1d2d3 b1···b12

12345
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=
3

10
(ǫd1a1a2a3a4ǫd2a5a6a7a8δ

[d3
a9
δd4]
a10

+ 14 perms)

[(ǫ10)
b1···b20ǫb17d3d4b15b16ǫb18b1b13b19b20δ

d1
b2
δd2
b14

]

−(ǫd1a1a2a3a4ǫd2a5a6a7a8ǫd3a9a10b1b2 + 14 perms)

[(ǫ10)
b1···b20δd1

b13
δd2
b15
δd3
b17
ǫb14b16b18b19b20 ]

=
3

5
ǫb2a1a2a3a4ǫb14a5a6a7a8(ǫ10)

b1···b20ǫb17a9a10b15b16ǫb18b1b13b19b20 + 14 perms

−ǫb13a1a2a3a4ǫb15a5a6a7a8ǫb17a9a10b1b2(ǫ10)
b1···b20ǫb14b16b18b19b20 + 14 perms

= −
2

5
ǫb13a1a2a3a4ǫb15a5a6a7a8ǫb17a9a10b1b2(ǫ10)

b1···b20ǫb14b16b18b19b20 + 14 perms.
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