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Abstract

In this paper, we discuss properties of the w, g-Bernstein polynomials By, 7 (f; x) introduced by S. Lewanowicz and P. Wozny
in [S. Lewanowicz, P. WoZny, Generalized Bernstein polynomials, BIT 44 (1) (2004) 63-78], where f € C[0, 1], w,q > 0, w #
1, qfl e q7"+1. When v = 0, we recover the g-Bernstein polynomials introduced by [G.M. Phillips, Bernstein polynomials
based on the g-integers, Ann. Numer. Math. 4 (1997) 511-518]; when g = 1, we recover the classical Bernstein polynomials. We
compute the second moment of B,(f 4 (t2; x), and demonstrate that if f is convex and w, g € (0, 1) or (1, 00), then B,(f 4 (f;x) are
monotonically decreasing in n for all x € [0, 1]. We prove that for w € (0, 1), g, € (0, 1], the sequence {By,"%" (f )}n>1 converges
to f uniformly on [0, 1] for each f € C[0, 1] if and only if lim;— 0 gn = 1. For fixed w, g € (0, 1), we prove that the sequence
{B,(;) 4 f)} converges for each f € C[0, 1] and obtain the estimates for the rate of convergence of {B;,U 4 f)} by the modulus of
continuity of f, and the estimates are sharp in the sense of order for Lipschitz continuous functions.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let ¢ > 0. For any non-negative integer k, the g-integer [k], is defined by
kly:=14+q+---+¢" *k=1,2,..), [0],:=0
and the g-factorial [k],! by
[kl = [11412]4 ... [k]y (k=1,2,..), [0],!:=1.

For integers k, n with 0 < k < n, the g-binomial coefficient is defined by
[n] o [n],!
ki, kg —klg!
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We also use the following standard notations:

k—1 oo
@qo:=1, @qr:=][](1-aq"), @@e:=]](1—-aq®) ©O<g<).
s=0 s=0

Clearly,

[n} _ (q; Dn
ki, (@@ Dn—k

In [11], Phillips proposed the g-Bernstein polynomials: for each positive integer n, and f € C[0, 1], the g-Bernstein
polynomial of f is

k
nq(f x) —Zf<[ ]q>|: :| xk(X;Q)nfk-
q

[n]q

Note that for ¢ = 1, B, 4(f, x) is the classical Bernstein polynomial B, (f, x):

- k
By(f1x) = Zf(;) (Z)xk(l —x)"
k=0

In [4], S. Lewanowicz and P. WoZny introduced the generalized Bernstein polynomials (we call the @, g-Bernstein
polynomials): for f € C[0, 1], the w, g-Bernstein polynomials of f are

B (f;x) —Zf<[ ] )Bk< solg) (u=ow+1—w)x), (1.1)
q
where ¢ and w are positive real parameters, o # 1, q_l, e, q"”‘l, and
1 n
B} (u: o >:=—[ } w (ou™" q), (; @ni
sl = e, ™ il e
1 n k—1 —k—
= — u—wq l—uq k=0,1,...,n) (1.2)
(@; @)n [k}q]l_!) l:[

are the basic w, g-Bernstein polynomials. When w = 0, we recover the g-Bernstein polynomials; when g = 1, we
recover the classical Bernstein polynomials.

In recent years, the g-Bernstein polynomials have been investigated intensively by a number of authors (see [3,7,
8,10—12] and references therein [13—17]). However, there are very few works about the w, g-Bernstein polynomials
as far as we know, since the study of the w, g-Bernstein polynomials is more difficult than that of the g-Bernstein
polynomials. It should be mentioned here that various properties of the basic w, g-Bernstein polynomials have been
studied in [4] and [5]. Also, we can define the generalized Bézier curve and de Casteljau algorithm, which can be
used for evaluating w, g-Bernstein polynomials iteratively (see [4]) and are very useful for computer-aided geometric
design. In this paper, it is our main aim to investigate properties of convergence of the w, g-Bernstein polynomials
for w,q € (0, 1) or w, g € (1,00). Our results demonstrate that in general properties of convergence for the w, g-
Bernstein polynomials are very similar to those for the g-Bernstein polynomials but essentially different from those
for the classical Bernstein polynomials.

Throughout the paper, we always assume that f is a continuous real function on [0, 1], w,q > 0, w #
l,q_l, ...,q_"‘H, u=w+ (1 —w)x for x € [0, 1]. Denote by C[0, 1] (or C"*[0, 1], 1 < n < c0) the space of all
continuous (corresponding, n times continuously differentiable) real-valued functions on [0, 1] equipped with the uni-
form norm || - ||. The expression g,(x) = g(x) [x € [0, 1]; n — oo] denotes convergence of g, to g uniformly in
x €[0,1] as n — oo; A(n) < B(n) means that A(n) < B(n) and A(n) > B(n), and A(n) < B(n) means that there
exists a positive constant ¢ independent of n such that A(n) < c¢B(n).
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2. Statement of results

It follows from the definition of By, "¢ (f;x) that the operators B;, "¢ on C[0, 1] which map from f € CJ[0, 1] to
By"?(f) are positive linear operators if w, g € (0, 1) or w, g € (1, 00). Also the w, g-Bernstein polynomials possess
the end-point interpolation property, that is,

B (f;0)= f(0), B (f5 1) = f(D). 2.1)

In Section 3, we shall discuss some fundamental properties of the w, g-Bernstein polynomials. According to the
theory of approximation by positive linear operators (see [2, pp. 277-2811), the moments By, (¢"; x) (r =0, 1, 2) are
of particular importance, so we shall compute the moments Bff 4 (#";x) (r =0, 1,2). Using the identity (see [1, §10,
Exercise 9])

n

@biq)u=Y [Z] a* (b i@ @Yn-r

k=0 q

and induction on 7, S. Lewanowicz and P. WoZny proved in [4, Egs. (2.4) and (2.5)] that

n
Z B!(x;w|g) =1 (partition of unity), 2.2)
i=0
and
n N
> s wlg) = — 2-3)
iz Mg @
That is,
By (at + b; x) =ax +b. (2.4)

Hence, the w, g-Bernstein polynomials reproduce linear functions. About B,’f 4 (tz; x), we have the following result:

Theorem 1. For x € [0, 1], g #l and n > 1,

BY (1% x) = x(1—¢)(1 — wg™) + gx*(1 —w)(1 — qn—l)'
! ’ (1 —wq)(1 —q")

(2.5)

It is easy to know that for each f € C[0, 1], B, Y (f; x) is a polynomial of degree < n. However, if f is a polyno-
mial, the following strong assertion holds:

Theorem 2. If f is a polynomial of degree m, then By (f; x) is a polynomial of degree < min{m, n}.

Next we show when the function f is convex, the w, g-Bernstein polynomials B¢ ( f; x) are monotonic in n for
w,q €(0,1) orw, g € (1,00), as in the classical case and in the case g € (0, 1), w =0.

Theorem 3. Let f be continuous and convex on [0, 1]. If w,q € (0, 1) or w,q € (1, 00), then for all n > 2 and all
x e€[0,1],

B (f3x) = B, (f; x). (2.6)

The inequality holds strictly for 0 < x < 1 unless f is linear in each of intervals between consecutive knots
[rlg/In — 14, 0 <7 <n — 1, in which case we have the equality B::);ql (f;x)= B,‘[)’q(f; X).

The following theorem allows us to reduce the case w, g > 1 to the case w, g € (0, 1). So, in the following section,
we consider the case w, g € (0, 1) only.
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Theorem 4. Let f € C[0, 1], g(x) := f(1 — x). Then for any x € [0, 1],
By (fix) =B,/ (g: 1~ x). @.7)

In Section 4, we shall discuss properties of convergence for the w, g-Bernstein polynomials. Based on Theorem 1,
we have the following approximating theorem.

Theorem 5. Let g, € (0, 1], w € (0, 1). Then the sequence {By,""" (f)} converges to f uniformly on [0, 1] for each
f €CI0, 1] ifand only iflim,_, oo g, = 1.

Remark 1. This is a generalization of the following result which is given in [4] without proof. If 0 < g,,w < 1,
lim,— g, = 1, then for any f € C[O, 1], the sequence {B,‘f ’q"( f)} converges to f uniformly on [0, 1].

Theorem 5 implies that if w,q € (0,1) is fixed, {B,"?(f,x)} may not be approximating for some continuous
functions. In Section 4, we also discuss properties of convergence for the w, g-Bernstein polynomials for fixed w, g €
0,1). For f € C[0, 1] and w, g € (0, 1), we set

Yo f(1=gMBXw;wlg), 0<x <1,

1 o (u=w+1-ow)x), (2.8)

B (f1x) = {
where

o . i ou i oo
B lws wla) = (@ Dr(@; Qoo 29

The operators Ba? on C[0, 1] which map from f to B (f) are positive linear operators and are called the limit
o, g-Bernstein operators. When o = 0, the limit w, g-Bernstein operators reduce to the limit g-Bernstein operators
(see [3,7,9,13]). From the g-binomial theorem (see [1, p. 488]), we know that

° 0 koo o1, .
=0 = @GOk q)

which means
BZ(1;x) =1.

For f € C[0, 1], t > 0, we define the modulus of continuity w( f, ) and the second modulus of smoothness w; (f, ¢)
as follows:

w(f,t)y:= sup |f(x)—f()
[x—y|<1t
x,y€l[0,1]

wp(fir):= sup  sup |f(x+2h) —2f(x+h)+ f(x)].
0<h<t x€[0,1-2h]

’

Theorem 6. Let 0 < w, g < 1. Then for each f € C[0, 1] the sequence {By,"? (f;x)} converges to B (f; x) uni-
formly on [0, 1]. Furthermore,

1B (f) = BN < Cqo(f.4"). 2.11)

The above estimate is sharp in the following sense of order: for each o, 0 < o < 1, there exists a function fy(x) which
belongs to the Lipschitz class Lipa :={f € C[0, 1] | o(f, t) K t*} such that

B2 (fo) = B (fo) | > q*". (2.12)
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Theorem 7. Let 0 < w, g < 1. Then

1By (f) — B! ()] < can(f.v/q"). (2.13)
Furthermore,

sup || By (f) — B! ()| < can(fin™1?), (2.14)
w,q€(0,1)

where c is an absolute constant.

Remark 2. From (2.14) we know that for each f € C[0, 1], lim,_ o By 'Y (f; x) = B ? (f; x) uniformly in x € [0, 1]
and w, q € (0, 1).

Remark 3. Results similar to Theorems 6 and 7 for the g-Bernstein polynomials were obtained in [16] and [14],
respectively. Note that when f(x) = x2, we have

IBYI(f) — BLU(H| =" = oa(f,v/q").

Hence, the estimate (2.13) is sharp in the following sense: the sequence /g™ in (2.13) cannot be replaced by any
other sequence decreasing to zero more rapidly as n — co. However, (2.13) is not sharp for the Lipschitz class Lip «
(o € (0, 1]) in the sense of order. This, combining with Theorem 6, shows that in the case 0 < w, g < 1, the modulus
of continuity is more appropriate to describe the rate of convergence for the w, g-Bernstein polynomials than the
second modulus of smoothness.

Remark 4. In the case w,q € (0, 1), from (2.11) we conclude that the rate of convergence || By, ?(f) — B ()l
has the order ¢" for each f € C 1[0, 1] versus at most 1 /n for the classical Bernstein polynomials. From (2.14) we
know that the rate of convergence || By ( - B2 ( )|l can be dominated by cw> (f, n—1/2) uniformly with respect
tow,q € (0,1).

Remark 5. The constant ¢ in (2.13) is an absolute constant and does not depend on g, however, the constant C; in
(2.11) depends on ¢, and tends to 400 as ¢ — 1—. Hence, (2.13) does not follow from (2.11).

In Section 5, we shall discuss properties of the limit w, g-Bernstein operators. For any f € C]O0, 1], since the
function Bs,? (f; x) is the uniform limit of the sequence {B,,"?(f; x)}, we know Ba? (f;x) € C[0,1]. When f is a
polynomial of degree m, Bay? (f; x) is a polynomial of degree < m. We show the following strong assertion.

Theorem 8. If f is a polynomial of degree m, then Ba" (f; x) is also a polynomial of degree m.
Let w, g € (0, 1) be fixed. We want to describe the class of continuous functions satisfying the condition
lim B,‘f’q(f;x) = f(x) forxe]lO0,]1].
n—oo

We know that the limit @, g-Bernstein operators are positive linear operators on C[0, 1] and reproduce linear functions.
Also from Theorem 1 and Remark 2, we get

— 2 —_—

We show the following result.

Theorem 9. Let L be a positive linear operator on C[0, 1] which reproduces linear functions. If L(t*, x) > x for all
x €(0,1), then L(f) = f if and only if f is linear.

Corollary. Let 0 < w, g < 1 be fixed and let f € C[0, 1]. Then B (f; x) = f(x) for all x € [0, 1] if and only if f is

linear.
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Remark 6. From Corollary and Theorem 6, we know for fixed w,q € (0,1) and f € C[O, 1], the sequence
(B, (f; x)} does not approximate f(x) unless f is linear. This is completely in contrast to the classical Bernstein
polynomials, which {B, (f; x)} approximates f(x) for any f € C[O0, 1].

At last, we discuss approximating property of the limit w, g-Bernstein operators.

Theorem 10. Let w € (0, 1) be fixed. Then for any f € C[0, 1], {Bss?(f)} converges to f uniformly on [0, 1] as
qg— 1—.

3. Proofs of Theorems 1-4

Proof of Theorem 1. First we prove the following recurrence formula:

_ g’ —o)1 —¢") +x(1 =) —wg") + g0 —¢")* B (% x)

B (% 3.1
”""1( x) (1— qn+1)(] — wg™) (3.1
From [4, Eq. (2.1)], we have
ity g, _u—wg
1, BN (u; wlg) = g B!'(u; »lq). (3.2)
Thus,
n H 2 n ; :
[i+1] 1 — ¢t u—wq
w,q (.2, _ qd pn+l, . _ ng .
B, (l ,x) = ; T l]é B (u; 0lq) = ; T p——— Bj' (u; wlq)
- Xn: U (ug +w)g’ +og™ " B (u; w|q)
= (s

L (1= g1 = wg™)

n

-y U+ wg —ug — o) + (ug + 0 —2wq)(1 — ¢") + 0g(1 — g')*
(1 =¢g"H(1 — wg™)

B'(u; w|q).
i=0

Using (2.2), (2.3) and u = w + (1 — w)x, by direct computation we get

(% x) = (U + wq —uq — o) + (ug + » — 2wq)(1 — q")x + 0q(1 —¢")? B, (1%; x)
’ (I =g — wg™)

(=) —o)x + (@+x —wx)g + o —2wq)(1 —¢")x +qo(l —¢")* B, (1 x)

B (1—g"+H(1 — wg™)

_ g’ —o)1 —¢") +x(1 =) —wg") +qo( —¢")* B (% x)

(I —g" )1 — wg™)

which proves (3.1). Now we show Theorem 1. We use induction on n. It follows from the definition of By Y (f; x)
that

w,q
Bn—H

’

Bf)’q (tz; x) =X.

Using (3.1) we get

w2 X1 =) = wg?) +¢x*(1 —w)(1 = gq)
B2 (t > )C) - 2
(I —wq)(1 —g°)
which means (2.5) is true for n = 2. Assume (2.5) holds for a certain n. Then by (3.1) and induction assumption, we
get

’
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B (1)

1
C(I—og)(1-¢"")(1-wg")
+ag(l—q")(x(1 —9)(1 — wg") + gx*(1 —w)(1 — " 1))
_x(1=g)(1 —0g") (1 — o) + wg(1 —¢™) + qx*(1 —w)(1 —¢") (1 —wq) + wg(1 —¢" "))
B (1 —wg)(1 —g"+H) (1 — wg™)
_x(1 =) — wg"™") 4+ gx*(1 —w)(1 — ¢")
B (1 —wg)(1—g"th

which proves Theorem 1. 0O

(1 —wg)(x(1 = g)(1 — wg") + gx*(1 — @) (1 — ¢"))

El

Proof of Theorem 2. Denote by IT, the space of polynomials of degree < n. Obviously, By %" (f; x) € IT, for all
f €C[0,1] and By ™ (t"; x) € IT, for r =0, 1 by (2.4), so it suffices to prove the statement that By, %" (t"; x) € I,
for 1 <r < n. We use induction on n. Let us suppose that the statement is true for n > r, that is, B2 (¢ x) e Iy, for
k < n.Then, for 1 <r <n+ 1, by the definition of B,”%" (+"; x) and (3.2), we get that

B )

. 1 :

_ 2+ 17 u—wg B (u: wlg)

T g T
i=0 q

n

(14qlily) (1 — w)x + 0 (1 = g)lily)
§ [n+ 1157 (1 — wg™)
" (1—o)x ¢ o - lily + X575/ (1 = o)x + (7))o - )l
; [n+ 1157 (1 = wg™)
(1 —o)x + g =gl B (" x) + Z;;ll((r;l)qj(l —w)x+ (;:1)60((11'71 _ qj))[n]éBf,”’q(tj; x)
B [+ 10,7 (1 = wg™) '

B (u; wlq)

B! (u; wlq)

By the induction assumption we obtain B,:’Jrql (t"; x) € I.. Theorem 2 is proved. O

Remark 7.1f r < n, thendeg B,,"? (t"; x) = r. Indeed, from [4, Lemma 2.3], we know that B! (u; w|q),i =0, 1,...,n,
form a basis in the space IT,,. Since the rank of the matrix

11 1 1
[”]q [n]q [I’l]q
1,02 (21512 (1102
) GE)° o (G)
(1] o RS
(ﬁ)’ (ﬁ)’ ([Z_]Z)r

is r + 1, we get the polynomials By ?(t/;x), j =0,1,...,r, are linearly independent. Using the fact that
Byt x) e IT;, we get that By (¢"; x) is a polynomial of degree r for r < n.

Proof of Theorem 3. The proof is very similar to the one of Theorem 7.3.4 in [12, pp. 270-271]. From [4,
Lemma 2.1(v)], we know that

[n— i]q

[n]q

B!'(u; 0lq) + (1 il
[n]q

B u; wlg) = )B?H(u;wm).

We have
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B> (fsx) =By (fix)

n—

[i]q n—1 n
Zf([n—lh,)B el Zf([ L,)B (el
lilq (n—ilg ., (n—i—1lg\ 0 . n
f<[n—1]q>( TIAA o+ (1- inl, )i - Zf( )B( el

=0
—1
() 0= ) (e o)) e
+|1- 7)) B
<[n]q [n— 1], T AN T AT )

n—1
=: ZaiBi (u; wlq).
i=1

—_

n

I
™

._.

n—

Il
i M

Clearly, if w,q € (0 1) or (1, 00), then B} (u; w|q) > 0 for all x € [0, 1]. It suffices to show that each g; is non-

negative. For 1 <i <n —1,puts= [[,l,_]l]]" n= [n[l]j’] and A = [”[n]lq" . Then

ai =1f(t) + (1 =) f(t0) — f (A1 + (1 = W)10) = 0

since the function f is convex. Thus B, (f;x) > B, ?(f; x). The inequality will be strict for 0 < x < 1 unless
each a; = 0 which can only occur when f is linear in each of the intervals between consecutive knots [i]/[n — 1],
0<i<n—1, when we have B, % (f;x) = By"? (f; x) for 0 < x < 1. This completes the proof. O

Proof of Theorem 4. It is easy to know from (1.1) that

o - — kg \
B (fix)= Z f<[n[n] ]q)Bnk(u; wlg), u=ow+(1—ow)x.
k=0 9q

Letusputu' =1/w+ (1 —1/w)(1 —x) =1+ (1/w — 1)x. Note that

b2, =l =]
n—kli, k1, k114

(@; @) =q" " V2" (1) (1w 1/@)1 /4,

n—k—1 ‘ n—k—1 ‘
l—[ (4 — wg’) = (—1)' kgt =k g (1= (1=k=1)/2 1—[ (1—u'q™),
J=0 j=0
and
k-1 k—1
[1(1 - ug) = (= D¥arg =D [T - ~'g™),
s=0 s=0

we get by (1.2)

-1 k—1

1 " -
B:k(u;wlq)—m[n_ L 1_[ u — wq’ l_[(l—uqs)

j=0 s=0
k—1 n—k—1

1 n ’ -1 _— 'g=J
= - - * 1 - '
oo [k]l/q S]:[(u 0w 'q™") ] (1—u'q™7)

=Bl W';1/w|l/q).
On the other hand,
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[n—k]q>: <1_[k]l/q>: ([k]l/q)
f( [nl, Nt ) =8\ )

Therefore,

w z k n / w
B (fx) = Zg<[ ]”")Bk W's1/ol1/q) = By (g:1 ).

= \Inlyg

The proof of Theorem 4 is complete. O

4. Proofs of Theorems 5-7

Proof of Theorem 5. Since the w, g-Bernstein operators By, " are positive linear operators and reproduce linear

functions, the well-known Korovkin theorem (see [2, pp. 8-9]) implies that By, %" (f; x) = f(x) [x € [0, 1]; n — o0]
for any f € C[O0, 1] if and only if

By (% x) = x* [x€[0,1];n— o0]. .1
From Theorem 1, we get
_ (1 —wg™x(1 —x) < x(1 —x) .

(I = wg)lnly (I —w)[nly

Hence, (4.1) is equivalent to the condition lim,_, »[n],, = 0o, which is equivalent to the condition lim, g, =1
(see [13]). Theorem 5 is proved. O

x(1—x) < Bw,q(tz,x) 2
[n]q ~X n ’

Proof of Theorem 6. The proof is similar to the one of Theorem 1 in [16]. It follows directly from (2.1) and (2.8)
that

B, (f;0) = B1(f;0) = f(0), BXU(f; ) =BR(f; )= f(D).

Obviously, if w, g € (0, 1), then B,'{’(u; wl|q) =20, Bk°°(u; w|q) 20 for all x € [0, 1], u = w + (1 — w)x. Hence for all
x € (0, 1), by (1.1), (2.8), (2.2) and (2.10) we know that

By (f3%) = B (f3 %)) (4.2)

> AU/ ) B (ws wlg) = Y £ (1 — q°) B (u; wlq)

k=0 k=0
=Y _(f(k)/n]) = FD)BE (s wlg) = Y (£ (1 = %) = £(1) BZ (s wlg)
k=0 k=0

<1 (Kk1/1R)) = £ (1= g%)|Bf s wlg) + )| £ (1= 4*) — £(D]| B (w; 0lg) — B (u; wlg)|
k=0

k=0

+ Y (1 =4") = f()|BX s wlg)
k=n+1
=L+ h+ L. 4.3)

First we estimate I, /3. Since

(k] o 1—4* o "—g5
0<——(1- = —(1— =2

0<1—(1-¢"=¢"<q" k=n+1),

we get
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o(f.q") Y Bl wlg) =o(f.q") (4.4)
k=0
and
L<o(fq") Y BXwolg) <o(f.q"). 4.5)
k=n+1

Now we estimate I». For 0 < k < n, we note that

o0

l_[ (1—uq®)

s=n—k

| B (u; w|q) — B (u; w|q) | < B} (u; wlg) |1 —

n

lo__oll—a)q 1_[ (1—¢*)—1].

s=n—k+1

+ B (u; wlq) (4.6)

Using the inequality (see [15])

]

q’ [
1—||1— NI ——Ih—— =1,2,...),
Hi=a<gm=gir= v :

we get

<1- ] (1—qs)<q—1n% (v € [, 11), @7

and

=110~ Hl—

sS=n s=n—k

qn—k 1
<—In——. 4.8)
gl—q) 1-—gq

Using (4.6)—(4.8) and the property of modulus of continuity (see [6, p. 20])
o(f.r) < (1 +Mo(f.1), 1>0,

we get

Z o(f,4")| B (w; 0lg) = B (u; 0lq)]

n n—k

—n 1 n o
Z 4 )hlnq(Bk(“;wWHBk (; »19))

20(£,9") 1 o o0
< q“zl _qq) I Y (B s 0lg) + B s 0l0)

k=0
n
< do(f,q") In 1
g —q) 1—¢q
From (4.4), (4.5), and (4.9), we conclude that

B2 (f) = BT ()] < Cqoo(f. 0"),

(4.9)

4ln] 4ln —

where C; =2 + =0
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At last we show that the estimate (2.11) is sharp. For each o, 0 < o < 1, suppose that f, (x) is a continuous function
which is equal to zero in [0, 1 — ¢g] and [1 —qz, 1l,equalto (x — (1 —¢))*in [l —¢g,1 —g +q(1 —q)/2], and linear
in the rest of [0, 1]. Then

w(fou t) = tay

and

1By (fu: ) — B! (fu: %) | < q¢*"|| B} (w: wlq) | < ¢*".

The proof of Theorem 6 is complete. O

Remark 8. From the proof of Theorem 6, we know that the rate of convergence for the w, g-Bernstein polynomials
depends only on the smoothness of the function f(x) at the points 1 — qk ,k=1,2,... (from the right), and at x = 1.

In order to prove Theorem 7, we need the following result (see [14]):

Theorem A. Let the sequence (L,) of positive linear operators on C|0, 1] satisfy the following conditions:

(A) The sequence (L, (e2)) converges to a function Loo(e2) in C[0, 1], where e; (x) = xii=0,1,2.
(B) The sequence (L, (f,x))n>1 is non-increasing for any convex function f and for any x € [0, 1].

Then there exists an operator L, on C[0, 1] such that L,,(f) = Loo(f) for any f € C[0, 1] as n — oo. Furthermore,

|Ln(f, X) = Loo(f, )| < con(f. v/hn(x)), (4.10)

where A, (x) = L, (e2,x) — Loo(e2, x), ¢ is a constant dependent only on ||L1(eo)].

Proof of Theorem 7. From Theorem 3, we know that the w, g-Bernstein operators satisfy condition (B). From The-
orem 6 we know that for w, g € (0, 1),

By (f,x) = B (f, x) [x el0,1]; n — oo].
Also, by (2.5) and (2.15), we get

_¢'d-gd-oxd—x) _ ,

0 (x) = B,(f)’q(tz;x) —Bg)o’q(tz;x) =g —q"

@11

and

sup An(x)= sup M (1_x):M'

X
O<w,q<1 O<w,q<1 (1 -=g"(1 - wq)

Theorem 7 follows from (4.11), (4.12), and (4.10). O

4.12)

5. Proofs of Theorems 8-10

Proof of Theorem 8. It suffices to prove the statement that Ba;? (¢"; x) is a polynomial of degree r. We use induction
on r. Forr =0 or r = 1 the statement is true, since Bg’o’ 4 reproduce linear functions. Assume that the statement is true
for r < m and consider B&? (#"+1; x). Set

; @)oo
(@5 ¢)oo
By (2.8) and (2.9) we get

v(x) =

(u:a)+(1 —a))x).
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00 k_—l N j
BS (1 x) = Z(l 4" [Ticou —wq )llf(x)

P (@5 @k-1
i )
= l—g+g(1l—"NV"(u—w+w(l—gk))—=="— "~ ~
k=0( q+4q(1—4"))" (u-o+o(l-q")) TR
m—1 oo k—1 i
m _ I Ti—o(u —wg?)
— N 1 _ m-—s 1 _ 1 _ k s + 1 _ k S+ J
S:()(S)q( q9) g(( 0)x(1—¢*)" +w(1-q") )—(q;q)k ¥ (x)
k—1 i
> m m j= (u— )
F3(0 - 01— )" + g (1 — gty iz e
paard (q: @k

3

-1
= <m>qf(1 — )" ((1 = )x B ('; x) + wBss™ (' x))
N

s=0
+ (1 — w)g"x B (1™ x) + wg™ B (1™ x),

which means

B () = o (1 = "B ()

m—1
s (’qu(l " (1 — )X BL (1 x) + 0B (1 x).
s=0
By the induction assumption this is a polynomial of degree m + 1. O

Proof of Theorem 9. It suffices to prove that f is linear if L(f) = f. Let g(x) = f(x) — f(0) — (f(1) — f(0))x.
Then g(0) = g(1) =0and Lg = g, since L reproduces linear functions. We will prove g = 0. Assume g # 0. Without
loss of generalization we may assume that there exist an xo € (0, 1) such that g(xo) > 0. Then, for some « < 0,
a/4 > a(xg—1/2)% — g(xg). Now h(x) = a(x — 1/2)? — g(x) is continuous on [0, 1] and 7 (0) = h(1) > h(xo). Let
m be the minimum of 4 on [0, 1], and suppose it is assumed at & with & € (0, 1). Then for all x € [0, 1], a(x —1/2) —
gxyzm=a( — 1/2)2 — g(&). Hence, g(x) < a(x — 5)2 + B(x — &) + g(&) for some B and therefore,

L(g,&) <aL((t—&)% &)+ BL((t —£),&) +g&) =a(L(t*, &) — &%) + g (&).

Since L(g,&) = g(£) and L(tz, &) — 52 > 0, we get o > 0, which leads to a contradiction. Hence, g = 0 and therefore,
fislinear. O

Proof of Theorem 10. The proof is standard. We know that the limit w, g-Bernstein operators are positive linear
operators on C[0, 1] and reproduce linear functions. Also, by (2.15)

B (%x) =x® [xel0.1): g 1-].

Theorem 10 follows from the Korovkin theorem. O
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