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ABSTRACT: This is the first of a series of two papers where decoupling of unphysical states
in the minimal pure spinor formalism is investigated. The multi-loop amplitude prescription
for the minimal pure spinor superstring formulated in hep-th /0406055 involves the insertion
of picture changing operators in the path integral. These operators are BRST closed in a
distributional sense and depend on a number of constant tensors. One can trace the origin of
these insertions to gauge fixing, so the amplitudes are formally independent of the constant
tensors. We show however by explicit tree-level and one-loop computations that the picture
changing operators are not BRST closed inside correlators and the amplitudes do depend
on these constant tensors. This is due to the fact that the gauge fixing condition implicit
in the existing minimal amplitude prescription is singular and this can lead to Lorentz
violation and non-decoupling of BRST exact states. As discussed in hep-th/0406055, a
manifestly Lorentz invariant prescription can be obtained by integrating over the constant
tensors and in the sequel to this paper, it is shown that when one includes these integrations
unphysical states do decouple to all orders despite the fact that the PCO’s are not BRST
closed inside correlators.
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1 Introduction

A new superstring formalism, the pure spinor formalism, has been developed over the past
ten years [1-6], see [7, 8] for reviews. In this new formalism, the theory exhibits manifest
super Poincaré invariance, as in the Green-Schwarz (GS) formalism, but in contrast with
the GS string the worldsheet theory in flat target space is free, as in the Ramond-Neveu-
Schwarz (RNS) formalism, so the theory can be quantized straightforwardly (modulo the
issues with the pure spinor constraint that we discuss below). This has opened a new avenue
for better understanding string perturbation theory. Indeed, the new formalism has already
produced a number of interesting results in this direction, such as new non-renormalization
theorems and progress towards proving finiteness of perturbative string theory [3, 9], and
one may anticipate more new results to appear as the formalism is developed further. On
a different front, gauge/gravity dualities and flux compactifications render an urgent need
for a formalism that can handle curved backgrounds with Ramond-Ramond fluxes and the
pure spinor formalism is currently the best such candidate.

The new amplitude prescription has marked advantages over both the RNS and GS
formalisms. Compared to the RNS formalism, the formalism does not involve worldsheet
fermions, so there is no need to sum over spin structures and deal with supermoduli.
Moreover, computations involving external fermions and RR fields are markedly simpler
than the corresponding RNS ones and the manifest target space supersymmetry automat-
ically leads to expressions that incorporate the entire supermultiplet. The GS formalism is
also target space supersymmetry but one must use the lightcone gauge and contact term
interactions [10, 11] lead to complications in multi-loop computations. The pure spinor
superstring is free of these problems and has already been used successfully in explicit
computations [2—4, 7, 9, 12-17]. However, this formalism has not been derived by gauge
fixing a worldsheet diffeomorphism theory and as a result not all aspects of the formalism
are fully understood. From the practical point of view, one would like to develop further
the computational tools relevant for the pure spinor sector. This paper grew out of our
efforts to further develop and streamline the pure spinor formalism. In this process we



encountered issues with decoupling of BRST exact states which is the subject of this and
of the companion paper [18].

The pure spinor superstring has two versions, the minimal [3] and the non-minimal
formalism [4]. The two formalisms are formally equivalent [19] with the former being
technically more intricate than the latter. The non-minimal formalism however is known
to have a difficulty from genus three and higher: one of the zero mode integrals in the
path integral is divergent due to poles in the composite b field [4]. Although there has
been a proposal for dealing with these divergences [5], no explicit computation in g > 2
has been completed with it to date, see however [20, 21] for recent work in this direction.
The minimal formalism on the other hand does not appear to have such a problem: the
corresponding composite b field does not have the poles that its non-minimal counterpart
has. This was one of the reasons that led us to revisit the minimal formalism.

The minimal formalism contains constant spinors (C,) and constant tensors (Bp,,) in
its amplitude prescription. These constant tensors enter the theory via certain operators,
the picture changing operators (PCO’s), which are needed to set up the amplitude pre-
scription. It was argued in [3] that amplitudes are independent of C' and B, because the
Lorentz variation of PCO’s is BRST exact. In this paper we show by explicit computations
that the amplitudes do depend on the choice of the constant tensors and BRST exact states
do not decouple. This happens already at tree level, but in this case one can show that
there is a unique Lorentz invariant operator that can replace the PCO’s in the tree-level
amplitude prescription. With this replacement BRST exact terms do decouple and one
can further show that this prescription is equivalent to the tree-level prescription obtained
by integrating over C' [3], which correctly reproduces known tree-level amplitudes.

Next we examine amplitudes at one loop. These should be independent of the constant
tensors B and C but we find problems with Lorentz invariance and decoupling of () exact
states just like at tree level. These problems are not present when we integrate over B and
C, as will be discussed in the companion paper [18]. Furthermore we prove a no-go theorem
about finding new Lorentz covariant PCQO’s that are BRST closed inside correlators that
could be used to replace the original PCO’s. Using such PCO’s however one finds that all
one-loop amplitudes are equal to zero.

The technical origin of the problem is that the PCO’s are BRST closed only in a
distributional sense and it turns out that the amplitudes are singular enough so that distri-
butional identities do not hold. One should contrast this with the non-minimal formalism
where the corresponding object, the so-called regularization factor, is BRST closed without
subtleties. Indeed, we show that the problems we found at tree and one-loop level in the
minimal formalism are not present in the non-minimal case.

To understand why the amplitudes are singular, let us recall that the PCQO’s originate
from gauge fixing zero mode invariances [19]. The PCO’s contain eleven delta functions
of the form §(CI\®), where Cl are the constant spinors mentioned above. It turns out
that for any choice of C' that give an irreducible set of eleven constraints, the solution of
CIX* = 0 is given by A = 0, which is the tip of the cone that represents pure spinor space.
As discussed in [22], the A* = 0 locus should be removed from the pure spinor space. Thus
this prescription corresponds to a singular gauge fixing condition and the problems we find
reflect that fact.



The results in this paper that expose the problems with decoupling of BRST exact
states can best be viewed as evidence for the need of a more complete definition of the
PCO’s and a prescription that takes global issues into account and allows for a non-singular
gauge choice. Although our expectation is that BRST exact states would decouple without
integrating over C, a full discussion of this topic is beyond the scope of this paper. Fur-
thermore our results, even though they do not take global issues into account, still show
that there is a need for a new proof of the decoupling of BRST exact states and such proof
is presented in [18].

This paper is organized as follows. In the next section we review the minimal pure
spinor formalism with emphasis on the tree-level and the one-loop amplitude prescription.
Then in section 3 we demonstrate the dependence on the constant spinors, C,, by per-
forming a tree-levelcomputation with two different choices for Cy. In section 4 it is shown
that after integrating over C' BRST exact states do decouple and we show how to formu-
late the prescription such that it does not contain constant spinors anymore. Section 5
examines one-loop amplitudes with unphysical states. We analyze these amplitudes both
with and without integrating over B. In the final part of this section the computations are
compared to their non-minimal counterparts. Section 6 contains the no-go theorem, which
states that a Lorentz invariant picture changing operator leads to vanishing of all one-loop
amplitudes. In section 7 we discuss the origin of the problem as a singular fixing condition
and we comment on possible modifications such that the prescription would correspond
to a non-singular gauge. We conclude in section 8. The paper contains two appendices.
In the first appendix we provide a comprehensive and (in some cases) pedagogical review
of many technical aspects relevant for the pure spinor formalism and in appendix B we
compute several integrals needed for the one-loop discussion.

2 Review of minimal pure spinor formalism

The worldsheet action in the minimal pure spinor formalism for the left movers in conformal
gauge and flat target space is given by

1 _ _ _
S = / d*z ( 23mm3mm + pa 0% — waaAa> , (2.1)

withm=0,...,9and a=1,...,16. The fields p, and w, have conformal weight one and
are Weyl spinors, ¢ and A\“ have conformal weight zero and are Weyl spinor of opposite
chirality. In addition A% is a pure spinor, i.e. it satisfies

AT =0, (2.2)

where ’yglﬁ are the ten dimensional Pauli matrices, which are defined in appendix A.2. The
decomposition of a Weyl spinor under the SU(5) subgroup, 16 — 1 & 10 & 5, which is
used extensively throughout this work, is also discussed there. Since the worldsheet action
consists of two 37 systems quantization seems straightforward, but A\“ is a pure spinor and
therefore the Aw part is actually a curved (7 system [22]. To deal with this, we work on
a patch in pure spinor space that is defined by AT # 0. On this patch the pure spinor



condition expresses A* in terms of Ay and AT, with a,b = 1,...,5. The solution is (in
SU(5) covariant components)

11
C 8T

A constraint on fields in the action induces a gauge invariance on the conjugate fields. In

¢ €abede Ny N e. (2.3)

this case the gauge transformations are given by
0We = Amwgfﬁ)\ﬁ. (2.4)

In [3] this gauge invariance is dealt with by using gauge invariant quantities only. This
means w, can only appear in the Lorentz current N™”, the ghost number current J and
the stress energy tensor T( Aw)

1
N™ = 2wa(7mn)aﬁ)\ﬁ7 J = wa)\a7 T()\w) = waa)‘a- (25)

Since the Aw part of the action is not free due to the pure spinor constraint it is not obvious
what the OPE between w and A will be. One way to proceed is by properly fixing the
gauge invariance of (2.4). In [19], following [1], it was shown, by making the gauge choice
w, = 0 and employing BRST methods, one can replace [ d? 2w, 0M® by the free action,

_ 1
/dQZ(W+3)\+ + 2w“b8)\ab). (2.6)

One might have expected BRST ghosts associated to the gauge fixing of w,. It turns out
these can be integrated out. As a check of the validity of this procedure the OPE of the
Lorentz currents (N™"|,,,—o) should give rise to the Lorentz algebra. Using (2.6) one finds

NN @)~ L e~ X (2.7
-3 1
N™ (NP () ~ n[pqlm nlp yalm _ pymlp praln
(2) NP4 (w) @_mﬂnv7)+z_wm U] )
—4
J(z)J(w) ~ (2 — w)?’ J(z)N™" (w) ~ regular,

1 mn AT(w) ~ '
N W), J@T@) ~ sty

The explicit computations can be found in appendix A.4 and it should be noted that there

N™ ()T (w) ~ J(w).

(z — w)

are subtleties regarding the double poles in the OPE. Hence even though the gauge fixing
condition is not Lorentz covariant the OPE’s of the gauge fixed currents are. The factor
of —8 of the triple pole in the JT" OPE implies at tree level only correlators with total J
charge -8 will be non-zero [23]. The OPE’s for the matter variables can be straightforwardly

derived from (2.1):
1
m n ~ —p] _ 2 o 06 ~ 0% . 2.8
2" (z)z"™ (w) n""og|z — w|”,  pa(2)0”(w) By w (2:8)

The action (2.1) is invariant under a nilpotent fermionic symmetry generated by

Q:f@ﬂ%, (2.9)



where ) )
do = pa — 27;”59%% — gYaiIm 50°6700°. (2.10)

The transformations it generates are given by
ox™ = My"0, 60 =X, A =0, ddy =—-1"(VmN)a, OWs=dq, (2.11)

where 11" = Jx™ + ;efymae is the supersymmetric momentum and again we restrict to
the left movers (so in particular, the full transformation for 2™ contains a similar additive
term with right moving fields). The cohomology of this operator (at ghost number one)
indeed correctly reproduces the superstring spectrum [24].

The gauge fixed action (2.6) is no longer invariant under @ = ¢ dzA\*d,, but it is
invariant under Q defined by

da

Qwa:da_)\_,’_

(1A (2.12)
On all other fields Q acts the same as Q. Note the second term in (2.12) is a gauge
transformation with A, = ;\l‘}r,A“ = (. This implies that when acting on gauge invariant
quantities Q = Q. Moreover Qw, = 0. So that for instance

. 1
QN™|usmn = QN™ = _ Xy"™"d. (2.13)

Q also satisfies

Q* =0, (2.14)

on all fields including w, unlike Q.

It seems very natural to consider ) as a BRST operator that appeared after gauge
fixing a local worldsheet symmetry that includes diffeomorphism invariance. Despite con-
siderable work, finding such a formulation remains an open issue, see [25] for work in this
direction. There has also been work in relating the pure spinor formalism to GS and RNS
formalisms, see [6] and references therein.

In [19] we presented a different perspective. We considered the pure spinor action (2.1)
as a o-model action with a fermionic symmetry () and we coupled it to topological gravity
in a way that preserves (). Gauge fixing worldsheet diffeomorphisms leads in a standard
way to a second nilpotent operator, the standard BRST operator. Then one can proceed
to derive the scattering amplitude prescription following usual BRST methods. From this
perspective the reason we start from an action with ) invariance is that the cohomology
of () yields the correct superstring spectrum.

2.1 Tree-level prescription

In this subsection we review the tree-level amplitude prescription of [3]. The N point open
string tree-level amplitude is given by

A = (Vi(z1)Va(22)Va(z3) / deali(z1) - / denUn (2n)Ye, (1) - Yeu (1))



:/[Dlox][l)md][DlGH][DH)\][an]Vl(zl)Vg(zQ)Vg(z?,)/dZ4U4(Z4)---/dzNU(zN)
XYCl (yl) T YC11 (yll)e_s7 (2'15)

where [D¢] denotes functional integration over the field ¢. The functional integration over
2™ has been studied in detail and the same correlation functions appear in the RNS for-
malism. We will not include this factor in the computations in this paper because they
are not relevant for us. V and U are the integrated and unintegrated vertex operators, i.e.
they satisfy

QV(z) =0, V(z) ~V(z) + QQ(z), (2.16)
Q/dzU(z) =0, /dzU(z) ~ /dzU(z) + Q/sz/(z). (2.17)

After using the gauge invariance to set a number of components to zero the solution to
these equations is given by [24]

V = \"A4,(z,0), (2.18)
1
U=00"A,(x,0) + I A, (z,0) + d W (x,0) + 2Nm".7-"mn(x,9), (2.19)
with
ik-x 1 m 1 m
Ay(z,0) = e 2am(*y 0)o — 3(57,”6?)(7 o+ |, (2.20)
1
Am — 8Dar7%ﬁAﬁ’ (2'21)
1
wh = 107ﬁbﬁ(DaAm — " Ay), (2.22)
F —1D( ) Wh (2.23)
mn = o Ma Ymn) g ) .
where D, = 83@ + %957(%8,%, am and &% are the polarizations and k™ is the momen-

tum. They satisfy k> = k™a, = E™(ymé)a = 0, there is a residual gauge invariance
G — A + kmw and . .. contains products of k™ with a,, or £%.
Y are the picture changing operators (PCO):

Yo(y) = Cab®™(y)s(CsA (y)), (2.24)

where C, is a constant spinor. We want to be absolutely explicit about what we mean
by a delta function, since we will see the problems with decoupling of () exact states are
intimately connected with these delta functions. The definition we use in section 3 to
section 5 is the usual one:

/ dod(2)f(z) = F(0), 20(x) = —d(x). (2.25)

The presence of the PCO’s in the amplitude prescription is explained from first principles
in [19] and is reviewed in section 7. In short, they come from fixing a gauge invariance



due to the zero modes of the weight zero fields, A%, 8%. Note the weight one fields do not
have zero modes at tree level. At higher loops there will also be PCO’s for these fields.
Since the PCO’s are introduced as a gauge fixing term, amplitudes should be independent
of the constant tensors C,. Moreover in all computations we will choose y; = oo so that
the PCO’s have no non-zero OPE with any other field.

The functional integral (2.15) is evaluated by first using the OPE’s of (2.7) and (2.8).
Note that this operation reduces the total conformal dimension of the worldsheet fields
involved in the OPE. For example in the p,# OPE, the conformal weight of pg(z)§“(w) is
one and the conformal weight of 5% is zero. Thus in the end the correlator only contains
worldsheet fields of weight zero. This can be evaluated by replacing the fields by their zero
modes and performing the zero mode integrations.

After integrating out the non-zero modes the amplitude reduces to

A= / [AN A CONNONY fo5,(0)(C1O)S(CIN) - (CM1O)5(CHN), (2.26)

where f,3, depends on all the polarizations and momenta. Note the functional integration
of 2™ is omitted here as will be done in all computations in this paper. A priori f,z3,
also depends on z1, 29, z3. Of course we expect the final result to be independent of these
coordinates. Also note all the fields are zero modes including those in the measure. [d\]
is the unique Lorentz invariant measure of +8 ghost number on the space of pure spinors
(cf. appendix A.5). It is given by [3]

[AANENINY = dX A - A AN ()P (2.27)
where
(D)2 15 = €anerare YA 12AYH018 Y01 (qMNP) @156 (2.28)

Note no gamma trace is subtracted. This tensor is already gamma matrix traceless as
explained in appendix A.5.
2.2 One-loop prescription

Compared to a tree-level amplitude, a one-loop one exhibits three new features, (1) PCO’s
for the weight one worldsheet fields p,w, (2) zero mode integrals over p,w and (3) a
composite b ghost constructed out of the worldsheet fields from (2.1). The first two points
are direct consequences of the presence of a zero mode of weight one fields on the torus.
The new PCQO’s are given in terms of the gauge invariant quantities N™" and J:

1
Zp(z) = 2an)\(z)’ym"d(z)é(anNm”(z)), Zj(z) = X¥(2)da(2)0(J(2)). (2.29)
All string theory amplitude prescriptions at one loop contain a b ghost which satisfies

{Q,0(2)} = T(2). (2.30)

In the RNS formalism this field appears as reparametrization antighost. In the pure spinor
formalism the b ghost is composite [3], constructed out of the worldsheet fields from (2.1),



as explained from first principles in [19]. However, it is not possible to solve equation (2.30)
in the minimal pure spinor formalism [3], because of ghost number (J charge) conservation
combined with gauge invariance of objects containing w,. The former implies b must have
ghost number minus one and since there are no gauge invariant quantities with negative
ghost number the latter rules out any solution. A resolution to this problem is combining
the (composite) b field with a PCO, Zp, such that

{Q,BB(U, 2)} =T(u)Zp(z). (2.31)

This equation ensures the () variation of the b ghost vanishes after integrating over moduli
space. The solution is given by [3]
z

bp(u,z) = bp(u) + T(u)/ dvBp,ONPI(v)6(BN (v)). (2.32)

u

The local b ghost, bp(u), is a composite operator, constructed out of the worldsheet fields:

bp(2) = bpo(2)6(BN (2)) + bp1(2)d' (BN (2)) + bpa(2)8" (BN (2)) + bps(2)0" (BN (2)),

2.33

where the primes denote derivatives, BN = B,,,, N""" and ( )

by = ;nym"dan - ;Haﬁ(fypfym")aﬁn,,an + (2.34)
KPP 3, (308)a B + 5 8 (P7™) 53,1707 a B

bp, = iH@ﬁ(Bd)a(Bd)ﬁ + (2.35)

1 1
+, K OBV (4P gy ( Bd) o TTp By, + WK AT (yPy™) o 13 (Bed) o T B +

1
+ , L (VP71 (Bd) (o (108) 5) — (4P1™) 31y (BAd)s) (1p08) ) Brn +

—((F"Y D aip(PY™™ )15 + (YD as(FPAY™) 3y )y B Ils By |

bo = — (K (BB (B, — (1297 s(B(B+ (2:30)

W

1
+(7"7"") gy (Bd)s) (Bd)a + , (777" )ajs(Bd) (Bd) gy |11y By,
2
1
bps = — L% (Bd),(Bd)s(Bd)~(Bd)s, (2.37)
where (Bd)y = Bypn(7"™"d)o and G, H, K, L are given in appendix A.7.
The one-loop amplitude prescription in the minimal pure spinor formalism is given by

11

i 10
AN = /d27<]/d2u,u(u)bgl(u, 21) H Zgr(zp)Z(211) HYCz(y)‘Q (2.38)

P=2 =1

N
xVi(t) || /d%TUT(tT».
T=2



The Beltrami differential p(u) does not depend on the worldsheet coordinates on the torus.
This implies the composite b ghost only contributes through its zero mode:

/dQUMT(u)B(u, 2) :,uT/dQUi)(u, z). (2.39)

A typical zero mode integral one encounters is given by [3]:
g
A= /dA |[dB][dC] H dNg]f5(\, Ng, Jr,C, B) (2.40)

where the zero mode measure for [dN] is given by

al . \a8 __ miny mionio (o7 ARl e%:]
[AN]A®T - A% = AN™™ A .. A N NIRRT (2.41)
with
ap-ag — ((a1c2 azaq asag arag)) :
Rm1n1 “Mi1o0mM10 7m1n1m2m3m47m5n5n2meM7’ymgngnanemg’Ym1on10n4n7ng + permutatlons.

(2.42)
The permutations make R antisymmetric under exchange in both m; < n; and m;n; <
m;n; and the double brackets denote subtraction of the gamma trace. The zero mode inte-
gral (2.40) is only non-zero if the function fp (called f in [3]) depends on (A, N, J,C, B) as

10 11
f8(\,N,J,C,B) = hg(\,N,J,C,B)o™s(J) | o 6(BFN) [ 0%16(CN), (2.43)
P=1 I=1
where the polynomial hp assumes the form
10 11
IR )M ) Zi e TT (1) T e (2.44)
P=1 I=1

The integration over the zero modes of the pure spinor variables and the constant tensors
is defined in [3] as

2 D ot oo G o 0 )
“onen aAas(T) e Fomans Smionso gyas T grens gB1 T 9BI0 (2.45)

mini mionio

9 0 0 Ky 10 ol O Lp b M
acél 8C11 H <8)‘5 acg) IEI <8Bppq 8Npq> <6J> hB(A? 9 Ja Ca )7

for some proportionality constant c.

A =

3 Tree-level amplitudes

In this section we will describe three problems with (2.15), evaluated using the defini-
tions (2.27) and (2.25). (1la) A is not Lorentz invariant or equivalently (1b) A depends on
the choice of C’s and (2) @ exact states do not decouple. The third problem involves the
position of the PCO’s on the worldsheet.



3.1 Lorentz invariance

The prescription of (2.26) appears to be Lorentz invariant and therefore independent of
C! because the Lorentz variation of the PCO’s is BRST exact:

1 1 1
M™Ye = Q(C'ym”H)é(C)\) + 2(C€)(C’ym")\)5/(0)\) =Q 2(C'ym"0)(00)35(0)\) . (3.1)
This argument requires vanishing of (QX) for all X and closedness of the PCO’s. The first
condition is satisfied because after integrating out the non-zero modes (QX) reduces to

/ [ANdCONNPNY D, f5,(0)C105(CMA) - - - CHOS(CMN) = 0, (3.2)

because [ d'%0D,g(#) = 0 for any function g. In order to see whether the PCO’s are closed
consider

QYo = C A“6(Ca)P). (3.3)

This seems to be zero, but if we choose C,, = 67, we find QYo = AT§(AT). This is not zero
because the measure contains ( )\}r)g. All we can use is AT*5 (A1) = 0. This problem is made
even more explicit in the computation below. It will be shown that choosing particular C’s
does not result into a Lorentz invariant answer.

Let us choose

Cl=gt, (C2yme =glosel o (oMyme = glogel - al other €L = 0. (3.4)

Note C! has rank eleven for this choice, as it should. As is discussed in section 7, within
the present formalism, the results below would be valid for any other choice, see footnote 6.
The three-point tree-level function is given by

A = (A" A1 (21) A Agg(22) AT Az (23) Y, (00) -+ Yooy, (00)) (3.5)
= / [N CONNINT fop,(0)CL 6% - CLL 911 5(CL A1) - - §(CLE A1)

a11 Q11
= / [AN A ON NN £ (0)0T 012 - - u56(AT)S(Ni2) - - - 5 (\as)

dXT AdXig A - AdA
= / 1;3 AN NN £, ()0 012 - - 0456( A )6 (A12) - - - 6(\as).

The only term that contributes is the one with a8y = + + 4+, in all other cases there is an
integral of the form [ dAgpAapd(Aap) (no sum). There is a subtlety with these integrals, for
instance

J IO )o02) - 80is) = [ XN TSN )3 (0) 80
_ / art ; 5(AH) / Dhoghead (o) = 500. (3.6)

Note however that (3.6) has N charge one (cf. (A.21)). Since the outcome of the integral
(maybe after some regularization) must be a number, which does not transform under
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N, the integral has to vanish. In other words only integrals with zero N charge, like
STAA(AT)36(AT)S(A12) -+~ 6(A45) can be non vanishing. After the integration over the A
zero modes we are left with

A= / A0 f, . 07015 04, (3.7)

where fi, | = AiAiA?i and this can be evaluated with the help of the explicit expressions
for the gamma matrices from appendix A.3.3. We choose as external states two gauginos
and one gauge boson:

A= / d09(E7Oral" + E1,0°0") (E3000" + €1,0°0")0°a20 012 - 045 = €Ly €407, (3.8)
This answer is not Lorentz invariant and different from the expected answer,

1
gy an, = 28 ag + €163 ag — €007 + Eual + €1€0a),  (3.9)
where m is an SO(10) index and all Latin letters that come before m in the alphabet
are SU(5) indices. In conclusion this shows that using (2.27) and (2.25) does not lead to

Lorentz invariant answers.

3.2 Dependence on C!

We will now show that amplitudes are not invariant under CL — CI + 6CL. 1In this
computation it also becomes clear that not all BRST exact states decouple. Consider the
same C’s as in (3.4) and §CL! = 6}, where the 1 is an SU(5) index. The delta only has

)

one non vanishing component. This changes Y¢,, by
Yoy, = 6C11a0%6(C1iX) + Cria0%5C1 A6 (Ca ) (3.10)
= Q(5C11,0C1150°8 (Cr1pN7)) = Q00450 (\s5)).
Under this change in C/ the tree-level three-point function changes by
0A = <V1(21)‘@(22)‘@,(23)Y01 (OO) Yoy, (OO)5Y011 (OO)> (3'11)
= (Vi(21)Va(22)V3(23)Q(Yey (00) -+ Y (00))8 (00)Ba5(00)8 (Aas (00)))

d A
= / d'%e ( A+)3AaAﬁA7AgA%A§Q(YCI Yy )0 0450 (Mas).

There is a total of four A*’s in the numerator (one hidden in @) one of them has to be A\y5
and the other three have to be AT to give a non vanishing answer. The term that contributes
comes from @ hitting #T§(A1), this AT then cancels against a AT in the denominator and
the variation becomes

SA = / d'00d " XA A2 (AP0 5(AT)0120(Mr2) - - - Oasd(Mas) (3.12)
— / 4994 A2 (A9)599,5 - - O45.

By choosing suitable polarizations it is not difficult to see this does not always vanish.
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3.3 Position of PCO’s on the worldsheet

In the prescription of [3], PCO’s are inserted at arbitrary points on the worldsheet. The
derivative of the PCO’s however is ) exact:

e(y) = Q(CI0(y))(CO(y))d' (CA(y))], (3.13)
0Zp(z) = Q[=BpdNP(2)6(BN(2))], 90Z;(z) = Q[-8J(2)0(J(2))].  (3.14)

and this suggests that the amplitudes do not depend on the insertion points. As we have
seen, however, BRST exact terms do not decouple, so the amplitudes may depend on the in-
sertion points. In our computations of tree-level amplitudes we will follow [3] and insert the
PCO’s at y = oo. This is equivalent to replacing the fields in the PCO’s by their zero modes.

4 Resolution at tree level

Obtaining amplitudes which are not Lorentz invariant is a serious problem and one might
ask why the tree-level amplitude computations [3, 15] in the minimal pure spinor formalism
gave Lorentz invariant answers and why @) exact states decoupled. Both these points are
explained in the first part of this section. In the second part we reformulate the tree-level
amplitude prescription in a way that does not contain any constant spinors.

4.1 Resolution in the literature

Lorentz invariance is restored by integrating over all possible choices of CZ, and this also

results in decoupling of () exact states as will become apparent in this section. The mani-
festly Lorentz invariant tree-level amplitude in the minimal formalism is given by

=[OV Vaea)Vatza) [ dealin(ea) - [ denUn(an) ¥ (00) -+ Yo (). (4)

After performing the OPE’s and replacing the fields by their zero modes this becomes

A= / e / ANASON NN fos (0)(CIO)S(CIN) - - (CVO)S(CIN).  (4.2)
Now one uses
/ [dCI[ANA* N NCG, -+ ChL 6(CMA) - 6(CMN) = (eT)gfj By (4.3)
This is justified by Lorentz invariance, because the L.h.s. is Lorentz invariant and the only
invariant tensor with the appropriate symmetries is' (¢7'), as can be verified with [26].
ncidentally, the following related integral can also be computed using Lorentz invariance:

/[dC]dA“l A NAX OB, - CELS(CMTA) - 6(CMN) (4.4)
= cl(;gil ...521111] + 02%[3711327[7;?52555 ... 5o

B11]?

where ¢; and ¢z are non-zero numerical constants. This structure follows from the fact Asym''16 ®
Asym''16’ contains two scalars (see appendix A.3.1 for explanation about the notation and the argument).
The constants can be computed using judicious choices of the indices. For example, the integral vanishes
for the choice a1 = (1, -+ , 11 = B11 = +,12,...,35,5, implying that one needs a non-zero constant ca.
Equation (4.4) corrects formula (3.25) of [3].
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Thus
A= (D)5, / 50 f. 5 (8)9% - 6o, (4.5)

The amplitude A is manifestly Lorentz invariant.

This prescription also ensures the decoupling of unphysical states. We will use B to
denote amplitudes with unphysical states throughout this paper, while A is used for any
amplitude, so at tree level with V7 = Qf,

N
B= /[dC](QQ(zl)vz(zQ)w,(zg)H/din(zi)Cgleal---C&}leana(cu)---5(011A)>.
i=4
(4.6)
This can be written in the following form:

B = /[dCKAO‘(Zz)AB(Zz)gag(d,9,N)Q(0519°” 2 Cay, 001)8(CHA) -+ 6(CTN))

a1l

~ [N (2N (20)90p(d, 0, N)CL, X - CLLB™G(CA) -+ 6(CTIN). (47)
where in going from the first to the second line we omitted an overall numerical factor of
eleven. Such overall inconsequential factors will be neglected throughout this work. After
using the OPE’s to integrate out the non-zero modes one gets:

11

B= / [dCd " O[ANAN fog(0)CE A1 C2, 0% .- CHL 9o §(CHN) -+~ 5(CMN)

Q1]

= / A0 fop(0)(eT)2PL 2. 0% =, (4.8)

where f,3(0) is some function of § zero modes and we used (4.3). The integral vanishes
because? 126 ® Asym'°16 does not contain a scalar (see appendix A.3.1 for explanation
about the notation and the argument), in other words

()3, =0. (4.9)

In this case one can also write out (1) explicitly and check that its trace contains a

contraction of an antisymmetric tensor (¢) and a symmetric one ('yfﬁﬁ )-

4.2 Lorentz invariant tree-level prescription without constant spinors

We now present a new prescription for a tree-level amplitude, which does not contain any
constant spinors and is manifestly Lorentz invariant. This new prescription is equivalent
to the one given in [3], when the integral over C' in included. The prescription is given by

A= <V1(21)V2(22)Vg(23)/dZ4U4(Z4) s /dZNUN(ZN)Aaﬁ,Y(OO)
(€T)377 5, 0% (00) -+ 0741 (c0)). (4.10)

Note 126 denotes a gamma matrix traceless symmetric rank two tensor (recall that XGNP~
)\,ymnpqr A,yaﬁ )

mnpqr
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In other words, we have replaced the eleven PCO’s Yo by Ayp,(00). After integrating out
the non-zero modes and replacing the fields by their zero modes A reduces to

A= / A OO[ANN NN fop (0) (1) 5025 071+ 071 As 5,6, (4.11)
The tensor A,g, is defined by

/ AN NN Aoy = 8500,87) — 410 O, 00 = 68 65,07), (4.12)
and is a function of the A\’s only. More accurately, all components contain eleven delta
functions or derivatives thereof. The precise form of (4.12) follows from the fact that the
integral must be an invariant tensor combined with the pure spinor constraint. Detailed
arguments are provided in appendix A.6. To see what conditions (4.12) imposes on A 4
note that choosing afy = 4+ + + gives

/ [AAATPAL 4 = 6. (4.13)

Moreover this is the only condition because for all other choices the Lh.s. of (4.12) is not
invariant under M, the generator of a U(1) subgroup of Lorentz group (see appendix A.3
for the definition of M). Therefore the Lh.s. is equal to zero. In fact for all choices that lead
to non-zero M charge the r.h.s. vanishes by the charge conservation property of invariant
tensors (cf. appendix A.3.1). The solution is given by

Ay =65(AT)0(N2) - 0(Aas). (4.14)

To determine whether this object is indeed part of a representation of the Lorentz group
one needs to check the Lorentz algebra holds when acting on A, . First note

15
(Ns)%Agpit = NopAyyr =0, NAL = 4 JA (4.15)

N™" denote the realization of Lorentz generators M"™" in terms of pure spinors, see ap-
pendix A.4 for the precise expressions. All Latin indices from the beginning of the alphabet
are SU(5) indices. The nontrivial commutation relations that remain to be checked are

c 1 ¢ nrd 1 c
[Nap, N“NA 114 = —25&]\7 ]b]A+++ =%

a (¢ 1 c a
[NG NNy yy = 255[, NN, 4y (4.17)

3 C
SHNAy 4y = _45[a5l0)l]A+++7 (4.16)

Because of the symmetric form of Ay, it suffices to check

3
[Ni2, NJA = = A (4.18)
(N2, N¥IA Ly =0, (4.19)
1
[N, NPy = — 2N13A+++- (4.20)
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Let us start with the Lh.s. of (4.18)
1
[Ni2, NPJA = NiaNPA = Ni [26)‘+5()‘+)5,()\12)5(>\13) - 5()‘45)}

1 11 11 1
= (— JWM2 = WP Agp Az + 5 \+ wab)\m)\zb) [26A+5(>\+)5/()\12)5(>\13) . 5()\45)]

= (0 - Z + Z>A+++ = —2A+++, (4.21)
Note that N1z does not contain factors of (A12)? (possible such factors cancel out). This is
useful when acting with Njs in this second line. In going from the second to the last line
we used zd'(x) = —d(x) twice. (4.19) and (4.20) follow along the same lines.

It is instructive to compute the next two levels (distinguished by N charge) of the
components of A,g,. For the components on the second (N = 141) level consider

NUBRA g = _;Aala2++ - ;Aflai - ;AJr+ala2 - _;Aalaiur = (4.22)
AT = —gNala2A+++-
The factor of —} is consistent with N%w, = —Jw®. Going to the next level (N = 7)
1 1 1
NbleAalangJr _ _26a1a2b1b26Ae++ B 2Aa1a2b1b%r _ 2Aa1a2+b152 (4_23)
1

_ _2€a1a2b1b26Ae++ _ Aalalebi.
This seems to leave freedom to define one of the two components, which would indeed be
true if A,g, was just a symmetric rank three tensor and nothing more. However A,g, is

gamma matrix traceless,
75 Ay = 0. (4.24)

This imposes one additional condition that relates components of equal N charge to each
other. Consequently all components of A, are uniquely fixed in terms of A, . Note that
this is consistent with the discussion under (A.98), where Lorentz invariance arguments

were used to come to the same conclusion.

4.2.1 Decoupling of () exact states

The new insertion A,g, was motivated by manifest Lorentz invariance, but it also results
in a prescription in which @) exact states decouple. Indeed, the tree-level amplitude with
one BRST exact state,

N
B = (QQ(21)Va(22)Va(zs) [ | / dziU (2) (1) 5 %2% 071+ 071 (00) Ay 5,5,(00)),  (4.25)
=4

can be written in the following form:

B = (\"(22)A°(23) fap(0)Q((eT)F 2% 671+ 07 As 5,5,)) (4.26)
= (A(22)A7(23) fap (O)(eT) 5255 A 072 - 071 A 5,5, (4.27)
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After using the OPE’s to integrate out the non-zero modes one gets:

B = / d'O[ANN N fo(0)(eT)502%8 N1 - 091 A 5,5, (4.28)
= / d'%0 fo3(0)(eT) 507 0% 0P =0, (4.29)

The last line vanishes because all traces of (€T") vanish (cf. (4.9)).

5 One-loop amplitudes

In this section we investigate one-loop amplitudes with one unphysical state both in the
prescription with an integral over B and without. We first show that all such amplitudes
are proportional to certain zero mode integrals. Decoupling of BRST exact states would
follow if these zero mode integrals vanished. However, these integrals do not vanish after
the A and N integrations have been performed as one would expect based on () invariance
of the PCO’s, (3.3). We then focus on four-point functions, these being the first two non-
vanishing one-loop amplitudes. We will find decoupling of unphysical states in this case.
In the prescription without an integral over B, however, these amplitudes vanish because
none of the remaining terms after the A, N integrals contain precisely sixteen distinct
components of the zero modes of d,. Preliminary analysis suggests that this mechanism
is not operational in higher-point functions. Furthermore, even the four-point functions
are not Lorentz invariant. The four-point function containing one unphysical state with an
integral over B is also analyzed and we prove it vanishes. In the companion to this paper [18]
we show using a different argument that unphysical states decouple to all orders, when one
integrates over B and C.
Note that the picture raising operators, Zp, are Q-closed without subtleties:

1 - 1
QZp = | Brn Ay d By My dd' (BpgNP?) = 4(anAfym"d)25'(quNpq) =0. (5.1)

This vanishes because it contains the square of a fermionic quantity, so one may anticipate
that the problems are due to picture lowering operators Y not being ()-closed. Let us also
record the Lorentz variation of Zp,

M™ Zp = Q[20P™6M B, N7 §(BN)]. (5.2)

5.1 Amplitudes with unphysical states without integrating over B

A one-loop amplitude with one unphysical state is given by

N ~
B — @) [] [ dsti(z) [ dun(wbps (u,0)(AB ) w) -+ (B d) (1) (M) )

(BN (y)) -+ 8(BON(y))8(J (4))Aby 505, () (1) 5225 651 (3)) - 071 (1)), (5.3)

where ABd = By, AY"d. Note that we have replaced the Yy insertions by the Lorentz
invariant insertion, A,gy, as in the tree-level computation. This is equivalent with inserting
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Yo and integrating over C'. On the torus we cannot insert the PCO’s such that all their
OPE’s would vanish. We inserted them at some arbitrary point y. For later convenience
we inserted b at a different point, w.

We now integrate @Q by parts. When Q acts on b we get a total derivative in moduli
space, as usual. If this total derivative is non-vanishing the theory has a BRST anomaly.
These total derivative terms will be suppressed below because they are not important for
our discussion.

The terms that are important for us are the ones one gets by acting with ) on the
rest of the terms in (5.3). Formally, there should not be any such terms. The reason is
that both the vertex operators and the PCO’s are BRST closed. More precisely, the BRST
variation of the PCO contains delta functions of A and N (cf. (3.3), (5.1)), so the terms
obtained by acting with @) on the PCO should vanish after integrating over A and N. The
main result in this section is that this does not happen. In contrast, as we will see in
section 5.3, these terms are indeed zero in the non-minimal formulation.

More precisely, after integrating @) by parts the amplitude (5.3) becomes,

N
B = (0,0 T / dziUi(=) / dup(w)bp: (u,w)AB2d)(y) - ABYd) () Ad)(y)  (5.4)

1=

2
S(BN(y)) -+ 6(B N (1))5(J () sy 0055 W) (D)5 2% ()N ()07 (y) - - 071 (1)),

where we emphasize again that we suppress the total derivative term in moduli space
originating from Q acting on b. In this subsection we will evaluate BYY) without integrating
over B. The choice we make is:

(BYap = 0018, (B )y = 811, (B')™ = (B)%, =0 (5.5)

We demonstrate below that all such one-loop amplitudes can be written as a sum of
terms proportional to a certain zero mode integral Ig,..s,,. This is done by using the
OPE’s to remove all fields of non-zero weight, in particular N™". This is a non trivial step
because of the complicated form of the b ghost.

Had the zero mode integral Ig,...3,, vanished, this would have proven that BRST exact
states decouple at one loop (again modulo the total derivative term from ) acting on l;)
Non-vanishing of Ig,...3,, does not prove that there exists a non-vanishing amplitude with
a (Q-exact state, because there may be additional cancellations when one performs the
remaining integrals. It does show however that the PCO’s are not @) closed.

Zero mode integral. We will show below that all one-loop amplitudes (5.4) can be
written as a sum of terms that are proportional to the following zero mode integral,

15! pp1s = /[d/\] [ANIA (Ay13d) - (P d) A)S(N'2) -+ S(N*)(T) A (D)5

(5.6)
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Moreover we will show all one-loop amplitudes with an unphysical state can be written as

a sum of terms proportional to the trace of I§11~~~611 which we call Ig,...3,,:

Ig,..1 = 12{1152...511 (5.7)
= [IAaNIN 05 5a) - O D ODBN'Z) - BNV )S) e (T,

Thus (5.7) is the one-loop analog of (4.28) (or (4.8)). Note that, in spite of the notation,
Igfﬁ?__ e is not manifestly Lorentz invariant. Whether it is Lorentz invariant remains to
be seen. Our first task is to evaluate Ig,...3,; .

After using expression (A.95) for [dN] to evaluate the N integral in Ig,...3,, we find

Igy.p1y = /[d>‘] (Ai)g)‘ﬁl ()"713‘1) T (>"745d)()‘d)AozﬁW(eT)gfjﬂu- (5.8)

In this form it becomes apparent that the problems with factors of A™ in the denominator
only become bigger at one loop. At this point we can only surmise this. To find a definitive
answer we have to evaluate the X integral. This can be done by expanding the integrand

by powers of AT:

1
(A7)

1 1 1
+2)‘+)\a1a2 <D12da1a2 + 26aba1a2chD12abd+> + 8)‘“1“2 >\a3a4 <D126aa1a2a3a4da +

SA713d) - (WP d)(Ad) = (A7) Diady + (5.9)

1
+Eaba1agchD12abda3a4 + ) Eabala206d6a3a4fdcde12abded+> +

11
—1—32 A Aagas Nasas Nasag (e“b‘“GQCchlgabed%“ws%dd + e“b‘““2Cede“3a4fdcdelgabdedasaﬁ +
1 6 1
+2ea arazc deazaaf g a5a6]dcdfde12abdeghd+> + E ()\+)k—2 Aatas " Aagp_qage Y 102k,
k=4
where

0 0
Odak—1ak o Odaiaz D
The Y'’s can be expressed in terms of the d’s just like in the first four terms. Note that the

D=d?..-d® Dy.q = (5.10)

minimal number of d,’s in Y* %k is k — 1. This is the reason the series stops at k = 6.
The maximum number of d,’s in Y2 is k. The A integration of (5.9) can be evaluated

term by term. Ig,..3,, then becomes

6

Igy.p11 = Z(Ik)ar--a%@mﬁuYalma%' (5.11)
k=0

The integrals Ij, are investigated order by order in the sequel of this subsection.
For k =0,1,2 one can use (4.12) and (4.9) to show the A integrals vanish:

(I0) g1 = / [ANNT (NT)2 Mgy, (€T)R2% = (eT) 50 =0, (5.12)
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61020
(Il)a1a2ﬁ2"'511 = /[d)‘])‘ﬁl)‘+)‘a1a2A515253(ET),@ll“Qﬂgu - (ET)JrBlawm Brfin 0, (5'13)

61020
(12)a1---a462~~~611 = /[d)‘])‘ﬁl)‘a1a2>‘a3a4A515253 (ET)ﬁll..Q.ﬁgn = (ET)Blalagagazl BB 0. (5'14)
If k > 2, however, there are also factors of A™ in the denominator. As shown in appendix B.1
the X integrals do not vanish anymore. M charge conservation implies that I3 can only be
non vanishing if

ﬁg, e ,ﬁn = +, blbg, e ,bgblo, C1,C2,C3,Cq4 OT 62, e ,ﬁll = b1b2, e ,b13b14, C1,C2,C3.
(5.15)
This is explained in detail in the first part of appendix B. We explicitly compute I3 for
the first case. Since Sym®10 ® Asym®10 ® Asym™*5 contains one scalar, one finds

al---ag+cicacszcy )\+ Bi1+cicaczea

by--b
= C1€ayaza3a4b14€bigasasbi1bia (610) ! 20601020304b176b13b15b18b19b20 + 2 perms, (5'16)

1
(13) bibarbobio — /[d)‘] ABI >\a1a2 e )‘asasAaﬁ’Y(ET)aﬁ,y b

where (elo)bl“'b20 is antisymmetric under both by;—1 < bo; and bo;—1by; < baj_1by; and
(€10)12131415232425343545 — 1 The two permutations add terms to make the r.h.s. symmetric
under ag;_1a2; <> ag;j_1az;. The constant ¢; is computed in appendix B.2 and is given by
129
Cc1 = . (517)
2
We will not compute any components of Iy here. Going to the next level, the only choice

of (o, ..., 11 that leads to a non-zero answer for I5 is
1
b3---b 610203 b3--+b
(IS)al---amS 1212345 = /[d)\] (}\Jr)g )\ﬁl)\ala2 T )\agamAélézés(fT) Loz 351 : 1212345
2

by b
= — L €bizaiazazasCbisasacaras Cbiragaiobiba (610) ! 206b14b16b18b19b20 + 14 perms. (5'18)

5

The details are given in appendix B.2. Finally I can be evaluated as:

1
(Iﬁ)al---a1252---ﬁ11 = /[d)‘] ()\_,_)4 A% Agyag * - )‘a11a12Aa5’Y(6T)glﬁjﬁu (5'19)

b1b2b .
= €byarazazas Ebzasacaras Chgagaroarrars (€1) 1o p,, T Permutations = 0.

This vanished because (eT)Tﬁbg{’f’ﬁn = 0 and that follows from the M charge conservation
rule for invariant tensors. In other words it is not possible to choose (3o, ..., 11 such that
the total M charge of the components is zero (cf. equation (A.25)). This concludes the

computation of the pure spinor zero mode integrals that appear at one loop.

Non-zero mode integration. We now demonstrate that all one-loop amplitudes with
an unphysical state can be written as a sum of terms proportional to Ig,...3,,. After this
proof we indicate how the argument can be modified to prove that AN can be written as
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a sum of terms proportional to 15 . 5,- In general the amplitude, BN, becomes a sum of

terms of the form

500, = [ AN PalDe (ﬂz / dzi>fm1n1...mknk<zl, ) (5.20)

XN (250 ) - NP (2 ) A2 d) () - - P d) () Ad) ()N (1) Ay (9)(€T)5, 5,

x0%(y) - 07 (y) /duu(U)531 (u, w)6(N(y)) - SN (y))3(J (),

where the indices in the PCO’s are SU(5) indices, i; € {2,...,N} and fp,...,, does not
contain any A’s or w’s. The number k indicates how many vertex operators provide an
N™"_ The functional integrals over A and N can be evaluated by performing the OPE’s to
remove all fields of non-zero weight. Then one replaces the fields by their zero modes and

performs the integration over these modes. In order to perform the OPE between N
and 6(BN) we have to Taylor expand 6(BN), as discussed in [3],

w(y) + BN (y)) (5.21)
w(y)) + (BN (y))8' (BNow(y)) + ;(BN(y))QfS”(BNow(y)) +o

S((BN(y) = o
5

BN,
BN,

where N denotes N after omission of the zero mode. The holomorphic one form w(y) is

constant on the torus: 1

— 5.22
A2y’ ( )

w(y)

where 79 is the imaginary part of the modulus 7. The b ghost also contains N"™’s which
have to be taken into account if one is removing all fields of non-zero weight. We first focus
on the first term, the local b ghost, bz (u). The second term of b(u,y), with the integration
in it, will be dealt with later. After replacing b(u,y) by b(u) in the amplitude, Bz(fv)zk,
becomes a sum over n, which counts the number of N™"’s the local b ghost provides, of
the following objects:

B0, = [ IDNPNDA[DY (ﬁ / d) [ duntw S e e o)

j=0

XN () o NP )N () - NP 1) O ) ) -+ (M) ()
< OD N (D)5, B (00 () -+ 67 (1)
<80 (N2 (@) SN (1)) -+ 5V 2 ()3 (I w))e ™, (5.23)

where 6U) denotes the jth derivative of the delta function and the sum runs from zero to
three because b does not contain 6 (B'N) or higher derivatives.

The product of the eleven delta functions, including the one from b, becomes a sum of
products of eleven §U )(BI Ny) after the Taylor expansion. We start with the first term in
this sum, i.e. the one without N’s and no derivatives on the delta functions. In this case
the N"™i" (z;)’s from (5.20) have OPE’s with themselves and with the A’s from the PCO’s.
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We first concentrate on the term in which all N™"’s get contracted with an explicit A.
That term is given by

N
Cz(lN)zk,n = /[d)\] [dN] [Dlﬁd] [DIGQ] [H / dzi] /dufmlnl”'mk+nnk+n (21, .., 2N, u)
=2

k
< A\TTF s w) | Fw,g)" MmN AT (g9 B d(y)) - - (Aov**d(y)) (Aod(y)
=1
X (A0)agy (€T)G) 5,07 (y) - -+ 071 ()5 (NG?) - S(NG®)S (Jo)e (5.24)
where
F(z,y) = 0;logE(z,y) (5.25)

and F(z,y) is the holomorphic prime form, which goes like z — y when z — y [27, 28].
N™™ are abstract Lorentz generators for the \,w sector and they act to the right. They
should not be thought of as containing (zero) modes of the A or w worldsheet fields. The
N™" merely multiply every index on a A\ or w they hit by a two form gamma matrix. Up

to now we only considered contractions between N and the explicit A’s, but if two or
(N)

iy eipn WE get a term of the form C(N) with

L1 ,m)
I +m < k + n, where the poles in z; — z; are included in the unspecified function f.

more N™’s contract with each other in B

The last step of our argument is showing all terms with derivatives on the delta func-
(V) To see this note that if

11 Tg,n "
a derivative acts on 6(N%) one of the N™ must provide this zero mode, otherwise the

tions can also be written as a sum of terms of the form C

integral vanishes. This step just reduces the number of N™"’s in Bz(fv)%n that must be
contracted, so in fact it becomes of the form Cl(lN)Zlm where k +n — [ — m is the number
derivatives acting on the delta functions. Since the zero mode measures [d)\] and [dN] are
Lorentz invariant we can pull the N out of these integrals. This concludes the main part
of the argument that a one-loop amplitude can be written as a sum of terms proportional
to 152...511. )

We still need to consider the second term in b(w,w). This was not included in the
above discussion because it contains ON""(v). This does not change the argument much,
after the OPE’s this part of the amplitude will also have the form of Cl(lN)lkn where the
effect of the v derivative and the integral over v are included in f.

To see AMY) can be written as a sum of terms proportional to Igll___ 5, oOne can use
the above reasoning with a slight adjustment. This consists of replacing A (y) by A%1(z;)
in (5.20) and adding an o index to f. The only effect this has is the replacement of some
F(zi,y) by F(z1,z) in (5.24), apart from the fact o1 and 3; are not contracted anymore.

Thus we have shown that amplitudes with unphysical states do not vanish by the
A, N integration, opposite to expectations, but nevertheless let us press on and explicitly
compute a one-loop four-point amplitude with an unphysical state. Perhaps we will find

some other mechanism that makes these amplitudes vanish.

3Since the distinction between worldsheet fields and their zero modes plays a central role in the argument,
zero modes are denoted in an explicit way, unlike in other parts of this work.
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5.1.1 Four point function without integrating over B

In this subsection we investigate two properties of the four-point one-loop function (2.38) in
the minimal pure spinor formalism, namely decoupling of unphysical states and its Lorentz
invariance in the formulation without integrating over B. We will find decoupling of ) exact
states, in spite of the results of the previous section. The vanishing is achieved after the in-
tegral over the d zero modes. Lorentz invariance, however, does not follow in the same way.

Decoupling of unphysical states. The one-loop four-point amplitude is an example
of an amplitude in which only the zero modes contribute (cf. [3]). It turns out only three
terms have enough factors of d, and N to give a non vanishing answer. This will become
clear in equation (5.27) below. Thus we can immediately replace all the fields in (5.3) by
their zero modes:

4
BW = / [dA)[dN]d"dd o 0QQ | [ Uibpr (AB?d) - - - (AB'd)(Ad) (5.26)
=2
xO(B'N) -+ 8(BON)3(J) Aagy (€157 5 071+ 011,

The only terms of b1 that contributes are the ones with four d’s and there are only three
such terms:

(65 = — | 5 (™) (Bl (Bd)30 (BN (527)

1
— ey PP N (Bd) o (Bd)s(Bd) 8" (BN)

8 mn

1
- 16c4ijf&Nm”Npq(Bd)a(Bd) 3(Bd),(Bd);0" (BN),
where the invariant tensors ¢; and ¢4 can be read off from (2.34)—(2.37) and (A.111)-
(A.114). Note the N integration will only be non vanishing if the fourth vertex operator
provides an N™" zero mode. Moreover there are no terms in the b ghost with three d’s
and no derivatives on §(BN). Such terms could have contributed here. The three terms
above turn out to all be proportional to (for By, = 5[1a5§], BY = B — 0)

d2dsdydsd' (N'?). (5.28)

For the first term this follows from direct computation using the gamma matrices as
listed in appendix A.3.3. Actually, one could have predicted the fact that three of the four
dy’s are d,’s and one is a d?, by looking at the M charge of the full term. &'(N'2) has
M charge two and since 'y%ﬁnp(d’ym”pd)(Bd)a(Bd)gé'(BN) has M charge zero, the d part
must have M charge minus two. The only way four d’s can give M charge minus two is
when three of them are a d, (M charge —3) and the fourth is a d® (M charge }).

The second term can be reduced as follows:

()T ? N dp(Bd)o(Bd)s(Bd),6" (BN) (5.29)

1 1 1
— (61)12 aras Je7as 0 0102 12ada 0 6a3a412bdb 26a5a512cdc6l(N12)’
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where we used the M charge conservation property of invariant tensors together with
(Bd), = 0. After observing that (¢1)apa;.-as 15 an SU(5) invariant tensor that is antisym-
metric in the middle three pairs of indices (ajasg, asas, asag) and there is only one invariant
tensor with these symmetries [26], namely (€4pa,as(a3€as]asagaras + 9 Perms), we find that
the second term in the b ghost is proportional to

(€1)12343545a7 a5 A2 B d3dydsd’ (N1?) = d'2dgdydsd’ (N1?). (5.30)

The same logic can be applied to the third term although this case is slightly simpler.
@, 3,7, 6 has to be +,ab, cd, ef and since (Bd); = d'? we automatically get this factor.

The third integrated vertex operator must provide an N'2 zero mode. It then follows
that B* is proportional to Ig,...3,,- This integral can be written as a sum over £ just as
in (5.9). In this sum the £ = 0,1,2,6 terms vanish because of the A integration and the
k = 4,5 terms vanish due to the d integration (note that bg: contains three d,’s and Yy, Ys
contain at least three d,’s). The k = 3 term is given by

1
(bp1) gt (I3)ay -as 31, (Y3) ™90 = d'?d3dads <32 €PN Dy gqpe®3 9% dy + (5.31)

1 1
+ 2 6atbal a2C€d6a3a4fdcde12abdeda5aG + 6 €

1 1026
/[d)‘] At )\ﬁl)‘amz )\a3a4)\a5a6A515253 (GT)BII__Q.I(;SH

1
= P sdadse " ddy i / (AN AN g0 Ay, (€T)507%

abaias cedea3a4fegha5 agj dcdf de12abdeghd+>

—d*2d3dydse®192¢dod s D1ggp / (AN Aayan M Ay, (€T)502% =0,

where we used
D12abcddef = _5£66§}D12ab - (ﬂeég]Dabcd - 56[1661{}Dcd12 (532)

and the integral vanishes because €1 is traceless.

Thus, for the four-point one-loop amplitudes with a BRST exact state the terms that
do not vanish after the A\, IV integral now vanish because they contain a square of fermionic
quantity, namely d,d, (no sum). One may wonder whether the same mechanism would
work in higher point functions. While we do not have a definite answer to this, preliminary
results suggest that this is not the case. For example, the zero mode contribution to the
5-point function with a Q-exact state does not vanish in this way, but we should emphasize
that our analysis does not exclude possible cancellations between the contributions of zero
and non-zero modes.

Lorentz invariance. In this subsection we study the Lorentz invariance of the ampli-
tudes. Recall that the Lorentz variation of the PCO’s is @ exact (cf. (5.2)). Thus one
expects that the amplitude is Lorentz invariance. We have seen earlier however that @
exact states may not decouple, so we will proceed to check explicitly whether the ) exact
terms obtained from the Lorentz variation of the PCO’s evaluate to zero. We will focus
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on the term obtained by the Lorentz variation of a single PCO. This term should be zero
by itself because it is ) exact. Integrating () by parts one obtains a total derivative in
moduli space when Q acts on b, which will be suppressed as in our earlier discussion, and
a number of terms when @ acts on the other PCO’s. These terms should evaluate to zero
after the A and N integrals are performed, but we will see that they do not.

For the choice of the constant B tensor in (5.5), the PCO are invariant under M?
and under the SU(5) generators (Mg)% transform into a Q-exact term (cf. (5.2)) (see ap-
pendix A.3 for the definition of the generators). More specifically, the SU(5) transformation
of Zge = (My13d)d(N'3) is given by

(Ms)% (M2 d)s(N'3)) = (3 NI§(N'3)). (5.33)
As explained before the non-zero modes can be integrated out trivially in the four point

one-loop function:

4
AW = / [AN|[dN]d"0dd" 0N A [ [ Uibpr (ABd) - - - (AB'd)(Ad) (5.34)
=2
xO(BN) -+ 8(BYN)3(J) Aagn (eT)577 5 05105

The Lorentz variation of the four point function can be written as a sum with one term
for each Zp:

(Ms)g AD =Sl (5.35)

I
and using (5.33) we obtain

(A = / [AA][dN]d 0 dd 00N> A, HUb31 QI N¥a§(N'3))(AB3d) - -- (AB'°d) (5.36)
=2

x(Ad)S(B'N) -+ 8(BON)3(J) Aoy (eT)577 5 0510011,

with similar formulas for the other terms.
Each of (.A(4)) should be zero separately, so we focus on (5.36). After integrating Q)
by parts and writing out the b ghost one finds

(AD)s = / d15dd190 1, (6, 2) (AL )% (5.37)
for some f, and
(A32 )T = 556 / [AN][ANIN*d*2d3dydsS(N'2) - - - S(N*)S(J) (5.38)
x (A d) - (M) (Ad) Mg, gy, (1) 525 AT1052 . 9o,

This integral can be evaluated in exactly the same fashion as the one appearing in the
four-point function with a ) exact state. The first step is to perform the N integrations
and then expand the integrand in powers of A\™:

(A% )5 = dPdsdads / [N sy 5505 (€T) 5025 INAFAT Dygyady + (5.39)
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1 1
+>\a)\51 >\a1a2 (2 D1213da1a2 + 4D1213ab6aba1agcdc> +

1

1
8D12136a1a2a3a4ada + 8D1213ab€aba1a20dcda3a4 +

1
FAXNP W Aaiaz Nazaq <

1
+ 16D1213abcd6aba1aQeGCda3a4fdedfd+> +
1

b d
2 aalagcdc€a3a4a5a6 dd+

1
HFAN (AT)2 Aaras AazasAasag < D1213ap€

+312 D1213abcd€aba1ageecda3a4fdedfda5ae>:| 9,32 . 9,311,
all other terms vanish because they contain 6 or more d,’s. The first two terms in the A\

expansion vanish by using (4.12) and (4.9). The next term reduces to

1 1
d"?dsdyds / [ANNAT L Ay Aasa (8D1213abe“bawdcéﬁ56§f + (5.40)

1
16 D1213abcd6“b“1“2666‘1“3“4fdedfd+) Asyr5 (€T) 30205 0% 651,

= (‘]3)%2"'511962 g,

To show that this contribution is non-zero, it suffices to prove that one of its components

(J3)%2___ 5,, is non-zero. We will consider the case,

a =asag, Po,...,011 =+,biba, ..., bob1o,c1, 2,3, 4. (5.41)

To evaluate the \ integral we use (5.16). The first term vanishes after the A integration
due to the d’s and the second term gives

129 1

)b1---b20
2 16

12 b d,
A" d3dads D1213abeac™™ ¢ €“*3% dod 1d s (€ay azazasbrs Ebrsasashrbrs (€10
€cicacscabir €bizbisbigbiobag T 2 perms). (5'42)

Finally, we have the term containing AX\B1 Aajas Nazas Nasag- Lhis term however does not
contain a factor of dy, so it cannot interfere with (5.42) (prior to the integration over d).

Thus we get a non-vanishing result after integrating over A, N, opposite to expecta-
tions. Note that (5.42) contains 13 d zero modes. The remaining three d zero modes
can be provided by the vertex operators, so the Lorentz variation does not vanish in a
similar fashion as in the discussion in the previous subsection, although in principle there
may still be a cancellation between this term and terms originating from the term with
AN 0 Aasas Aasag 10 (5.39) after integrating over d.

5.2 Prescription including an integral over B

At tree level decoupling of unphysical states was restored after integrating over the constant
spinors C'. In this section we analyze whether this is also the case at one loop, namely
whether unphysical states decouple after integrating over C' and B. Similar to the tree-
level case we show that all amplitudes are proportional to a certain invariant tensor (at
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tree level this was (¢T")) and amplitudes with @) exact states are proportional to the trace
of this invariant tensor. However, at one loop the trace of this tensor does not vanish.

Following the same steps as in the previous subsection (section 6 contains details of
these steps), one can show that all amplitudes can be written as a sum of terms proportional
to the following zero mode integral

Xgll'.'.'.ﬁallllmlnl~..m10n10 = /[dB] [dC] [d)‘] [dN])‘m "')‘au (5.43)
XB iy B Chy -+ Ch 6(CTA) - 6(CMN)S(B'N) - - §(BON)S(J).

Proportional here means in the sense of tensor multiplication: in the terms that appear
after contractions, the tensor X is multiplied by gamma matrices. Evaluating the integrals
in (5.43) is much easier than one might have anticipated, because we know that X must be
an invariant tensor, that is symmetric and gamma matrix traceless in the a’s, antisymmetric
in the #’s and antisymmetric in both m; < n; and m;n; < m;n;. To find out how many
independent invariant tensors with these properties exist, we compute the number of scalars
in the relevant tensor product, which is one (see also section A.3.2). As a matter of fact
we already know such a nonvanishing tensor:

(eTR)% o = (eT)(rozos gorien)) (5.44)

B1-+-Br1mini---mionio

where the double brackets denote gamma matrix traceless, see appendix A.6. We stress
that Lorentz invariance has completely fixed X, there is no freedom remaining.

Starting from a correlator with an unphysical state and integrating ) by parts, it will
hit a 0 from a PCO (where again we suppress the total derivative in moduli space obtained
when Q acts on 5, which does not play a role here). This means all amplitudes with an

unphysical state can be written as a sum of terms proportional to the trace of (¢T'R):

/ [dB][dC[dA][AN]A* - X*1 B -+ BY  NCy CF, - OB
X6(C'A) -+ 8(CHN)S(B'N) -+ - 6(BON)S(J) = (€TR)S 52 o iomyo (5:45)

There are two independent invariant tensors with indices and symmetries of the trace of
(eT'R), so one expects a non-vanishing trace. Indeed, it is proven in section 6.1 that this
trace does not vanish, which implies the PCO is not @ closed. One might want to replace
(eT'R) by its traceless part to restore () invariance, but this is not possible since all invariant
tensors with the symmetries and indices of X are proportional to (¢I'R). In other words
removing the trace of (¢I'R) would set the entire tensor to zero.

We conclude that the proof of decoupling of unphysical states at tree level does not
generalize to one loop and one needs a new argument. Such a new argument is presented
in [18], where it is shown that unphysical states decouple to all loop order.

5.3 Comparison to non-minimal formalism

In this subsection we briefly compare with the non-minimal formalism [4]. None of the
problems that were found, when we examined the prescription without integration over B,
are present in this case.
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In the non-minimal formalism one introduces a set of non-minimal variables, the com-
plex conjugate A, of A, a fermionic constrained spinor rg satisfying

AYP25 =0,  AaPrg=0 (5.46)

and their conjugate momenta, w® and s®. Analogous to the minimal formalism these
conditions induce a gauge invariance:

S0 = A" (Y A)® — 0" (Ymr)®,  05% = "™ (YmA)“. (5.47)
This implies w® and s® can only appear in the gauge invariant quantities

_ 1 _ o _
N™" = N (A0 — sYmnT), J = w — sr, T5p = W'ONq — 8900, (5.48)

Simn = SYmnA, S = s.

N =

The action (2.1) is modified by the addition of the term Sy,:
S — S+ Spm, Spm = /d%« (—0*ONa + s“Orq) (5.49)

and the generator @) by
Q—Q+ j{dzwara. (5.50)
This acts on the non-minimal variables as follows
e = Tas 0re =0, 95 = w?, dw® = 0. (5.51)

These transformation rules imply that the cohomology is independent of the non-minimal
variables. In other words the vertex operators can always be chosen such that they do not
include these variables.

The non-minimal variables can also be understood as originating from the BRST treat-
ment of the gauge freedom due to shifts of the zero modes of the worldsheet fields [19].
This also explains why vertex operators do not depend on the non-minimal fields and why
only the zero modes of these fields appear in the path integral. Furthermore the OPE’s
given in section 2 still comprise a complete list, since the new fields do not have non-zero
modes. Note however that in more recent work [20] that aims at dealing with divergences
as A\ — 0, non-zero modes of A do play a role. It would be interesting to understand how
this fits with the discussion in [19].

In the non-minimal formalism the PCQO’s are replaced by

N = = OX4704 N N7 - { S My - T+ SAd) (5.52)
This is invariant under Q:
= n L -1 - -
QN = <)\r —\r + Nanand - Nm"Qand + J(A\d) — J(Ad))/\/ = 0. (5.53)

Thus, all problematic terms of the minimal formalism are manifestly absent here and BRST
exact states decouple. In other words, these amplitudes vanish because two equal terms
are subtracted.
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6 A no-go theorem for Lorentz invariant QQ-closed PCO’s

This section is a result of an investigation into possibilities of replacing the PCO’s by
ones that are Lorentz invariant and @ closed. It turns out that any such PCO’s would
trivialize the entire formalism. More precisely if all formal properties of the picture changing
operators were to hold then all one-loop amplitudes would vanish.

A Lorentz invariant ) closed PCO is defined as an operator Y that satisfies

o Y = f5..5,(N)0% ... 001

e fg,..8,, (A) has ghost number —11,
® fg,..8,, () is a Lorentz tensor,

¢ QY =0.

The original proposal in [3] is the special case where the function f is given by*

i / [dCIC, -+ Ch 16(CTA) -~ 6(CMN). (6.2)
This satisfies the first three conditions, but although QY ~ Ad()A) the fourth bullet does
not hold for (6.2), as we have seen.

Using the fact that f is a Lorentz tensor one finds,

JaBIANANIA X B B o (VBN - S(BN)S()
= Cl(ETR)gll::g;fmlm---M10n10’ (6'3)

for some ¢;. This follows from the fact that (¢7'R) is the unique Lorentz tensor with the
indicated tensor structure. Now the crucial observation is that for functions f such that
QY = 0 the integral (6.3) must be equal to zero. Indeed, using

0=QY = f5,.5, MAF1%...951 (6.4)
we compute
0= / [dB][dA[ANIX - X By - By g (fal---ﬁnABlHBQ . 95”)
X§(B'N)---6(BN)S(J) = cr(eTR) 2 5oL gm0 - 071 (6.5)

We will show shortly that the trace of (¢I'R) does not vanish, so we conclude that

Cc1 = 0. (66)
4The C integral can be evaluated to give

Jo1p1 = (GT)glﬁj.,@nAan- (6.1)
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To prove that this implies vanishing of all one-loop amplitudes the above result is not
enough, because there are also zero mode integrals with derivatives on the delta functions
and N insertions. After the non-zero mode integration is performed, an arbitrary amplitude
is reduced to a sum of zero mode integrals, all of which are of the form

Q1--11P1q1-PLYL
gﬁl---511m1n1---Tmomohsl-“TLSL (6'7)

L L1 Li+Lo L
— Pjdj 1 2 e 10
- /[dB] [dN] [d)\] H NP9 H Brilsil H BT‘Z'281'2 H Bril()sil()
j=1 i1=1 to=L1+1 i10=L1+---+Lg+1
XA )\allfﬁl--ﬂu ()‘)Brlnlm e B#b)mmoé(Ll)(BlN) o 5(L10)(310N)5(J)’

where all the fields are zero modes and L = }30:1 Lp and 6™ (z) denotes the m-th
derivative of §(x). In the previous section we saw all zero mode integrands had to be of
the form (2.43), (2.44) for a non vanishing answer. In writing down the above zero mode
integrand we started from fp,hp and used the following four arguments.

e For each P the total number of BP’s outside the delta functions is equal to the
number of derivatives on §(BFN) plus one. This can be inferred from the explicit
form of the b ghost, (2.33), and the Taylor expansion of the delta functions. This is
reflected in (6.7) because Lp appears in two places.

e For a non-zero answer the total number of N zero modes must equal the total number
of derivatives on the delta functions. This gives the restriction L = > Lp.

e One might have expected derivatives on d(.J) as well, but for a non vanishing answer
there must also be enough J zero modes, so one can always reduce the amplitude to
contain only §(.J).

e Compared to (2.43) the A dependence is less general. It is possible to restrict to this
class of integrands because fg,...3,, (A) is a Lorentz tensor. To see this note the OPE’s
of N and J with f do not introduce derivatives:

11

N for s ) ~ S o Aw)) L (69)
=1

T o @) ~ 115, Aw)) (6.9)

where the « index is in the i*" position.

Note that the free indices on £ can be either contracted among each other or with d or 6
zero modes. The integral in (6.7) can be evaluated by using the definition of B integration
in (2.45). Let us call the integrand of (6.7) g and write it as

10
g\ N, By = xev e xeupfooBin (N g, BE) T 6%/ (BEN) fa,.8, (M), (6.10)

o) 011
P=1
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where h is a polynomial depending on (N, J, B) as

10

(NE T BD)E . (6.11)

P=1

It also contains other fields (e.g. 6, d) but these are suppressed.
The integrations can be performed using (2.45):

0 0

In o
/ aBlaNNg N B = O O ermge (6.12)
9 P 10 P o \Lr P b
) <6BP amq) XM (3 N T BP)
mini mionio p—1 pq
10 L
0 0 0 0 P
- oo B P
_(GTR)B;---ﬁllllmlm---mlomo OB T oBlo l l <3BP 3Npq> Moy oy (A, N, J, BY)
mini mionio p—q pq

This reduces to (2.45) with K; = 0 if one chooses f3,...3,, () as in (6.2) and uses

hﬁl"'ﬁll — a a

ar-ain T gl T gl (hB)ay-ar - (6.13)
B1 B11

Using the above definition the integral in (6.7) can be evaluated as

111

£O1 I PLALPLAL = CLy Lo 57{[1121 5;11} .. 57["1? 5221) (GTR)g1~~~611M17L1~~m10n10

B1-+-Br1miny--mion10T1S1TLSL

+symmetrization in([rr,_,+1,SLp_1+1]s- -5 [TLps SLp), [MmPRP]), (6.14)

for some constant cy,...,;,- Note the round brackets denote symmetrization in

[p1a1]; -, [pracl. (6.15)

Also note the second line above includes ten symmetrizations, one for each P. £ is sym-
metric in these indices because they all appear on B. (Note that by definition Ly = 0).
To get some insight how to obtain (6.14) consider the case Ly = L = 1. In that case the
rhs of (6.7) is given by

(9 (9 a a Nqul Bl L. BlO

m!n--m/ n’ i ris1Pmin miomi0)
1™ 10 10831/ L ONPq aBl/ , 8B10, , 1851 ini 10710
rq myng mipNig

(eTR) (6.16)

where the spinor indices on (¢T'R) are suppressed. The last nine B differentiations are
trivial resulting in:
0 0 0 Nrpl gl

m;n’lmznz---anmaBl ONP'd 9B} risioming*
r'q myny

(eTR) (6.17)

Now we first perform the IV differentiation followed by the last two B differentiations:

8 8 / / )
(ETR)m’ln’lman---mlonm OBl 9B1 B}’lslB}nlnl = (GTR)m/ln/lmgngmlonloéﬁ?ég]lét[giézi}
pq min]
= 67[’116;1]1 (ETR)m1n1---m10n1o + (7"151 A mlnl)a (618)
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which agrees with (6.14). The above computation clarifies the appearance of the Kro-

necker delta’s. It is a consequence of the fact 88 and aﬁpq appear contracted. The

Bpq
symmetrizations in (6.14) follow from the product rule of differentiation.

With these preliminaries we are ready to prove that if QY = 0 then all one-loop
amplitudes vanish:

No go theorem.

QY =0 = CDy--D1g = 0, (6.19)

¢p,.-D;y = 0 = all one loop amplitudes vanish, (6.20)

Proof of (6.19). In terms of f the condition on the Lh.s. of (6.19) reads

0=QY = fg,..5, MA19%2 ... 9511, (6.21)
This implies
0= 52(1152.(?{'1%{711721“731)?3;10”107‘131"'TLlsLl (6'22)

= 01D OW B - SEESIED (T RS G oo
+symmetrization in([rr,_,+1,SLp_1+1)s-- - [TLpsSLp), [MPNRP]),

As we discuss below the trace tr(eI'R) of (¢I'R) does not vanish, so in particular tr(eT'R)
has at least one non vanishing component. Let us denote this index choice by hats. If one
chooses

ri8; = Mmphp, i=Lp_1+1,...,Lp, (6.23)
Pi¢; = mphp, i=Lp_1+1,...,Lp, (6.24)

the tensor on the r.h.s. of (6.22) is non vanishing. Therefore
) (6.25)

Proof of (6.20). As explained around (6.7) all amplitudes can be written as a sum of terms,

where all terms contain a cr,...1,,,-

6.1 Non vanishing of the trace of (¢I'R)

In this subsection we compute the trace tr(¢I'R) of the tensor (¢I'R). To show that this
trace does not vanish we define a tensor Y and an operator X:

Yoo = Aag Aoy RO (6.26)

T
0

X = wﬁu L wﬁlﬁj\al . j\aaTﬁu--ﬂm,maQ%wa o (6.27)
o

where 1), is a fermionic Weyl spinor and ), is a pure spinor of opposite chirality to A*. Note

that, because \, is a contrained spinor, a? is only defined up to a gauge transformation
) o _ A™ (A% (6.28)
0o "
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The operator X, however, is well defined, since it is gauge invariant. This follows from
5‘7qu512 e ¢6165\a1 T 5\043T612...6167a1a2a3 =0. (6'29)

That can be shown be noting there are no scalars in Asym®16’ ® 10 ® Gam*16’, where
Gam means the symmetric and gamma matrix traceless tensor product. Note we can use

0 -
- g =06% 6.30
ox, 8 = 9 (6.30)
when ag is part of a gauge invariant quantity, S, .0 o because
8 YAy my
So o~ MTA=59"A=0, (6.31)

0o

the last equality is a consequence of gauge invariance.
First we show that XY = 0. We finish the argument by proving this implies the trace
of (eI'R) does not vanish. Consider the following component of XY in a Lorentz frame in

which the only non-zero component of X is A :

XYa1b1azbsarobio = Mm®) (An1h) Mypth) (7"P1)) (6.32)
[2(4Va1 brasasas X) (Masbsbragar M) (Masbsbsbsas ) (Mazobrobabrbe N)
2(Maybrasasas ) (W Vasbsbrasar N) (Masbsbsbsas N) (Maiobiobabrbe )
2(Marbrasasas M) (Masbsbaagar A) (Y Vasbsbsboas X) (Margbiobabrbe M)
2(Marbrazazas N) (Masbsboagar A) (Magbsbsbsas A) (¥ Ya10biobabrbe A) + permutations],

where the permutations make the r.h.s. antisymmetric in a;b; < a;b;. This reduces, up to

an overall constant which is not zero,” to

o _ e 10 ++
XYaibrasby--arobio = € Pty - e ()"f‘) w+fya1b1a2a3a4fya5b5b2aea7 (6'35)

++ ++ o er 110
YVagbgbsbsas Tar0biobabrby + permutations = ! c5¢61 T TzZ)C5 (>‘+) w+(610)a1~"b10 7& 0.

What remains is to show the non vanishing of this tensor implies the non vanishing of the
trace of (¢T'R).

XYm1n1"~m10n10 - 661“./616[( ) 10413121043wa11 wﬁlQ e wﬁm]R%fﬁ?}}gglomo;‘m T 5‘0410' (6'36)

For the term in the square brackets we can move the aj; to (¢I') by using

0= (ET)angfl Vs wﬁlewan} (6.37)
= 6(€T)[agll(.x.2.gflwﬁlz T wﬁmﬂz)au + 11(€T)311a[250143 /@107;[)511 T ¢ﬁ16]-

SWe omitted constants in the following two relations:

(A ) (A th) (Ayp) (7 ™) o €177 Py -+ 1hey (A1), (6.33)
(W:{Zlagadall’Ya Jg b2%a7fya;;8b3b6a97a10b10b4b7b9 + permutations) o (€10)a;b;---a10b1o - (6.34)
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The first line is zero because we are fully antisymmetrizing seventeen indices that only take

sixteen values.

A

XYming - mionio = e [(ET) alaQaﬁgmwﬁn e wﬁlG]R%I-ﬁ?'l'}gzlonloj\al e 5‘0410' (6.38)

ai181

Since (eTR)gLﬁozmﬁumml R | fully antisymmetric in Gs--- 811 and symmetric and

gamma matrix traceless in «; - - - a1, we can conclude from the non vanishing of XY that

()12 RodnlL) g # 0. (6.39)

7 Origin of the problems and possible resolutions

To understand the origin of the problems encountered when one does not integrate over C
(and B), we go back to the first principles derivation of the amplitude prescription in [19].
We will see that there is a singular gauge choice implicit in the prescription of [3].

7.1 Derivation of the amplitude prescriptions

In [19] the minimal and non-minimal amplitude prescriptions were derived by coupling the
pure spinor sigma model to topological gravity and then proceeding to BRST quantize this
system. Following [29], the BRST treatment included the gauge invariance due to zero
modes. The singular gauge fixing refers to the gauge fixing of the invariance due to pure
spinor zero modes.

The BRST quantization led to the following generating functional of scattering ampli-
tudes

Z[p"] = /duadu exp (=S — Ly — Ly — L3), (7.1)

where p’ are sources that couple to vertex operators, du, is the path integral measure for
the original sigma model fields, du is the path integral measure for the fields introduced
in the BRST quantization procedure and S is the worldsheet action with two dimensional
coordinate invariance. Lq contains the gauge fixing terms due to the diffeomorphism and
Weyl symmetry and Lo contains the gauge fixing terms for the invariances due to the zero
modes of the ghost fields. In the case of the bosonic string [29], L; leads to the usual ghost
action and Lo to the usual ghost and antighost insertions in the path integral. In our case
these contributions cancel out. To understand the cancellations recall that the pure spinor
sigma model has a fermionic nilpotent symmetry generated by @, the pure spinor BRST
operator. After coupling to topological gravity and gauge fixing all symmetries, there is a
second nilpotent operator @)y, the standard BRST operator related with gauge fixing local
symmetries. Qv in particular contains the standard terms related to diffeomorphisms and
Weyl transformations and it also has terms related to the invariance due to zero modes
of the worldsheet fields. Since we want to keep the @) symmetry manifest, all fields are
introduced in @)-pairs. In particular, together with the b, ¢ ghosts we also introduce their )
partners, 3,v. These have opposite statistics and it turns out these fields can be integrated
out and the b, ¢ part cancels against the 3, part. Even though all terms related to gauge
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fixing of worldsheet diffeomorphism cancel out, this procedure explains why the pure spinor
amplitude prescription is so similar to the bosonic string amplitude prescription.

The main object of interest here is L3, which is related to gauge fixing of the invariance
due to the zero modes of A* and its conjugate momentum w,. The part relevant to the A
zero modes is given by

Ly = QuQ(ba0%) = Qu(=baX® + by0®) = To A + Tab® + bac® +boy®.  (7.2)

The field 7, is the BRST auxiliary field that enforces the gauge fixing condition for the
invariance due to zero modes of A. Since there are eleven zero modes we need eleven gauge
fixing conditions and the BRST auxiliary field 7, must contain only eleven independent
components. The gauge condition implicit in (7.2) will be discussed shortly. (b, c®) and

their @Q-partners (by,y*) are the corresponding BRST ghosts. These fields can be integrated
out and cancel each other. Then we are left with

Ll = mo A + 7o 0% (7.3)

Minimal formalism. To express the fact that 7, and 7, have eleven independent com-

ponents we parametrize them as follows
Fo=pCL, T=1,... 11 (7.4)

where Ol is a matrix that must have maximal rank. Thus the gauge fixing condition is
given by
Ccixt =0 (7.5)

We will shortly show that this is a singular gauge condition.
The eleven constant spinors CZ are the ones that enter in the minimal pure spinor
prescription. Indeed, using (7.4) we find that the path integral contains

11

[anrdsnexw (rCixe +piior) = T ckomsein (7.6)
I=1

which are the eleven picture changing operators Yo we discussed earlier.

Implicit in (7.6) there is an analytic continuation in the field variables. Recall that
the solution to the pure spinor constraint (2.2) requires that A is complex and in the
minimal formulation only the holomorphic part appears. In equation (7.6) one analytically
continues A to be real and considers 7y to be purely imaginary. This can be done if the
explicit expressions appearing in the amplitude computations are not singular. Typical
integrals in the minimal formalism at tree level are of the form

[ [ e = [T aigosety sty @)

where f(\) contains A but not its complex conjugate. For this expression to be well-defined
f()\) should not contain any (C?)) poles and moreover there should not be any poles that
obstruct the analytic continuation of A to real values.
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At higher loops the conjugate momentum has zero modes as well and gauge fixing this
invariance leads exactly to the insertion of PCO’s Zp, Z;, where the tensors B,,, enter
through the gauge fixing condition, see [19] for the details. In addition, one needs a compos-
ite b field satisfying (2.30). In the minimal formulation, a solution of (2.30) is given by [30]

_aege

b=
Co A

(7.8)
where G is given in (A.111). This is however too singular to be acceptable. One can obtain
a non-singular b field by combining the b field with the PCO and solving instead (2.31).
Note that this b field now depends on the B,,, constant tensors but not on Cl,.

Non-minimal formalism. We now show that the same expression (7.3) leads to the so-
called regularization factor in (5.52). This time we choose 7, to be a pure spinor of opposite
chirality to A%, usually called \,. This indeed has 11 independent components, as required.
The field 74, usually called r,, automatically follows because it is the Q) variation of 7,

ra = QAa. (7.9)

This leads to the non-minimal formalism. To see this explicitly note that the factor e %3
in (7.1), which is given by )

e AeAT el (7.10)

is precisely N. The additional factors N,,, N™" + LllSmn)\’ym"d—i— JJ+ iS)\d originate from
gauge fixing the zero modes of w,, see [19] for the details.

Note that A is now holomorphic and 7, = A, is considered as its complex conjugate
variable. Typical integrals one encounters at tree level in the non-minimal formalism are
therefore

/ [dAN][dN] F(A)e ™. (7.11)

At higher loop order we also need the b field. In the non-minimal formalism, equa-
tion (2.30) has a solution that depends on both A and A. It is however singular as A\ — 0
and this causes problems starting from three loops. Note that the b field does not depend
on how we treat the gauge invariances due to the zero modes of w,. This is similar to the
b field in (7.8) but different than b which depends on the gauge fixing of the invariance due
to zero modes of the conjugate momentum through B,,,.

To summarize, the minimal and non-minimal are related by field redefinitions and an
analytic continuation in field space. In particular, starting from the non-minimal formalism
one obtains the minimal formalism by taking A, = CL7! and analytically continuing 7!
to be imaginary while at the same time analytically continuing A to be real. There are
similar redefinitions and analytic continuations in the sector related with the conjugate
momentum. Furthermore, the non-minimal b field combined with part of N is related to
b. Clearly, the two formalisms would be equivalent if the analytic continuations had not
been obstructed by singularities in the amplitudes. Finally, note that the underlying gauge
choice for the invariance due to pure spinor zero modes is the same: the gauge fixed action
is the same, only the reality condition of the fields is different.
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7.2 Toy example

Given the formal equivalence between the minimal and non-minimal formalisms one may
wonder why we found problems at one loop in the one formalism but not the other. We
discuss this issue here by analyzing a toy example that has almost all features of the actual

case. Consider the following integral

I= /dxdpe_xp. (7.12)

To compare with the expressions in the previous subsection p corresponds to the BRST
auxiliary field and x to the pure spinor.
If one wants to evaluate the above integral, contours have to be chosen for x and p. If

we choose p = ip; and x = z1 with pq, xq real, we get

I=i / dxdp P = / dz2m6(z1) = 2mi. (7.13)

—00

Another choice is to consider x complex and take p = x*. In this case I becomes

e 2
I= /dmdm*e_m* = 22'/ rdr/ de™"" = 2i. (7.14)
0 0

This agrees nicely with the general property of contour integrals, that one is free to deform
them as long as no poles are encountered. Note that (7.13) resembles a zero mode integral
in the minimal formalism and (7.14) a non-minimal one.

The difference between the two prescriptions is exposed by considering the integral I

with a function f in the integrand.

Imin|f] = z'/_oo dzx, /_OO dpae'™ Pt f (1) = z'/_oo dz 2m0(zy) f (1) = 2mif(0).  (7.15)

Now rotate the contour, p = x*, so that the integral becomes

Tion-uinlf) = [ doda*e” o f(z) = 2 /0 " rdre /0 T, (76)

@iy is the analogue of (7.7) and Ion—min the analogue of (7.11). I, and Ihon—min give
exactly the same answer if f(z) is non singular but (7.15) is ill defined for any choice of
singular f(z) whereas (7.16) may be well defined. For example, for the function

@) =", (7.17)

(7.15) yields oo but (7.16) gives 0. More precisely, (7.16) is well defined for all functions

f(z) = >, cn2™, with ¢, = 0 for n < —1. For the n < —1 terms the 6 integral vanishes

and the r integral diverges, which makes Ion_min ambiguous for these kind of functions.
A third representation is obtained by noticing that the # integral can be rewritten as

2T
/ o = —i 7{ dz (7.18)
0 c z

a contour integral
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where z = re” and the contour C is a circle of radius . Thus for any meromorphic function
f(2) the integral over theta is independent of r and

I[f] = 2i (/OOO rdrer2> (—zjfc d;f(z)> - 740 dzzf(z) (7.19)

The expression (7.19) are well-defined for all meromorphic functions f(z) whereas (7.15)
and (7.16) are not.

Going back to pure spinors and working on the patch with A™ # 0 we see that because
of the factor (AT)~3 in the measure (cf. (A.91)) the minimal formalism is expected to have
a singularity unless the integrand provides a factor of (A*)3, but the expressions (7.16)
and (7.19) are not necessarily singular.

7.3 Singular gauge and possible resolution

We show in this subsection that the gauge (7.5) is singular for any choice of the constant
spinors Cé. To see this, recall that the space of pure spinors can be covered with 16
coordinate patches and on each patch at least one of the components of A\“ is non-zero.

Let us call this component A* and solve the pure spinor condition as in (2.3). Then,

1

(720

1
0= CO{)\Q _ CJIF)\Jr + CLab)\ab + Ci)\a _ CJIF)\Jr + Cl,ab)\ab + SCieadee)\bc)\de
1
= CLAT)2 4+ CTmNT Ny + 8Cgeabcd6AbcAde =0.

This system of equations however does not have a solution with A™ # 0 and the gauge is
singular. To see this, we first solve ten of the above equations to obtain Ay as a function
of AT. A scaling argument implies that these functions are linear in A*. Then we plug
the relation Ay, = by AT in the eleventh equation to find that A* vanishes. Thus we find
that for any choice CZ of maximal rank , the path integral localizes at the A% = 0 locus,’
which is the point that should be excised from the pure spinor space for the theory to be
non-anomalous [22].

As discussed above, the minimal and non-minimal formalisms are related by analytic
continuation in field space. In the toy example in the previous subsection, we saw that the
analytic continuation from the “minimal variables” z1,p; to the “non-minimal variables”
x,z* sets to zero certain singular contributions (functions f(z) ~ 1) but the integral still
localizes at = 0. One would thus expect that the zero mode integrals in the non-minimal
formalism localize at the A* = 0 locus, as the minimal ones do, and the problems with the
A poles at 3 loops and higher are a manifestation of this fact.

To avoid these problems’ one must find a way to gauge fix the zero mode invariances
such that the zero mode integrals do not localize at A* = 0. Let us discuss how to
achieve this in the minimal formulation. First, in order to avoid the unnecessary analytic

This also shows that the choice of C' in (3.4) that manifestly leads to a factor §(AT) is not special. Any
other choice of C' will also contain this factor.

"We would like to thank Nathan Berkovits and Nikita Nekrasov for discussions and suggestions about
this point.
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continuation to real A one should work with the analogue of the contour representation of
the delta function in (7.19) which is appropriate for holomorphic A (and is less singular
than (7.15) and (7.16)) In this language the choice of C’s translates into a choice of position
of poles. Secondly, one must take global issues into account. In particular, as mentioned
above, the space of pure spinors can be covered with sixteen coordinates patches. In order
to avoid landing in the singular gauge discussed above, one should arrange such that the
expression for the path integral insertions valid in any given patch always contains at least
one pole that lies in another patch. We also refer to [31] for related relevant work.

8 Conclusion

In this paper we have studied tree-level and one-loop amplitudes in the minimal pure spinor
formalism, in particular those with a @) exact state. The amplitude prescription includes
constant spinors C and constant tensors By, that are used to define the picture changing
operators which are necessary to absorb the zero modes of the worldsheet fields. Ampli-
tudes should be independent of these constant tensors because the Lorentz variation of the
PCO’s is QQ exact. The first computation we performed demonstrated that this argument
does not hold, because a tree-level amplitude does depend on the choice of C’s and a certain
amplitude for a given choice of C/ is not Lorentz invariant. In the subsequent section it was
shown that integrating over the C’s, which was originally done to make the formalism man-
ifestly Lorentz invariant, results in a prescription that decouples @ exact states. We also
introduced a formulation of the minimal formalism at tree level in which the insertions of
the picture changing operators are replaced by a (unique) Lorentz tensor, so the formalism
is manifestly Lorentz invariant. BRST exact states are shown to decouple and it also turned
out that this formulation is equivalent to the formulation in which one integrates over C..

At one loop we found similar problems in the case we did not include the integral over
B. Although the Lorentz variation of the PCO’s is @ exact, the Lorentz variation of a
one-loop amplitude does not vanish. At least not after the A, N integrations, as one would
expect. One expects the Lorentz variation to vanish after the A, IV integrals because the
formal argument for decoupling of ) exact states uses that picture changing operators are
BRST closed. In the minimal formalism however the picture changing operators are BRST
closed in a distributional sense, QY ~ zd(z) with = that depends on A and N, so the
amplitudes should vanish if distributional identities hold and this requires performing the
integrations of A\, N but none of the other integrations.

The case with an integral over B is dealt with in the companion paper [18]. That paper
contains a proof of decoupling of unphysical states in the minimal pure spinor formalism
including an integral over B. We also expect that decoupling of BRST exact states can
also be established without integrating over B and C' by formulating the theory in a non-
singular gauge. Such a prescription is likely to require taking into account global issues, in
particular taking into account all patches in the pure spinor space.

In the tree-level case one could reformulate the prescription so that the picture changing
operators are replaced by a BRST closed Lorentz tensor, as mentioned above. So one may

wonder whether something similar can also be done at one loop. We showed in section 6
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that this is not possible. More precisely, we showed that if the picture changing operators
are Lorentz invariant and BRST closed then all one-loop amplitudes vanish.

Note that the problems we find in the minimal formulation at tree level and one loop
are not present in the non-minimal formalism. In this formalism the PCO’s are replaced
by the regularization factor . In contrast to the PCO’s, N is Q closed without subtleties.
Hence the non-minimal formalism does not suffer from such problems.

In [19] we showed that both the PCO’s and the regularization factor A/ come from a
proper BRST treatment of fixing the gauge invariance generated by shifting the zero modes
of the worldsheet fields. The difference between the minimal and non-minimal formalism
can be understood as choosing different contours for the zero modes integrations. As
became apparent in this work the choice that leads to the minimal formalism gives rise to
anomalies. Moreover we saw that the gauge condition implicit in the current formulation
of the amplitude prescriptions is singular and localizes the pure spinor zero mode integrals
at the A* = 0 locus, which should be excised from the pure spinor space for the theory to
be non-anomalous. We suspect that the three-loop problems in the non-minimal formalism
are also due to this singular gauge choice. To avoid these problems one should reformulate
the theory in a non-singular gauge. We hope to report on this in the future.
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A Definitions, conventions and technical results

This appendix contains detailed derivations of arguments we used in the main text. The
purpose of the first subsection is to explain the notion of an invariant tensor and the mean-
ing of the position of indices, which are important for the main text. The second subsection
introduces spinors and in particular pure spinors. Moreover it contains details about the de-
composition of SO(10) representations under its SU(5) x U(1) subgroup. The following two
subsections deal with the Lorentz generators and measures for the pure spinor sector. Their
main purpose is to set the conventions, however they contain more than just that. The fifth
subsection is about gamma matrix traceless invariant tensors. Finally there is a subsection
on the chain of operators that is used in the construction of the composite b ghost.

A.1 Invariant tensors

Before we give the definition of an invariant tensor it is useful to recall what a representation
of SO(N) is. A generic d dimensional representation can be denoted as

v = (g(A)%’, e b=1,....d (A1)
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where A € SO(N) and g(A) is a linear map from C? — C?. The fundamental representation
is given by d = N and g is the identity map (g(A4) = A):

v — A%, (A.2)
A second representation of SO(N) is given by
vg — (AN, or v — (A7 T, (A.3)

In fact this can be generalized to construct a second representation from any given one.
One just replaces v — g(A)v by
v — (g(A) . (A.4)

This is called the conjugate representation. Note the position of the indices on the conjugate
representation is opposite to the original representation. This is very convenient because
together with the rule that indices can only be summed over if one is up and one is down,
tensors transform as indicated by their free indices. In particular combinations without
free indices are invariant. For example for an arbitrary representation and its conjugate

wev® — wy((g(A)™Hb g(A)2 ¢ = wydlv® = wev®. (A.5)

An invariant tensor is a tensor that transforms into itself under all elements of the
group. For example d; is an invariant tensor for any representation. Note the range of a
and b depends on the (dimension of the) representation. Its transformation is given by

05 — 9(A)°:55((9(A)~1)% = 6. (A.6)

For SO(N) 5% is also an invariant tensor where a,b denote the vector representation,
hence they run from 1 to N. Invariant tensors can be used to construct invariants from
tensors. Objects that consist of (covariant) tensors and invariant tensors transform accord-
ing to their free indices. In particular combinations without free indices are invariant. For
example,
ab —1\c —1\d sab __ cd
Vawpd? — vewg(B™ )¢, (B )% 0% = vewgd?, (A.7)

where the definition of SO(V) was used.

The complex conjugate of a representation, g(A), is given by ¢g*(A). One can check
this always defines a representation if g(A) did. If a representation is equivalent to its
complex conjugate it is real. For SU(N) the conjugate of the fundamental representation
is equivalent to the complex conjugate because A~1T = A*.

A.2 Clifford algebra and pure spinors

The Clifford algebra in ten dimensions with Euclidian signature is given by
{rm,rmy% =20m"6;, mn=0,...,9 a,b=1,..,32. (A.8)

These I'’s can be used to construct a representation of the Lorentz algebra and by expo-
nentiating also of the Lorentz group. ¥"" = }l[I’m,I’"] satisfy the Lorentz algebra. This
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representation is the (Dirac) spinor representation. Furthermore (I'™)% is an invariant
tensor. A proof for the four dimensional case can be found in [32]. The Clifford algebra

has a representation in which the 32 by 32 components I" matrices are off diagonal:

0 maf
= 7 : (A.9)
YapB 0
where «, 3 =1,...,16. The Lorentz generators X become
1 [mon]\a 0
smn _ (7 Y ) B s ) (AlO)
4 0 (I

This implies the representation of the Lorentz group is reducible:
32=16® 16 (A.11)

The sixteen dimensional representation is the Weyl representation and it is not equivalent
to its conjugate, hence the prime. The 'yo% are invariant tensors with respect to Weyl
representation.

Note the Clifford algebra now reduces to

maB _n mn sa
M) = 26mnsa, (A.12)

In particular (y)*% is the inverse of (7™),3. An explicit solution to (A.12) is given in the

next section.

A.3 The SU(N) subgroup of SO(2N)

In this section we show that SO(2N) has an SU(NN) subgroup and discuss how several
representations of SO(10) decompose into representations of SU(5). Part of this analysis
is based on [33]. To start, let us define for any SO(2N) vector v:

1

— 2(U2a . ina—l—l)

1
(0¥ +iv** ), a=1,...,N. (A.13)

) Ua:2

We now express the SO(2N) algebra in terms of generators labelled by the indices defined
in (A.13),

b]

(M, M,y] = —;5{31\4 b a,be,d=1,.., N, (A.14)
a C 1 a C C a

(M, M) = 2(5de — 6, M%), (A.15)
a C 1 C a a 1 a

(M, M) = 5 M0, (M, Med) = = 57 Moy, (A.16)

[M® MY = [Myy, M.g) = 0. (A.17)

From (A.15) we see that the SO(2N) algebra has an N? dimensional subalgebra. This
subalgebra contains a U(1) generated by M = M¢ and the other N2 — 1 generators,

1
UW): M=MY, SUW): (Ms)' = MY — _G5MS, (A.18)
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The generators (Mg)?, are traceless and generate an SU(N),
1
[(M5s)%, (Ms)%q] = =, (02 (Ms)%, — 05 (Ms)"q)- (A.19)
The U(1) charges of the generators are given by
[M, M) = =M [M,M%] =0 [M, M) = My, (A.20)
Every representation of SO(2/N) can be decomposed into representations of SU(N).

In our case we will be interested in decomposition of representations the (Wick rotated)
Lorentz group SO(10) under SU(5). For several cases of interest the decomposition reads,

16 -1 _5®10_1 ® 53 A = AT Ay ans A%, (A.21)
4 4 4

16’ — 15 ©10: @ 5_3 We — Wy, W wy, (A.22)

10 - 5_1 ®5: " — v v, (A.23)
2 2

45 — 19 @ 249 ©10_; © 10, M™ — M, (Mg)%, M, My, (A.24)

where the subscripts are the U(1) charges.

A.3.1 Charge conservation and tensor products

The M charge conservation property of invariant tensors can be used to prove that a large
number of components of invariant tensors is zero, which is very useful if one is doing com-

putations by using the explicit expressions of the tensors. An invariant tensor T%ﬁ satisfies

0=MTY = (M"(o) + M"(8) + M?(y) + M%(8))T2, (A.25)

where M¥(4+) = =5, M%(a1a2) = —},M"(a) = 3, M4+) = 3, M%ara3) = }, M%a) =
—i. The u is for up and the d for down. This refers to the position of the Weyl index
not the SU(5) indices. So if the M charges of the indices of a components do not sum up
to zero the component vanishes. In this case one can for instance conclude T+b1 bocd = 0s
because the M charge of the components is —; (5 + 1+ 3 +3) # 0.

In this paper we are often interested in questions like: how many independent invariant
tensors T, (ngﬁ/) exist? The upper index ¢ denotes the Weyl representation, the lower indices
stand for the conjugate Weyl representation and m is the ten dimensional vector. To answer
this question first of all note that the space of all tensors with the index structure and
symmetries of T forms a representation of SO(10). The question how many independent
invariant tensors exist in that space now translates to what the dimension of the invariant
subspace is. This number can be obtained by computing the number of scalars in the
relevant tensor product. This is one of the features of the computer algebra program
LiE [26]. For the case of T" we compute

10216 ® Sym®16' =10450 450450 - - -, (A.26)
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where the dots are higher dimensional irreducible representations. The above decomposi-
tion shows that the space of invariant tensors with the symmetries of T is one dimensional.
Based on this result we can for example conclude

m ) n m €d
Vos%%) X Vap Ve n - (A.27)

In order to find the constant of proportionality, computing a single component on both
sides suffices.

A.3.2 Dynkin labels and gamma matrix traceless tensors

Throughout this work we denote irreducible representations by their dimensions. This is
slightly ambiguous, therefore we clarify what we mean exactly by specifying the Dynkin
labels of the highest weight state of the representation.

10 < (1,0,0,0,0), 16 «< (0,0,0,1,0), 16" < (0,0,0,0,1), 45« (0,1,0,0,0).
(A.28)
There is one further irreducible representation of interest, which is given by symmetric and
gamma matrix traceless tensors:

Tler-an) o, (0,0,0,n,0) < Gam"16, (A.29)

where the Dynkin labels are specified. These representations are discussed in more detail
in [34]. There are three gamma matrix traceless tensors that interest us in particular:

(TI)%T?;?]S))’ (TQ)E[(;:;L;O][?.),[mmmoH’ (T?’)Eé?'l'%il]l[[)gum},...,[mmnm]]' (A.30)
For the three tensors above the computer algebra program LiE can be used to conclude
there is only one independent invariant tensor. Note this is consistent with the arguments
in [35], where it is argued that a tensor which is symmetric and gamma matrix traceless,
let us say in some indices «;, is completely specified by the components where the a’s are
all +. In order to see that this implies there is only one independent invariant tensor of
the form of 77 note that for an invariant tensor the components

(X055, (A.31)
are only nonvanishing if
B1,...,011 =+,12,13,...,45. (A.32)

This follows from the charge conservation property of invariant tensors. By antisymmetry
of the 3’s there is only one independent component in (A.31). Thus the argument of [35]
implies that the entire invariant tensor is completely specified by a single component and
therefore the space of invariant tensors of the form of 77 is one dimensional. The above
argument applies equally well to 75 and T3.
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A.3.3 Explicit expression for gamma matrices and pure spinors

A solution to (A.12) is given by

0 0 5k 0 0 0

(YF)ag = | 0 —ekarazbib2 o | (Wag =10 0 &= |, (A.33)
S¥ 0 0 04asl o
0 0 0 0 0 b}

(,yk)aﬁ =10 0 5@1 532} ’ (Wk)aﬁ = 0 —€kajasbiby 0 |- (A.34)
0 5@1 532} 0 5]% 0 0

Note these matrices are skew diagonal, this is a consequence of the charge conservation
property of invariant tensors.
A pure spinor is a Weyl spinor that satisfies

A“ymA? = 0. (A.35)
After plugging in the explicit expression for the gamma matrices this becomes
1
AT — 4e“bcd6AbcAde =0, (A.36)
22\ = 0. (A.37)

These equations are solved by

11
8T

The explicit expression of the three form gamma’s is:

¢ €0ee Ny N ge (A.38)

1 0 €k koksbibe 0
(Vhy oz )P = 6(7[k17k27k3])a5: — €k koksaas 0 0 (A.39)
0 0 0
1
(i) = (" 70D = ka7 )™ + O V7))
_ sk1 sb
N 0 ot st
= 9 0 6[1111 €as)koksbibe — 5[b11 €bo)koksaias 0 s (A'40)
(k1 gal
O Oy 0 0
1
(15,)%7 = (1R )0 — (4t yF21) 20 o ( yralyol) (A.41)
0 0
k1 ska sb 15b sl cko]
=10 0 [ | 5[(1115(1;}6/&3 + 26[a16a21]6k32, ,
k1 ¢k 1 k1 ok
0 _5[b116b22]5l%3 — 25&15@]1515 0
1 00 0
(ykrkzhayB — 6(7[191,7162,7/63])045 —loo 0 . (A.42)

00 —€r koksab
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A.4 Pure spinor Lorentz generators

In our computations we often need the explicit form of the pure spinor Lorentz generators,
N™" which are given by

1 1
N™n 2wa(,ymn)a6)\ﬁ, A = 2(’77”7” _ ,yn,ym). (A.43)

In this subsection these components are given in terms of the SU(5) components of A and
w in the gauge w, = 0. The SU(5) components of (A.43) are given by

1

Ny = 4wa(7[k)aﬁ(7l})66)\6a (A.44)
1

N = (0a") (035X = wal)*(1)35A7 ) (A.45)
1

Nk — 4wa(7[k)°‘6(7”)55>\5- (A.46)

The explicit gauge invariant form is obtained by plugging in the expressions for

1 1

Nig = = jw™ A = 4w“beabckm (A.47)
Nk — ;wkl)\Jr + iwaeabckl)\bm (A.48)
Nk = —iéfﬁw— - i;éfw“b)\ab + ;w“k)\al + iwawf - ;wk)\l, (A.49)
N = Nk = —Zw‘)\+ — i;wa’uab + iwav, (A.50)
(Ns) = N — abN (A.51)

1 1 1 1
= —105fwabAab + 2w“’%l + wwavaf — me’f.
After using the pure spinor solution and setting w, to zero

1 1 wab)\kl)\ab 1 wab)\]m)\lb

Ny = —2107)\191 T4 9 A+ (A.52)
NM = ;wkl)\+, (A.53)
N = —iw*ﬁ - i;w“mb, (A.54)
(Ng)by = ; < - ;5{“wa’uab + w“’ual) (A.55)

J in terms of the free variables is given by
J = wa A = w AT + ;w“bAab + W A% (A.56)

In the gauge w, = 0 this becomes

J=w AT+ ;wabxab. (A.57)
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A.4.1 Lorentz currents with unconstrained spinors

As mentioned in section 2 the action for the eleven independent components of A and their
conjugate variables can be used to prove the pure spinor OPE’s from (2.7). This will be
demonstarted below. First we consider two unconstrained bosonic Weyl spinors. The OPE

for such fields is given by
1
ya(2)§"(w) ~ 0y~ . (A.58)

zZ—Ww

The OPE of the pure spinor Lorentz current with itself is given by

MMM w) ~ )L (a0 € ) + (4.59)
Faa(uy e () - | T,
Using identities,
Lomime 1 nina| _ 1 mafmamilne _ nafma  milma
[27 v } = "y nRm ), (A.60)
Tr(nMMm2ymn2) — —1677m1[”177”2]m2, (A.61)

the M M OPE reduces to

_(nm[szmﬂnz _ nnz[szmﬂm) .y
z—w (z —w)

MIN2 yM2N1 __ pyM1NT nyM2N2
Mmlmg(z)Mnlng(w) ~ n n T’Z n
(A.62)

We can read off the algebra of the Lorentz charges from the single pole in the OPE
[MmlmQ anz] _ _(nm [szm1]n2 _ 77n2 [szmﬂm). (A.63)

In case the worldsheet fields are fermionic, the OPE remains the same:

pa(2)0P(w) ~ 58 1. (A.64)

Z—w

The Lorentz generator for the fermionic variables has a minus sign:
M™ = —py™"0. (A.65)

This sign is necessary to reproduce the commutation relation (A.63). As a consequence
the sign in the double pole in the OPE changes from -4 to +4. This coefficient is called the
level. We would like the Lorentz current of the combined p, # and A, w sector to have level
one, since this is the level of the ) sector in the RNS formalism. This implies the Ny,
generators must have level —3. In the next subsection we explain how such currents can

be obtained from the pure spinor action after gauge fixing.
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A.4.2 Currents containing pure spinors

In [19] we discuss how to gauge fix the gauge invariance for w by setting w, = 0. We ended
up with a free action for the eleven independent components of A and their conjugate
variables. One may anticipate that one can set w, = 0 in all (gauge invariant) operators
that depend on w,, without Lorentz invariance being lost, and we will see that this is indeed
the case. We first study the OPE’s of N and J with A and find no problems. Secondly we
look at the NN OPE. Here we find that the single pole is the same as in (A.62), but the
level of the OPE depends on which SU(5) components one chooses. This spoils Lorentz
invariance, but it can be cured as demonstrated below.

The OPE of J and N™" with \ are given by
1 1 1
J(2)A% (w) ~ A% (w),  N™(2)A%(w) ~

Z—w z—w?2

YN (w). (A.66)

In order to check these OPE’s we set w, = 0 and use the free field OPE’s
1 1

TN (w) ~ D () Aea(w) ~ slastl. A67
WM )~ e alw) L5 (A.67)
Let us start with J:
1
J(2)AT (w) = w AT (2)AT (w) ~ AT (w) (A.68)
zZ—w
and similarly for Ag,. A® is more involved. By using
1 1 -1
- ~ A.
W)~ (A.69)
we can reproduce the Lorentz invariant answer:
6abccle )‘bc )‘de 1 1

€aede Ny Age(w). (A.70)

J(2)A(w) = <wA+ + ;w“b)\ab> () g i~

Let us continue with the trace of N™". In terms of unconstrained spinors it is given by
11 3
5 2wab)\“b + 2wa)\a. (A.71)

From here we can see that the expected charge of A® is g The OPE of N with AT or A\,

trivially reproduces the Lorentz invariant result, the OPE of N with A? is

5
N = —2)\+w7 —

. 5. _ 11 " €bede N\ p A ge
N(2)A(w) = <— 2)\+w — Qwab)\ b) (2) St (w) (A.72)
~ 1 (g - % - %)eadee)\bC)\de (’U))
z—w 8Tt '

All other components of the NA\ OPE can be checked along the same lines. The N™" NP4
OPE is a different story. The single pole always leads to the correct Lorentz algebra, but
the coefficient of the double pole depends on which SU(5) components we choose to take.
For instance

351 7., 1

N(z)N(w) ~ =y

16 (2 — w)? 4 (A.73)

z —w)?
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1 1 1 1

NE@Niaw) ~ e+ (V) M) (A7)
= 1 i)+ DOV )+ M)

The first OPE would imply a Lorentz current level of —Z and the second one —1. It will
be shown below that it is possible to deform the currents in equations (A.52)-(A.55) by
conserved quantities such that the level of the N™" NP4 OPE is minus three [7]. This fixes
the total derivatives one has to add to (A.57) in order for the JN OPE to be regular.
Demanding N™" is a primary field of weight one determines the total derivatives in the
stress energy tensor. If one now computes the JT' OPE, a ghost number anomaly value of
minus eight follows. This cannot be adjusted.

The deformations are most easily given after bosonization of A and w, which is given by

M eX=0 ™ = e X0y, ArwT =09, (A.75)

)

where ¢, x are chiral bosons satisfying

?(2)9(0) ~ —Inz, x(2)x(0) ~ Inz. (A.76)

Now define 1 1
s=X—¢, A=¢Fx o=, (20—s8), x= (s+21) (A.77)

The OPE’s for these new variables are
s(z)s(0) ~ regular, ¢(2)t(0) ~ regular t(z)s(0) ~ Inz. (A.78)

The original worldsheet fields A and w can be expressed in terms of s,t as

MNrxed w ;efs(as +20t), Mtw™ = ;(2(% — 0s). (A.79)

The Lorentz currents of (A.52)-(A.55) in bosonized form are given by®

) 1
N = = (20t = 0s) = cw™Aap, (A.81)
N = ;esw“b, (A.82)
a 1 ac 1 a, cd
(Ns)% = o (@ Ne = 0w A |, (A.83)
—s Ll 1 cd 1 cd
Ngp =€ 9 2(98)\(1(, + Ot | — 4w AabAed + 2w Aacbd | - (A.84)

8In [7] the Lorentz currents which we call (N®),,, have a different normalization. The relation with
ours is given by

5 a 1 a a 1 a 1
N = gé NP, N° = 2(NB) b (Ns)% = 2(NSB) Y, Nap = 2(NB’)G,). (A.80)
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The deformations one should add to (A.52)-(A.55) to make the NN OPE Lorentz invariant
are given by:

AN = —2387 (A.85)
AN = 0, (A.86)
A(NS)ab =0, (A87)
ANy = €s< — ias)\ab + 8)\ab> = 8(673)\@) — 111(3673))\@5. (A.88)

Note that the field equations imply the @ operator annihilates these deformations. Hence
the deformed charges are still conserved. Furthermore the deformations do not modify the
N OPE, which is manifest in the s, variables.

A.5 Lorentz invariant measures

The Lorentz invariant measures for both the weight zero field, A%, and the weight one field,
N™" " are discussed below. Both these measure were first introduced in [3] and the \ zero
mode measure is also discussed in [31].

A.5.1 Measure for the zero modes of )\

From the ghost number anomaly in the JT" OPE (2.7) we know a tree-level correlator can
only be non-zero is the J charge of the insertions is -8. Since there are no w (or N™")
zero modes at tree level, the measure for the A zero modes must have ghost number +8.
In addition it must be Lorentz invariant. This results in

[N NN = XG0 AN A A dAP (A.89)

for some invariant tensor X. The number of invariant (3,11) tensors with spinor indices
that are symmetric in the upper indices and antisymmetric in lower ones is one [26]. In
other words there is only one possibility for X which is given in (2.28). Because the Lh.s.
of (A.89) is zero when contracted with 77/s, the r.h.s. should vanish too. It does because
there are no scalars in 10 ® 16 ® Asym''16’. Thus

afy _
W(%Xﬁl"'ﬁll =0. (A.90)

In equation (A.89) one is free to choose a37. Different choices lead to different guises
of the measure. In [22] it was shown all these are related to each other by a coordinate
transformation in pure spinor space. On the patch defined by A™ # 0 there is only one
choice for a3y that results in a well defined measure on the whole patch which is a8y =
+ + +. This gives [d)] as

d "t AdAia A - A dgs

[d)‘] = )\+3 s

(A.91)

where we used (eT)Ej_EH is only non-zero if 81,..., 11 = +, b1ba, b3by, ..., bi1gboy. This is

a consequence of the M charge conservation property of invariant tensors.
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A.5.2 Measure for the zero modes of N™"
The ghost number anomaly and Lorentz invariance imply the measure for the zero modes
of N must be of the form

[AN]AYL - \98 = X a8 AN™IM A o N dNTOTO A (A.92)

mini---mionio

There exists only one independent invariant tensor of this kind (cf. A.3.2) and since (2.42)
provides an example of such tensor we obtain:

[ANJAYT ... A28 = Ro1os AN™UA o A N0 A ], (A.93)

mini---mionio

A more explicit form of [dN] is obtained by choosing all a’s equal to +. The relevant

gamma matrix components are

++ _ ai--as __ _ai--as
'}’al...a5 - 6a1~~~a5, ’Y++ = € 5 (A.94)

all other components of W,Zszpqr vanish. Using these one sees [dN] can be expressed as

8
[dN]A+ = €aibrazasasCasbsbaasar Cagbgbsbsag €a1obi0babrbg dNalbl ARERNA dNalOblO NdJ
= ANZ A AANB A AT = M@ 0udw, = [dN] = (AT)3dw, dOw™, (A.95)

where the gauge condition w, = 0 is imposed in the first equality of the second line.

A.6 Gamma matrix traceless projectors

The operator A,g, is introduced in (4.12). This equation has a special form and in this
subsection we explain it. First note that Ig‘,@,y, = [[dNA*N*A7Ay g, must be a Lorentz
invariant tensor. An invariant tensor forms invariant combinations with covariant objects
if and only if all indices are contracted, otherwise the total object transforms according
to the free indices. So if all indices on [[dAJA*\? AN'Ay gy are contracted with covariant
objects the total object is Lorentz invariant. After performing the integral the object is
of course still Lorentz invariant and therefore I must be an invariant tensor. Furthermore
IZ‘,@M must be symmetric in both its upstairs and downstairs indices and since A\ is a pure

spinor I must satisfy ’yglﬁfg,/?,y, = 0. The SO(10) invariant tensors of the form T((aa,%l)/)

form a vector space which is two dimensional as can be computed by counting the number
of scalars in Sym®16 ® Sym®16’ [26]. A basis of this vector space is given by

o 0Oy + Tim

{5(‘3‘55 57) Ay, 53))} . (A.96)

Hence

/[d)\])\a)\ﬁ)\,yAa/B/,y/ = cléé?‘&g/é;/,) + 62’77(7?6’)/(";/6/53/) (A97)

)

Since A is a pure spinor

0= / [ANAATEN N Aoy = 171500 85,07) + ey ;a%g;,ﬁ,(sj?) (A.98)

a/

= (Cl + 4062)62/0:/7?7/)’
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where we used (cf. (A.27))

AN Bty = 2oy (499)
We could have anticipated ending up with one equation for ¢, ¢s because 10016®Sym>16’
contains one scalar.
In summary the number of scalars in Sym®16 ® Sym316’ determined the number of
degrees of freedom (c;) and the number of scalars in 10 ® 16 ® Sym>316’ determined the
number of relations between them.

A.6.1 Arbitrary rank

The tensor in equation (A.98) can be denoted as
614*85,02). (A.100)

There is a unique such tensor because the number of scalars in Gam®16 ® (16/)3 is one
(cf. (A.29) for the meaning of Gam). In fact there is one scalar in Gam”16 ® (16')" for any
n. In order to write an explicit expression for 523(10“ ---52:)) for any n we look for a basis
of rank (n,n) invariant tensors that are symmetric in both their upper and lower indices.
For even n the number of scalars in Sym™16 ® Sym"16’ is § + 1. For odd n the number
of scalars in Sym"16 ® Sym"™16’ is ”;1 + 1. Since odd n is of more relevance to this work

we explicitly give the basis for odd n. The "51 + 1 basis elements are given by

_ (al Cl{n) _ ( (6% an)
Ti=0p" 050, To="7m" 30, 05, (A.101)
up to
Tigr = Yo O g0 - A 2on A o o) (A.102)
where k = "51. In order to see these tensors are independent compute the following
components:
T+---+ 7T(?11+...+ 3 7Tball...bii...+ . (A103)
We can conclude
51(3(10“ e 5;:)) — ClTl + o+ Cka, (A104)

for some coefficients ¢;, which can be explicitly computed as we did for the n = 3 case.
Note the above is for odd n. Even n works very much in the same way, the only difference
is the last d in all the T’s. If one removes this, the T”’s form a basis for the even case.

A.7 Chain of operators for b ghost
The following chain of operators plays an important role in the b ghost:
QG* = \°T,
QH® = \oGF + ¢((@h)

QK7 = \eHPY + hg(aﬁ))v + h;((ﬁv))’
QLA — N B | k{(aﬁ))% + k;gf((ﬁ'y))iS + k?ﬁ((“ﬂ;)),
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0 = \“1AP 4 lg(aﬁ))vép + l;((ﬁw))&) + lgtﬁ((%))ﬁ + lzﬁ“/((ép))‘ (A.109)

the last equation implies there exists an S®?7 such that

La,@wé _ )\aSﬁ'yé + Sg(aﬁ))ﬂ/é + sg((ﬁy))é + Sgﬁ((’y(s)). (AllO)

The text below is essentially a summary of section 3 of [36]. The primary fields of weight
two that solve the above equations are given by

1 1 1 7
G = I (ynd)® = Non (Y""00)" = JOO + 2829, (A.111)
1 1
H = 16%0,;5 (N"mnn — "+ 2anm> (A.112)
1 Las (L g mang 6 pmnpye
96 "™\ 4 ’
KB = — " 0B TN aB (M q)Y NP A1l
487m (nd) 199 Ymnp(1"d) (A.113)
1 3 1
By )@ N mpe g — mod | — By m )& NP
#9707 | (RN DG 0000~ a2, (" N,
1
Llesy] — s [aB (nmaryvd] Nop £ . A 114
3072 (Ymnp) 7 (¥™") q ( )

NB1: Only the antisymmetric part of L% is given because in [36] the full L% is not
given in terms of gauge invariant objects. An explicit expression is known within the Y
formalism [36-38] and it is also proven all Y dependence from LR disappears when
contracted with Zag,s. In [3] L% is given as

LY — ¢, 0B70 NmnNPa o 080 Fmn @BV J Ty e 0BV Nmn @BV 7 (A 115)

mnpq

with unknown coefficients.
NB2: the coefficients of the total derivative terms depend on the normal ordering
prescription and the ones above are only consistent with the prescription of [36].

B Detailed computations of I

This appendix contains the details of the A\ integrals that appear at one loop. We are
especially interested in those that appear in computations involving a () exact state.

A typical integral one encounters in an amplitude in subsection 5.1 is given by

1 51626
(Ik)al---anﬁQ--ﬂll = /[d)‘] ()\+)k_2 Aﬁl)\amz T )\azk—lazkA&&z&g (GT)gll..QﬂSu- (B-l)

By charge conservation we can conclude at most two choices for fs,..., 311 lead to a non
vanishing I} for any k. This follows from

0= N(Ik)ar"azkﬁ?“ﬁn = |:(k: - 3)2 + k( - i) + N(ﬁ2 te 611):| (Ik)a1~~~a2k52“'511' (B-2)
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There are only two choices we can make. For example for £ = 3 equation (B.2) implies only
the components with N (3 ---(11) = —% are non vanishing. Thus (s - - - 11 must consist
of either seven 10 indices and three 5 or a +, five 10’s and four 5’s.

In section B.1 we first compute all integrals of the form

1
T2 o sss = / VPP VR W PR (B.3)

Since Ij, vanishes for k < 3 (cf. (5.12)-(5.14)), we are only interested in I}, for k > 3. By
a similar argument the I;’s are also only non vanishing for at most two choices of d10203.
In the last subsection half of the non vanishing components of I3 and all components of I5

are computed.

B.1 Coefficients in )\ integrals

For a given k at most two components of A give non vanishing results. We can make three

choices for 8y in Iy, all three choices lead to an integral of the form (not necessarily for the

same k):

(I;{),)al“'a2k515253 - /[d)‘] ()\+1)k—3 Aaag " )\GQk_lanA515253' (B-4)

After some algebra one finds the only non vanishing components of the I,;”s are:
(I))ay-ag-+dids = 210 €a1azazas(dy €da)asagaras T 2 PErms, (B.5)
( Z)al___a;lldeSd“ds = ;ea1a2a3a4d55([1d51535}5(&%3653] + 11 perms, (B.6)

- 210 Carazasasds O 022893684 45 perms

) gy argards™ = 210 €(dy Jarasasas|ds )asasaras On 0} + 14 perms, (B.7)
(I)ay - arady dods = 610 €(dy|arasazas| Cdolasagaras|€ds)agaroariars + 14 perms.  (B.8)

The first step to obtain these results is finding the number of invariant tensors with the
appropriate symmetries, this is one in all cases but the second. Finding the coefficients
requires more work, this is done in subsection B.1. All these coefficients are fixed by (4.12),

including the overall factor. Two corollaries are

b dsd ds od
(I3) a1~~~a6d1d23 t= (55?d1 Edz)ala2a3a45£zcé35gg] + 6?“56([1676(;3 €ds)arazazas) T 2 Perms, (B.9)
1
b b
(L/l) a1---agdideds — 12 5(d1 €dz|a1aza3a4|€ds)asasaras + 2 perms. (B.lO)

Proof of equations (B.5) and (B.6) By Lorentz invariance we can write

1
/[dA] >\+ )\alag te )\a7a8A+d1d2 = 636a1a2a3a4(d1 Edg)a5a6a7a8 + 2 perms (Bll)
and

1
/[d)‘] A Aarag * - )‘a7asAd1d2d3d:115 = C4(€a1a2a3a4d5 5c[zd51 5?5(2;}5&6[35;[;] + 11 perms) (B.12)

7

+¢s (€a1a2a3a4d5 5([;? 52% 533 52‘5;*} +5 perms) .
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for some coefficients c3,cq,c5. They can be determined from the defining equation of
Aogy, (4.12). After evaluating the r.h.s. of that equation for the relevant components we find

axb ah) 2.ah) 3 (ab)
/[d)\])\ NA Msaas = 04,00, — 04100, = 0400, (B.13)
/ [AXJAT AP AT AT 2y — éedldﬂsdmagl, (B.14)

1
/ [N Aayaz Aasag APAT BB = (671 5% 608 57465+ 1 perm) — 55d1 §d25d3 504, 56 4

[a1 " a2] " [a3 " a4) [a1 a2 %a3ay]

+ <;5ﬁl15([i1] 53;16%”5%} +3 perms). (B.15)
If we now use equations (B.11) and (B.12) to evaluate the Lh.s. of the above integrals we
completely determine the values of c3, ¢y, c5. In fact we find more than three equations,
but they include only three independent conditions as they should. To obtain c3 one has
to write out A* and A’ in (B.13) and then perform all the contractions of the two €’s with
the r.h.s. of (B.11):

3 b b 1
55;f5d)2 = / [ANA NN A gy, = 12636508 = 3 = 20 (B.16)
Finding ¢4 and c5 is more involved. The Lh.s. of (B.14) can be evaluated as

1 €d1d2d3d4 (G(SZ) /[d)\] )\d)\b)\+Ad1d2d3d§

- ) = = (deg + 1205)845 D dadads, (B.17)

=
This gives us the first equation for ¢4, c5. In order to completely determine them, we have
to work out the Lh.s. of (B.15):

1 1 dydadsd
8€aa5a6a7a8 /[d)\] >\+ )\alaz )\a3a4)\a5a6)\a7a8A 1a2 3d: (B18)

c
= g((245355ﬁ15§§]5£35§3] + 1 perm) + 86“d1d2d3d4ea1a2a3a4d5

+16(55, 5l 6821615 584) 41 perm) + (867, 51% 69415141 52 4 3 perm))

a1 Ya2 Yaz Yay [a1Yag]"ds “a3 Yaa

5701 Ta27a3 a4 a1 “a2-a3 - aq

+C§’ (2405, olr gd25da 5da) 4 ogeaidadada o oas + 1689 5101582 533 5dal

(862 5193 5% 5% 5d2] 4 1 perm)).

(a1 az] ds a3~ aq

We want to be able to read off equations for the ¢’s when we compare to (B.15). It turns
out the space of invariant tensors with the indices and symmetries of (B.15) is four dimen-
sional. We now write out our tensors on a basis that contains the three invariant tensors
that are present in (B.15). We are free to choose the fourth one as long as it does not lie
in the span of the first three. After using

codidadadic o ans = 00 0l 52505040 1 (58 515t 58 504) 4 1 perm), (B.19)

ayp “az2 a3 ”a4 a1~ ag] ds a3~ a4

(B.18) becomes

(5045355[d15d2]6[d35d4] + 1 perm) + (467 5l 50l gldr 5do] 4 3 perm) (B.20)

a1 “az Yaz “a4 [a1”az])"ds “a3 “a4

+(8cs + )08, 011582583 504) 4 ((cq + des)op, 8% 6% 601 6%2) 11 perm).

a1 Yaz%3 %4 [a1%a2]Yds Yaz Yaa
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Now we can read off four equations for ¢4, c5 by comparing to (B.15). Combined with the
equation we already found:

1 1 1
S5cq = 1, C4+805:—5, 4= g, ¢4+ 4e5 =0, 4C4+1205:5. (B.21)

These equations are solved by
1

20°
The coefficients in equations (B.7) and (B.8) follow in the same way.

4= _, ¢5=-— (B.22)

B.2 Computing the I};’s

The idea of this section is simple, use the explicit form of the gamma matrices and the A
integrals (B.5)-(B.10) to evaluate Ij. In practice this involves a lot of computation. We
already know Iy, I, Is and Ig all vanish. By the charge conservation property there is only
one choice of 3y - - - 511 for which I5 does not vanish. For I3 and Iy we can make two choices.
We explicitly compute I3 for

B2y, 011 =+, ¢1,02,¢3,¢4,b1b2, ..., bobig. (B.23)
I3 consists of three terms, two for 81 = b1by and one for 3; = b;. The relevant components
of €T are’
(6T)+d1d2 b11b12+ b1ba-- 179171316263c4 (B.24)
1

_ by---b k1d1 kodo k3
= 168(610) V€ Y bisbia | b15b167]§3 (’Ykle )b17b18b19b20

by--bap
) 8(610) 661626304b175b14 5b16 €b13b15b18b19b20 )

ds b11b12  biba---bgbio
(ET)d1d2d3d4 + c1c2c304 (B'25)
1
_ b1---bag k1ko cs5
=38 16 2(610) O €cy-c5Vh1didzbisbra Vhadsdabisbis 7b17b18 ('7 k3 )b19b20

b1---b2o kics kads k2
+8 s (€10) €ctocs Vg, dy Vhadsdabrabis Vst (Vky ks Jbi7bisbrobsg T (d1da < d3da)

1
by-b d
= 842(610) e E610263041?17617196l1d2b13bl4617206l3d4b15bu55{;158

b2 ds
+8 4 (610) €cicac3c4b19€d1dabi3bialbao €b17)d3dabisbie 5b18

+8111 ; (€10)" " €y ereqealda €d11b15b19b20b18€b17d3d4b13b145b16 (didy + dady),
(ET)dld2d3d4 b+b "'b106162c3c4 (B26)
= _832 (Glo)b b0 6010203641775111(1171127b13b147k3d3d4b15b16 (Vklkf )b17b18b19b20
= 8;][:601020304b6d3d4b15b16b17ebllb13b18b19b20 5b12 51?1247
°To evaluate €I' the following convention for eg,..5,, is used, (€16) 1 a,.. afle b19b20

(€5)ay a5 (€10)" 77720
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where we extracted the factor of eight coming from the SU(5) decomposition (cf. (A.13))
1
29
each line. Using the explicit form of the components of (¢1') and the X integrals, I3 can be

and a power of !, which compensates for double counting in expressions like x4y, in

written out as

1 1 dids biibi2 bi-b
I3 = 23/[d)‘] A )‘b11b12)‘alaz)‘aaa4)‘a5a6A+d1d2 (GT)+ 1 12+ ! lglcQC3C4 (B'27)

1 1
- 3/ [4X] A+ )‘bubm)‘am>‘0304)‘a5a6Ad1d2d3d35(eT)dldgdadils b +b1 "

8 C1C2€3C4

1 1 dad did by--b
+32 /[d)\] )\‘f')\ )\ala2)\a3a4)\a5a6Ad1d23 4(6T) ' 2Cl3d4 b+ ' 1001626304
3

= 40 (€a1a2a3a4(d1 €ds)asagbi1bi2 +2 perms)

1
b1---b2o dy1 sdo
X |: Ty (610) 6016203641?175b14 6b16 €b13b15b18b19b20

3 ds od
+40((6a1a2a3a4d55£td515g2}5[ 36b142] + 11 perms))

6 ~b11
b1-+-b2o ds
+ [4(610) €cicaczeabir €b19didabizbia €baodzdabisbis 5b18
b1---b20 ds
+2(€10) €cycacscabro€dy dabiaba[bao €bi7]dsdabrsbic Oy

by-b ds
+(€10) ! 20601620364[dg6d1]b15b19b20b18€b17d3d4b13b145b18 + (d1d2 e d3d4)]

as las“ag]

3 ds d
+2(55?d1 ed2)a1a2a3a45[d35gg] 46 il 35(;3 €ds)arasazas T 2 PEIMs)

dy gcdo
X [2661 cac3¢qb€dzdabisbiebir €b11b13b18b19bao 5b12 5b14]

3

5 €aiazaszasbis€bigasacbiibi2 (610

12

by---b
+ 5 (610) ! 206511512a3a4b1866102036451765190102513b14€b200506515516 + 2 perms

3

by--b
+5(610) ! 20€b11b12¢13a4b186016203641719 €a1a2b13b14[b17 €bao]asacbisbie + 2 perms

by--b
) ! 20601020304b17€b13b15b18b19b20 + 2 perms

by b
+5€a1a2a3a4b16 (610) ! 206016203641712€b11b15b18b19b2061717(15(161?131714 + 2 perms

)bl- b

-b2g
+ 5 €b11b12a1a2b16 (610 €cicacscaas €as)bisbigbioboo Casasbizbiabir + 2 perms

by--b
+60(€10) tmeo €braa1azazas €crcacscabrz €asacbisbiobir €b11bizbigbiobao T 2 perms

+12€b14a1a2a3a4(610)b1“.bQO661026304[as606}512b15b16617€b11b13b18b19b20 + 2 perms
3 12 1 3 6 6 (/27
= — _(1 — -1 -1 60(1 12(0
(<204 2(=5)+ 2en+ en 1(F) +oow +120)

b1--b
X €qrasazasbia€bigasagbiibia (610) ! 20601020304b17€b13b15b18b19b20 + 2 perms
129

b1-++b
2 €aiazaszasbis€bigasacbiibi2 (610)

<bap
€crcaczcabir €bizbisbisbiobao T 2 perms.

Since Asym®10 ® Sym®10 ® Asym*5 contains one scalar all seven tensors in the penulti-
mate step are proportional to each other. The constants of proportionality are obtained
by computing components.

,56,



I5 is only non vanishing if we choose
/827 e ,/811 == bgb47 e ,bllle, 17 2, 37 4, 5. (B.28)

This component of I5 consists of two terms, one for 31 = b1b2 and one for 1 = +:

1
bs---b 516263 b3---b
(15)a1---a103 ' 12345 — /[d)\] ()\+)2)\ala2 ) ")\agamAélézég(ET) 1 3+ ° 1212345 (B-29)

1 1 516203 bibabs--b
+2 /[d)‘] ()\+)3)\b152)\a1a2 “+ Aagarg Ny 6,05 (€17)71272 71728 19345-

The relevant components of €I" are given by
1
didads b1---b _ by---b d bd d +
(ET) rate 1%2345 - _8162(610) ' 20721311114’)/[71521)16Vgljblgfyabcblgbgo + (B30)

1
b1-++b2o (di [bld2 _ |clds)  a
- 168(610) 2,7@ +7b13614fyb156167 be17b18b19b20

a d d; c d
— _(610)b1 b205[b1356114]5fb155b126}5[bl75b38](_1)€ab0b19b20 +

1
_ bi-boo s(di 510l cda clel <d3) ca
4(610) 04 5[b135(,14]5[1,155b16}5[b17€bls]bcb19bzo’
dida bzba---b11b12 _ 1 b3---baa bdy cdy a
(ET) dzds+ 12345 — _832 (610) 7ad3d4b13b147b15b16Wb17b18’y beb1gbagbai bao (B31)
1
_ b3---ba2 b d1 sc d2 a
= —,(ew0) (—1)€adsdabrzbia 0,5 Opys] Olbrs Tpym) 20(b1a Ebaolbebarbas

where we extracted the factor of eight and the powers of ; again. In summary the two
relevant components of (e1') are given by

1
(eTyhets Ptz = =8 5lero) Oy, O, O

b13 %15 %, Eb14b16b18b19b20

(B.32)

and

dida b3bg---b11b12 _ 1 dy ¢do
(€T) d3ds+ 12345 — 846106b17d3d4b15b16 €b18b1b13b19b20 6b2 5b14' (B.33)

I5 becomes

1 516283 by
Is = /[d>‘] ()\Jr)g )‘61 >‘a1a2 t A09010A515253 (ET) 1 gle b1212345 (B'34)
1 1 dsd dvd by---b
= 23/[d>‘] ()\+)2)‘a1a2 T )‘agamAdldg ’ 4(6T) ' 2cl3d4 + : 1212345 +
1

1
+2 /[d)‘] ()3 AbibsAaras *** Aagaro Ny dads (ET)d1d2d3 . b1212345

3 d
_ 3 5d4 dida b3---b12
~ 40 (€(d1\a1a2a3a4\6d2)d5a6a7a856[L9 5a1(]) + 14 perms)(eT) dsds + 12345 +
1 dydads by-b
1d2d3 by---b12
+120 (€(d1|¢11a2a3a4|6d2\a5a6a7a8\6d3)a9a10b1b2 + 14 perms)(eT) 12345

3 d
_ 3 5dy didz b3---b12
~ 920 (€d1a1a2a3a4edzasasa7a86c[zg 6a1(]) +14 perms)(eT) dsds + 12345

1

+ (Ed1a1a2a3a4 €dzasasaras €dzagaiobiby T 14 perms

T didadsz by---b12
- )(eT)

12345
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s 693 g9l 4 14 perms)

- 10 (€d1a1a2a3a46d2a5a6a7(18 a9 Yaig

)b1~~~b d1 5d2

20
[(610 €b17d3d4b15b16€b18b1b13b19b205b2 b14]

_(€d101a2a3a46d2050607a8 €dzagaiobiba T 14 perms)

bl"'bQO dl d2 d3
[(610) 5b135b155b17€b14b16b18b19b20]
3

bi-wb
= 5€b2a1a2a3a46b14a5a6a708(610) !

206bl7a9a10b15b16 €b1gbibizbigbao T 14 perms
by--b

—€b13aiaz2aza4€bisasasarag€biragaiobibz (610) ! 20€b14b16b18b19b20 + 14 perms

2

5

by b
€bi3aiazazas €bisasasaras Cbiragaiobiba (610) ! 2O€b14b16b18b19b20 + 14 perms.
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