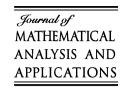


Available online at www.sciencedirect.com

J. Math. Anal. Appl. 340 (2008) 1096–1108



www.elsevier.com/locate/jmaa

Properties of convergence for ω , q-Bernstein polynomials $^{\Leftrightarrow}$

Heping Wang

Department of Mathematics, Capital Normal University, Beijing 100037, People's Republic of China

Received 24 May 2007

Available online 14 September 2007

Submitted by Richard M. Aron

Abstract

In this paper, we discuss properties of the ω , q-Bernstein polynomials $B_n^{\omega,q}(f;x)$ introduced by S. Lewanowicz and P. Woźny in [S. Lewanowicz, P. Woźny, Generalized Bernstein polynomials, BIT 44 (1) (2004) 63–78], where $f \in C[0,1]$, ω , q>0, $\omega \ne 1$, q^{-1},\ldots,q^{-n+1} . When $\omega=0$, we recover the q-Bernstein polynomials introduced by [G.M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4 (1997) 511–518]; when q=1, we recover the classical Bernstein polynomials. We compute the second moment of $B_n^{\omega,q}(t^2;x)$, and demonstrate that if f is convex and ω , $q\in(0,1)$ or $(1,\infty)$, then $B_n^{\omega,q}(f;x)$ are monotonically decreasing in n for all $x\in[0,1]$. We prove that for $\omega\in(0,1)$, $q_n\in(0,1]$, the sequence $\{B_n^{\omega,q_n}(f)\}_{n\geqslant 1}$ converges to f uniformly on [0,1] for each $f\in C[0,1]$ if and only if $\lim_{n\to\infty}q_n=1$. For fixed ω , $q\in(0,1)$, we prove that the sequence $\{B_n^{\omega,q}(f)\}$ converges for each $f\in C[0,1]$ and obtain the estimates for the rate of convergence of $\{B_n^{\omega,q}(f)\}$ by the modulus of continuity of f, and the estimates are sharp in the sense of order for Lipschitz continuous functions.

Keywords: ω , q-Bernstein polynomials; Limit ω , q-Bernstein operators; Rate of convergence; Modulus of continuity

1. Introduction

Let q > 0. For any non-negative integer k, the q-integer $[k]_q$ is defined by

$$[k]_q := 1 + q + \dots + q^{k-1}$$
 $(k = 1, 2, \dots),$ $[0]_q := 0$

and the *q-factorial* $[k]_a!$ by

$$[k]_q! := [1]_q[2]_q \dots [k]_q \quad (k = 1, 2, \dots), \qquad [0]_q! := 1.$$

For integers k, n with $0 \le k \le n$, the q-binomial coefficient is defined by

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q} := \frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}.$$

Supported by Beijing Natural Science Foundation (Project No. 1062004) and by National Natural Science Foundation of China. E-mail address: wanghp@mail.cnu.edu.cn.

We also use the following standard notations:

$$(a;q)_0 := 1, \quad (a;q)_k := \prod_{s=0}^{k-1} (1 - aq^s), \quad (a;q)_\infty := \prod_{s=0}^\infty (1 - aq^s) \quad (0 < q < 1).$$

Clearly,

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{(q;q)_n}{(q;q)_k (q;q)_{n-k}}.$$

In [11], Phillips proposed the q-Bernstein polynomials: for each positive integer n, and $f \in C[0, 1]$, the q-Bernstein polynomial of f is

$$B_{n,q}(f;x) := \sum_{k=0}^{n} f\left(\frac{[k]_q}{[n]_q}\right) {n \brack k}_q x^k(x;q)_{n-k}.$$

Note that for q = 1, $B_{n,q}(f, x)$ is the classical Bernstein polynomial $B_n(f, x)$:

$$B_n(f;x) := \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}.$$

In [4], S. Lewanowicz and P. Woźny introduced the generalized Bernstein polynomials (we call the ω , q-Bernstein polynomials): for $f \in C[0, 1]$, the ω , q-Bernstein polynomials of f are

$$B_n^{\omega,q}(f;x) := \sum_{k=0}^n f\left(\frac{[k]_q}{[n]_q}\right) B_k^n(u;\omega|q) \quad (u = \omega + (1-\omega)x), \tag{1.1}$$

where q and ω are positive real parameters, $\omega \neq 1, q^{-1}, \dots, q^{-n+1}$, and

$$B_{k}^{n}(u;\omega|q) := \frac{1}{(\omega;q)_{n}} \begin{bmatrix} n \\ k \end{bmatrix}_{q} u^{k} (\omega u^{-1};q)_{k} (u;q)_{n-k}$$

$$= \frac{1}{(\omega;q)_{n}} \begin{bmatrix} n \\ k \end{bmatrix}_{q} \prod_{j=0}^{k-1} (u-\omega q^{j}) \prod_{s=0}^{n-k-1} (1-uq^{s}) \quad (k=0,1,\ldots,n)$$
(1.2)

are the basic ω , q-Bernstein polynomials. When $\omega = 0$, we recover the q-Bernstein polynomials; when q = 1, we recover the classical Bernstein polynomials.

In recent years, the q-Bernstein polynomials have been investigated intensively by a number of authors (see [3,7,8,10–12] and references therein [13–17]). However, there are very few works about the ω , q-Bernstein polynomials as far as we know, since the study of the ω , q-Bernstein polynomials is more difficult than that of the q-Bernstein polynomials. It should be mentioned here that various properties of the basic ω , q-Bernstein polynomials have been studied in [4] and [5]. Also, we can define the generalized Bézier curve and de Casteljau algorithm, which can be used for evaluating ω , q-Bernstein polynomials iteratively (see [4]) and are very useful for computer-aided geometric design. In this paper, it is our main aim to investigate properties of convergence of the ω , q-Bernstein polynomials for ω , $q \in (0,1)$ or ω , $q \in (1,\infty)$. Our results demonstrate that in general properties of convergence for the ω , q-Bernstein polynomials are very similar to those for the q-Bernstein polynomials but essentially different from those for the classical Bernstein polynomials.

Throughout the paper, we always assume that f is a continuous real function on [0,1], $\omega, q>0$, $\omega\neq 1, q^{-1}, \ldots, q^{-n+1}$, $u=\omega+(1-\omega)x$ for $x\in[0,1]$. Denote by C[0,1] (or $C^n[0,1]$, $1\leqslant n\leqslant\infty$) the space of all continuous (corresponding, n times continuously differentiable) real-valued functions on [0,1] equipped with the uniform norm $\|\cdot\|$. The expression $g_n(x) \rightrightarrows g(x)$ $[x\in[0,1]; n\to\infty]$ denotes convergence of g_n to g uniformly in $x\in[0,1]$ as $n\to\infty$; $A(n)\asymp B(n)$ means that $A(n)\ll B(n)$ and $A(n)\gg B(n)$, and $A(n)\ll B(n)$ means that there exists a positive constant c independent of n such that $A(n)\leqslant cB(n)$.

2. Statement of results

It follows from the definition of $B_n^{\omega,q}(f;x)$ that the operators $B_n^{\omega,q}$ on C[0,1] which map from $f \in C[0,1]$ to $B_n^{\omega,q}(f)$ are positive linear operators if $\omega, q \in (0,1)$ or $\omega, q \in (1,\infty)$. Also the ω, q -Bernstein polynomials possess the end-point interpolation property, that is,

$$B_n^{\omega,q}(f;0) = f(0), \qquad B_n^{\omega,q}(f;1) = f(1).$$
 (2.1)

In Section 3, we shall discuss some fundamental properties of the ω , q-Bernstein polynomials. According to the theory of approximation by positive linear operators (see [2, pp. 277–281]), the moments $B_n^{\omega,q}(t^r;x)$ (r=0,1,2) are of particular importance, so we shall compute the moments $B_n^{\omega,q}(t^r;x)$ (r=0,1,2). Using the identity (see [1, §10, Exercise 9])

$$(ab; q)_n = \sum_{k=0}^n {n \brack k}_q a^k (b; q)_k (a; q)_{n-k},$$

and induction on n, S. Lewanowicz and P. Woźny proved in [4, Eqs. (2.4) and (2.5)] that

$$\sum_{i=0}^{n} B_i^n(x; \omega | q) = 1 \quad \text{(partition of unity)}, \tag{2.2}$$

and

$$\sum_{i=0}^{n} \frac{[i]_q}{[n]_q} B_i^n(x; \omega | q) = \frac{x - \omega}{1 - \omega}.$$
 (2.3)

That is.

$$B_n^{\omega,q}(at+b;x) = ax+b.$$
 (2.4)

Hence, the ω , q-Bernstein polynomials reproduce linear functions. About $B_n^{\omega,q}(t^2;x)$, we have the following result:

Theorem 1. *For* $x \in [0, 1], q \neq 1 \text{ and } n \geq 1$,

$$B_n^{\omega,q}(t^2;x) = \frac{x(1-q)(1-\omega q^n) + qx^2(1-\omega)(1-q^{n-1})}{(1-\omega q)(1-q^n)}.$$
 (2.5)

It is easy to know that for each $f \in C[0, 1]$, $B_n^{\omega, q}(f; x)$ is a polynomial of degree $\leq n$. However, if f is a polynomial, the following strong assertion holds:

Theorem 2. If f is a polynomial of degree m, then $B_n^{\omega,q}(f;x)$ is a polynomial of degree $\leq \min\{m,n\}$.

Next we show when the function f is convex, the ω , q-Bernstein polynomials $B_n^{\omega,q}(f;x)$ are monotonic in n for ω , $q \in (0,1)$ or ω , $q \in (1,\infty)$, as in the classical case and in the case $q \in (0,1)$, $\omega = 0$.

Theorem 3. Let f be continuous and convex on [0, 1]. If $\omega, q \in (0, 1)$ or $\omega, q \in (1, \infty)$, then for all $n \ge 2$ and all $x \in [0, 1]$,

$$B_{n-1}^{\omega,q}(f;x) \geqslant B_n^{\omega,q}(f;x).$$
 (2.6)

The inequality holds strictly for 0 < x < 1 unless f is linear in each of intervals between consecutive knots $[r]_q/[n-1]_q$, $0 \le r \le n-1$, in which case we have the equality $B_{n-1}^{\omega,q}(f;x) = B_n^{\omega,q}(f;x)$.

The following theorem allows us to reduce the case $\omega, q > 1$ to the case $\omega, q \in (0, 1)$. So, in the following section, we consider the case $\omega, q \in (0, 1)$ only.

Theorem 4. Let $f \in C[0, 1]$, g(x) := f(1 - x). Then for any $x \in [0, 1]$,

$$B_n^{\omega,q}(f;x) = B_n^{1/\omega,1/q}(g;1-x). \tag{2.7}$$

In Section 4, we shall discuss properties of convergence for the ω , q-Bernstein polynomials. Based on Theorem 1, we have the following approximating theorem.

Theorem 5. Let $q_n \in (0, 1]$, $\omega \in (0, 1)$. Then the sequence $\{B_n^{\omega, q_n}(f)\}$ converges to f uniformly on [0, 1] for each $f \in C[0, 1]$ if and only if $\lim_{n\to\infty} q_n = 1$.

Remark 1. This is a generalization of the following result which is given in [4] without proof. If $0 < q_n, \omega < 1$, $\lim_{n\to\infty} q_n = 1$, then for any $f \in C[0, 1]$, the sequence $\{B_n^{\omega,q_n}(f)\}$ converges to f uniformly on [0, 1].

Theorem 5 implies that if $\omega, q \in (0, 1)$ is fixed, $\{B_n^{\omega, q}(f, x)\}$ may not be approximating for some continuous functions. In Section 4, we also discuss properties of convergence for the ω, q -Bernstein polynomials for fixed $\omega, q \in (0, 1)$. For $f \in C[0, 1]$ and $\omega, q \in (0, 1)$, we set

$$B_{\infty}^{\omega,q}(f;x) := \begin{cases} \sum_{k=0}^{\infty} f(1-q^k) B_k^{\infty}(u;\omega|q), & 0 \le x < 1, \\ f(1), & x = 1 \end{cases} \quad (u = \omega + (1-\omega)x), \tag{2.8}$$

where

$$B_k^{\infty}(u;\omega|q) := \frac{u^k(\omega u^{-1};q)_k(u;q)_{\infty}}{(q;q)_k(\omega;q)_{\infty}}.$$
(2.9)

The operators $B_{\infty}^{\omega,q}$ on C[0,1] which map from f to $B_{\infty}^{\omega,q}(f)$ are positive linear operators and are called the limit ω, q -Bernstein operators. When $\omega = 0$, the limit ω, q -Bernstein operators reduce to the limit q-Bernstein operators (see [3,7,9,13]). From the q-binomial theorem (see [1, p. 488]), we know that

$$\sum_{k=0}^{\infty} B_{\infty}^{k}(u;\omega|q) = \sum_{k=0}^{\infty} \frac{u^{k}(\omega u^{-1};q)_{k}(u;q)_{\infty}}{(q;q)_{k}(\omega;q)_{\infty}} = 1,$$
(2.10)

which means

$$B_{\infty}^{\omega,q}(1;x) = 1.$$

For $f \in C[0, 1]$, t > 0, we define the modulus of continuity $\omega(f, t)$ and the second modulus of smoothness $\omega_2(f, t)$ as follows:

$$\begin{aligned} \omega(f,t) &:= \sup_{\substack{|x-y| \leqslant t \\ x,y \in [0,1]}} \big| f(x) - f(y) \big|; \\ \omega_2(f,t) &:= \sup_{0 < h \leqslant t} \sup_{x \in [0,1-2h]} \big| f(x+2h) - 2f(x+h) + f(x) \big|. \end{aligned}$$

Theorem 6. Let $0 < \omega, q < 1$. Then for each $f \in C[0, 1]$ the sequence $\{B_n^{\omega, q}(f; x)\}$ converges to $B_{\infty}^{\omega, q}(f; x)$ uniformly on [0, 1]. Furthermore,

$$\|B_n^{\omega,q}(f) - B_{\infty}^{\omega,q}(f)\| \leqslant C_q \omega(f, q^n). \tag{2.11}$$

The above estimate is sharp in the following sense of order: for each α , $0 < \alpha \le 1$, there exists a function $f_{\alpha}(x)$ which belongs to the Lipschitz class $\text{Lip }\alpha := \{f \in C[0,1] \mid \omega(f,t) \ll t^{\alpha}\}$ such that

$$\|B_n^{\omega,q}(f_\alpha) - B_\infty^{\omega,q}(f_\alpha)\| \gg q^{\alpha n}. \tag{2.12}$$

Theorem 7. Let $0 < \omega, q < 1$. Then

$$\|B_n^{\omega,q}(f) - B_\infty^{\omega,q}(f)\| \leqslant c\omega_2(f,\sqrt{q^n}). \tag{2.13}$$

Furthermore,

$$\sup_{\omega,q\in(0,1)} \|B_n^{\omega,q}(f) - B_{\infty}^{\omega,q}(f)\| \le c\omega_2(f, n^{-1/2}), \tag{2.14}$$

where c is an absolute constant.

Remark 2. From (2.14) we know that for each $f \in C[0, 1]$, $\lim_{n\to\infty} B_n^{\omega, q}(f; x) = B_{\infty}^{\omega, q}(f; x)$ uniformly in $x \in [0, 1]$ and $\omega, q \in (0, 1)$.

Remark 3. Results similar to Theorems 6 and 7 for the q-Bernstein polynomials were obtained in [16] and [14], respectively. Note that when $f(x) = x^2$, we have

$$||B_n^{\omega,q}(f) - B_{\infty}^{\omega,q}(f)|| \simeq q^n \simeq \omega_2(f, \sqrt{q^n}).$$

Hence, the estimate (2.13) is sharp in the following sense: the sequence $\sqrt{q^n}$ in (2.13) cannot be replaced by any other sequence decreasing to zero more rapidly as $n \to \infty$. However, (2.13) is not sharp for the Lipschitz class Lip α ($\alpha \in (0,1]$) in the sense of order. This, combining with Theorem 6, shows that in the case $0 < \omega, q < 1$, the modulus of continuity is more appropriate to describe the rate of convergence for the ω, q -Bernstein polynomials than the second modulus of smoothness.

Remark 4. In the case $\omega, q \in (0, 1)$, from (2.11) we conclude that the rate of convergence $\|B_n^{\omega,q}(f) - B_{\infty}^{\omega,q}(f)\|$ has the order q^n for each $f \in C^1[0, 1]$ versus at most 1/n for the classical Bernstein polynomials. From (2.14) we know that the rate of convergence $\|B_n^{\omega,q}(f) - B_{\infty}^{\omega,q}(f)\|$ can be dominated by $c\omega_2(f, n^{-1/2})$ uniformly with respect to $\omega, q \in (0, 1)$.

Remark 5. The constant c in (2.13) is an absolute constant and does not depend on q, however, the constant C_q in (2.11) depends on q, and tends to $+\infty$ as $q \to 1-$. Hence, (2.13) does not follow from (2.11).

In Section 5, we shall discuss properties of the limit ω , q-Bernstein operators. For any $f \in C[0, 1]$, since the function $B_{\infty}^{\omega,q}(f;x)$ is the uniform limit of the sequence $\{B_n^{\omega,q}(f;x)\}$, we know $B_{\infty}^{\omega,q}(f;x) \in C[0, 1]$. When f is a polynomial of degree m, $B_{\infty}^{\omega,q}(f;x)$ is a polynomial of degree m. We show the following strong assertion.

Theorem 8. If f is a polynomial of degree m, then $B_{\infty}^{\omega,q}(f;x)$ is also a polynomial of degree m.

Let $\omega, q \in (0, 1)$ be fixed. We want to describe the class of continuous functions satisfying the condition

$$\lim_{n \to \infty} B_n^{\omega, q}(f; x) = f(x) \quad \text{for } x \in [0, 1].$$

We know that the limit ω , q-Bernstein operators are positive linear operators on C[0, 1] and reproduce linear functions. Also from Theorem 1 and Remark 2, we get

$$B_{\infty}^{\omega,q}(t^2;x) = \frac{x(1-q) + qx^2(1-\omega)}{(1-\omega q)} > x^2, \quad x \in (0,1).$$
 (2.15)

We show the following result.

Theorem 9. Let L be a positive linear operator on C[0,1] which reproduces linear functions. If $L(t^2, x) > x^2$ for all $x \in (0,1)$, then L(f) = f if and only if f is linear.

Corollary. Let $0 < \omega, q < 1$ be fixed and let $f \in C[0, 1]$. Then $B_{\infty}^{\omega, q}(f; x) = f(x)$ for all $x \in [0, 1]$ if and only if f is linear.

Remark 6. From Corollary and Theorem 6, we know for fixed $\omega, q \in (0,1)$ and $f \in C[0,1]$, the sequence $\{B_n^{\omega,q}(f;x)\}$ does not approximate f(x) unless f is linear. This is completely in contrast to the classical Bernstein polynomials, which $\{B_n(f;x)\}$ approximates f(x) for any $f \in C[0,1]$.

At last, we discuss approximating property of the limit ω , q-Bernstein operators.

Theorem 10. Let $\omega \in (0,1)$ be fixed. Then for any $f \in C[0,1]$, $\{B_{\infty}^{\omega,q}(f)\}$ converges to f uniformly on [0,1] as $q \to 1-$.

3. Proofs of Theorems 1-4

Proof of Theorem 1. First we prove the following recurrence formula:

$$B_{n+1}^{\omega,q}(t^2;x) = \frac{qx^2(1-\omega)(1-q^n) + x(1-q)(1-\omega q^n) + q\omega(1-q^n)^2 B_n^{\omega,q}(t^2;x)}{(1-q^{n+1})(1-\omega q^n)}.$$
(3.1)

From [4, Eq. (2.1)], we have

$$\frac{[i+1]_q}{[n+1]_q} B_{i+1}^{n+1}(u;\omega|q) = \frac{u-\omega q^i}{1-\omega q^n} B_i^n(u;\omega|q). \tag{3.2}$$

Thus.

$$\begin{split} B_{n+1}^{\omega,q}(t^2;x) &= \sum_{i=0}^n \frac{[i+1]_q^2}{[n+1]_q^2} B_{i+1}^{n+1}(u;\omega|q) = \sum_{i=0}^n \frac{1-q^{i+1}}{1-q^{n+1}} \frac{u-\omega q^i}{1-\omega q^n} B_i^n(u;\omega|q) \\ &= \sum_{i=0}^n \frac{u-(uq+\omega)q^i+\omega q^{2i+1}}{(1-q^{n+1})(1-\omega q^n)} B_i^n(u;\omega|q) \\ &= \sum_{i=0}^n \frac{(u+\omega q-uq-\omega)+(uq+\omega-2\omega q)(1-q^i)+\omega q(1-q^i)^2}{(1-q^{n+1})(1-\omega q^n)} B_i^n(u;\omega|q). \end{split}$$

Using (2.2), (2.3) and $u = \omega + (1 - \omega)x$, by direct computation we get

$$\begin{split} B_{n+1}^{\omega,q}\big(t^2;x\big) &= \frac{(u+\omega q - uq - \omega) + (uq+\omega - 2\omega q)(1-q^n)x + \omega q(1-q^n)^2 B_n^{\omega,q}(t^2;x)}{(1-q^{n+1})(1-\omega q^n)} \\ &= \frac{(1-q)(1-\omega)x + ((\omega+x-\omega x)q + \omega - 2\omega q)(1-q^n)x + q\omega(1-q^n)^2 B_n^{\omega,q}(t^2;x)}{(1-q^{n+1})(1-\omega q^n)} \\ &= \frac{qx^2(1-\omega)(1-q^n) + x(1-q)(1-\omega q^n) + q\omega(1-q^n)^2 B_n^{\omega,q}(t^2;x)}{(1-q^{n+1})(1-\omega q^n)}, \end{split}$$

which proves (3.1). Now we show Theorem 1. We use induction on n. It follows from the definition of $B_n^{\omega,q}(f;x)$ that

$$B_1^{\omega,q}(t^2;x) = x.$$

Using (3.1) we get

$$B_2^{\omega,q}(t^2;x) = \frac{x(1-q)(1-\omega q^2) + qx^2(1-\omega)(1-q)}{(1-\omega q)(1-q^2)},$$

which means (2.5) is true for n = 2. Assume (2.5) holds for a certain n. Then by (3.1) and induction assumption, we get

$$\begin{split} B_{n+1}^{\omega,q}(t^2;x) \\ &= \frac{1}{(1-\omega q)\left(1-q^{n+1}\right)\left(1-\omega q^n\right)} \left((1-\omega q)\left(x(1-q)\left(1-\omega q^n\right)+qx^2(1-\omega)\left(1-q^n\right)\right) \\ &+ \omega q\left(1-q^n\right)\left(x(1-q)\left(1-\omega q^n\right)+qx^2(1-\omega)\left(1-q^{n-1}\right)\right)\right) \\ &= \frac{x(1-q)(1-\omega q^n)((1-\omega q)+\omega q(1-q^n))+qx^2(1-\omega)(1-q^n)((1-\omega q)+\omega q(1-q^{n-1}))}{(1-\omega q)(1-q^{n+1})(1-\omega q^n)} \\ &= \frac{x(1-q)(1-\omega q^{n+1})+qx^2(1-\omega)(1-q^n)}{(1-\omega q)(1-q^{n+1})}, \end{split}$$

which proves Theorem 1. \Box

Proof of Theorem 2. Denote by Π_n the space of polynomials of degree $\leq n$. Obviously, $B_n^{\omega,q_n}(f;x) \in \Pi_n$ for all $f \in C[0,1]$ and $B_n^{\omega,q_n}(t^r;x) \in \Pi_r$ for r=0,1 by (2.4), so it suffices to prove the statement that $B_n^{\omega,q_n}(t^r;x) \in \Pi_r$ for 1 < r < n. We use induction on n. Let us suppose that the statement is true for $n \geq r$, that is, $B_n^{\omega,q}(t^k;x) \in \Pi_k$ for $k \leq n$. Then, for 1 < r < n+1, by the definition of $B_{n+1}^{\omega,q_n}(t^r;x)$ and (3.2), we get that

$$\begin{split} &B_{n+1}^{\omega,q}\left(t^r;x\right) \\ &= \sum_{i=0}^n \frac{[i+1]_q^{r-1}}{[n+1]_q^{r-1}} \frac{u - \omega q^i}{1 - \omega q^n} B_i^n(u;\omega|q) \\ &= \sum_{i=0}^n \frac{(1+q[i]_q)^{r-1}((1-\omega)x + \omega(1-q)[i]_q)}{[n+1]_q^{r-1}(1-\omega q^n)} B_i^n(u;\omega|q) \\ &= \sum_{i=0}^n \frac{(1-\omega)x + q^{r-1}\omega(1-q)[i]_q^r + \sum_{j=1}^{r-1} \left(\binom{r-1}{j}q^j(1-\omega)x + \binom{r-1}{j-1}q^{j-1}\omega(1-q)\right)[i]_q^j}{[n+1]_q^{r-1}(1-\omega q^n)} B_i^n(u;\omega|q) \\ &= \frac{(1-\omega)x + \omega(q^{r-1}-q^r)[n]_q^r B_n^{\omega,q}(t^r;x) + \sum_{j=1}^{r-1} \left(\binom{r-1}{j}q^j(1-\omega)x + \binom{r-1}{j-1}\omega(q^{j-1}-q^j)\right)[n]_q^j B_n^{\omega,q}(t^j;x)}{[n+1]_q^{r-1}(1-\omega q^n)}. \end{split}$$

By the induction assumption we obtain $B_{n+1}^{\omega,q}(t^r;x) \in \Pi_r$. Theorem 2 is proved. \square

Remark 7. If $r \le n$, then deg $B_n^{\omega,q}(t^r;x) = r$. Indeed, from [4, Lemma 2.3], we know that $B_i^n(u;\omega|q)$, $i = 0, 1, \ldots, n$, form a basis in the space Π_n . Since the rank of the matrix

$$\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & \frac{[1]_q}{[n]_q} & \frac{[2]_q}{[n]_q} & \cdots & \frac{[n]_q}{[n]_q} \\ 0 & \left(\frac{[1]_q}{[n]_q}\right)^2 & \left(\frac{[2]_q}{[n]_q}\right)^2 & \cdots & \left(\frac{[n]_q}{[n]_q}\right)^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \left(\frac{[1]_q}{[n]_q}\right)^r & \left(\frac{[2]_q}{[n]_q}\right)^r & \cdots & \left(\frac{[n]_q}{[n]_q}\right)^r \end{pmatrix}$$

is r+1, we get the polynomials $B_n^{\omega,q}(t^j;x)$, $j=0,1,\ldots,r$, are linearly independent. Using the fact that $B_n^{\omega,q}(t^j;x) \in \Pi_j$, we get that $B_n^{\omega,q}(t^r;x)$ is a polynomial of degree r for $r \leqslant n$.

Proof of Theorem 3. The proof is very similar to the one of Theorem 7.3.4 in [12, pp. 270–271]. From [4, Lemma 2.1(v)], we know that

$$B_i^{n-1}(u;\omega|q) = \frac{[n-i]_q}{[n]_q} B_i^n(u;\omega|q) + \left(1 - \frac{[n-i-1]_q}{[n]_q}\right) B_{i+1}^n(u;\omega|q).$$

We have

$$\begin{split} &B_{n-1}^{\omega,q}(f;x) - B_{n}^{\omega,q}(f;x) \\ &= \sum_{i=0}^{n-1} f\left(\frac{[i]_{q}}{[n-1]_{q}}\right) B_{i}^{n-1}(u;\omega|q) - \sum_{i=0}^{n} f\left(\frac{[i]_{q}}{[n]_{q}}\right) B_{i}^{n}(u;\omega|q) \\ &= \sum_{i=0}^{n-1} f\left(\frac{[i]_{q}}{[n-1]_{q}}\right) \left(\frac{[n-i]_{q}}{[n]_{q}} B_{i}^{n}(u;\omega|q) + \left(1 - \frac{[n-i-1]_{q}}{[n]_{q}}\right) B_{i+1}^{n}(u;\omega|q)\right) - \sum_{i=0}^{n} f\left(\frac{[i]_{q}}{[n]_{q}}\right) B_{i}^{n}(u;\omega|q) \\ &= \sum_{i=1}^{n-1} \left(\frac{[n-i]_{q}}{[n]_{q}} f\left(\frac{[i]_{q}}{[n-1]_{q}}\right) + \left(1 - \frac{[n-i]_{q}}{[n]_{q}}\right) f\left(\frac{[i-1]_{q}}{[n-1]_{q}}\right) - f\left(\frac{[i]_{q}}{[n]_{q}}\right)\right) B_{i}^{n}(u;\omega|q) \\ &=: \sum_{i=1}^{n-1} a_{i} B_{i}^{n}(u;\omega|q). \end{split}$$

Clearly, if $\omega, q \in (0, 1)$ or $(1, \infty)$, then $B_i^n(u; \omega|q) \geqslant 0$ for all $x \in [0, 1]$. It suffices to show that each a_i is non-negative. For $1 \leqslant i \leqslant n-1$, put $t_0 = \frac{[i-1]_q}{[n-1]_q}$, $t_1 = \frac{[i]_q}{[n-1]_q}$ and $\lambda = \frac{[n-i]_q}{[n]_q}$. Then

$$a_i = \lambda f(t_1) + (1 - \lambda) f(t_0) - f(\lambda t_1 + (1 - \lambda)t_0) \ge 0,$$

since the function f is convex. Thus $B_{n-1}^{\omega,q}(f;x)\geqslant B_n^{\omega,q}(f;x)$. The inequality will be strict for 0< x<1 unless each $a_i=0$ which can only occur when f is linear in each of the intervals between consecutive knots [i]/[n-1], $0\leqslant i\leqslant n-1$, when we have $B_{n-1}^{\omega,q}(f;x)=B_n^{\omega,q}(f;x)$ for $0\leqslant x\leqslant 1$. This completes the proof. \square

Proof of Theorem 4. It is easy to know from (1.1) that

$$B_n^{\omega,q}(f;x) = \sum_{k=0}^n f\left(\frac{[n-k]_q}{[n]_q}\right) B_{n-k}^n(u;\omega|q), \quad u = \omega + (1-\omega)x.$$

Let us put $u' = 1/\omega + (1 - 1/\omega)(1 - x) = 1 + (1/\omega - 1)x$. Note that

$$\begin{bmatrix} n \\ n-k \end{bmatrix}_{q} = \begin{bmatrix} n \\ k \end{bmatrix}_{q} = q^{k(n-k)} \begin{bmatrix} n \\ k \end{bmatrix}_{1/q},$$

$$(\omega; q)_{n} = q^{n(n-1)/2} \omega^{n} (-1)^{n} (1/\omega; 1/q)_{1/q},$$

$$\prod_{j=0}^{n-k-1} (u - \omega q^{j}) = (-1)^{n-k} \omega^{n-k} q^{(n-k)(n-k-1)/2} \prod_{j=0}^{n-k-1} (1 - u'q^{-j}),$$

and

$$\prod_{s=0}^{k-1} (1 - uq^s) = (-1)^k \omega^k q^{k(k-1)} \prod_{s=0}^{k-1} (u' - \omega^{-1} q^{-s}),$$

we get by (1.2)

$$\begin{split} B_{n-k}^{n}(u;\omega|q) &= \frac{1}{(\omega;q)_{n}} \begin{bmatrix} n \\ n-k \end{bmatrix}_{q} \prod_{j=0}^{n-k-1} (u-\omega q^{j}) \prod_{s=0}^{k-1} (1-uq^{s}) \\ &= \frac{1}{(1/\omega;1/q)_{n}} \begin{bmatrix} n \\ k \end{bmatrix}_{1/q} \prod_{s=0}^{k-1} (u'-\omega^{-1}q^{-s}) \prod_{j=0}^{n-k-1} (1-u'q^{-j}) \\ &= B_{k}^{n}(u';1/\omega|1/q). \end{split}$$

On the other hand,

$$f\left(\frac{[n-k]_q}{[n]_a}\right) = f\left(1 - \frac{[k]_{1/q}}{[n]_{1/q}}\right) = g\left(\frac{[k]_{1/q}}{[n]_{1/q}}\right).$$

Therefore,

$$B_n^{\omega,q}(f;x) = \sum_{k=0}^n g\left(\frac{[k]_{1/q}}{[n]_{1/q}}\right) B_k^n(u';1/\omega|1/q) = B_n^{1/\omega,1/q}(g;1-x).$$

The proof of Theorem 4 is complete. \Box

4. Proofs of Theorems 5-7

Proof of Theorem 5. Since the ω , q-Bernstein operators B_n^{ω,q_n} are positive linear operators and reproduce linear functions, the well-known Korovkin theorem (see [2, pp. 8–9]) implies that $B_n^{\omega,q_n}(f;x) \rightrightarrows f(x)$ [$x \in [0,1]$; $n \to \infty$] for any $f \in C[0,1]$ if and only if

$$B_n^{\omega,q_n}(t^2;x) \rightrightarrows x^2 \quad [x \in [0,1]; n \to \infty]. \tag{4.1}$$

From Theorem 1, we get

$$\frac{x(1-x)}{[n]_q} \leqslant B_n^{\omega,q} \left(t^2; x \right) - x^2 = \frac{(1-\omega q^n) x(1-x)}{(1-\omega q)[n]_q} \leqslant \frac{x(1-x)}{(1-\omega)[n]_q}.$$

Hence, (4.1) is equivalent to the condition $\lim_{n\to\infty} [n]_{q_n} = \infty$, which is equivalent to the condition $\lim_{n\to\infty} q_n = 1$ (see [13]). Theorem 5 is proved. \square

Proof of Theorem 6. The proof is similar to the one of Theorem 1 in [16]. It follows directly from (2.1) and (2.8) that

$$B_n^{\omega,q}(f;0) = B_{\infty}^{\omega,q}(f;0) = f(0), \qquad B_n^{\omega,q}(f;1) = B_{\infty}^{\omega,q}(f;1) = f(1).$$

Obviously, if $\omega, q \in (0, 1)$, then $B_k^n(u; \omega | q) \ge 0$, $B_k^{\infty}(u; \omega | q) \ge 0$ for all $x \in [0, 1]$, $u = \omega + (1 - \omega)x$. Hence for all $x \in (0, 1)$, by (1.1), (2.8), (2.2) and (2.10) we know that

$$\begin{aligned}
&|B_{n}^{\omega,q}(f;x) - B_{\infty}^{\omega,q}(f;x)| \\
&= \left| \sum_{k=0}^{n} f([k]/[n]) B_{k}^{n}(u;\omega|q) - \sum_{k=0}^{\infty} f(1-q^{k}) B_{k}^{\infty}(u;\omega|q) \right| \\
&= \left| \sum_{k=0}^{n} (f([k]/[n]) - f(1)) B_{k}^{n}(u;\omega|q) - \sum_{k=0}^{\infty} (f(1-q^{k}) - f(1)) B_{k}^{\infty}(u;\omega|q) \right| \\
&\leq \sum_{k=0}^{n} |f([k]/[n]) - f(1-q^{k})| B_{k}^{n}(u;\omega|q) + \sum_{k=0}^{n} |f(1-q^{k}) - f(1)| |B_{k}^{n}(u;\omega|q) - B_{k}^{\infty}(u;\omega|q)| \\
&+ \sum_{k=n+1}^{\infty} |f(1-q^{k}) - f(1)| B_{k}^{\infty}(u;\omega|q) \\
&=: I_{1} + I_{2} + I_{3}.
\end{aligned} \tag{4.3}$$

First we estimate I_1 , I_3 . Since

$$0 \leqslant \frac{[k]}{[n]} - (1 - q^k) = \frac{1 - q^k}{1 - q^n} - (1 - q^k) = \frac{q^n (1 - q^k)}{1 - q^n} \leqslant q^n,$$

$$0 \leqslant 1 - (1 - q^k) = q^k \leqslant q^n \quad (k \geqslant n + 1),$$

we get

$$I_1 \leq \omega(f, q^n) \sum_{k=0}^n B_k^n(u; \omega | q) = \omega(f, q^n)$$

$$\tag{4.4}$$

and

$$I_3 \leqslant \omega(f, q^n) \sum_{k=n+1}^{\infty} B_k^{\infty}(u; \omega | q) \leqslant \omega(f, q^n). \tag{4.5}$$

Now we estimate I_2 . For $0 \le k \le n$, we note that

$$\left| B_k^n(u;\omega|q) - B_k^{\infty}(u;\omega|q) \right| \leqslant B_k^n(u;\omega|q) \left| 1 - \prod_{s=n-k}^{\infty} \left(1 - uq^s \right) \right| + B_k^{\infty}(u;\omega|q) \left| \prod_{s=n}^{\infty} \left(1 - \omega q^s \right) \prod_{s=n-k+1}^{n} \left(1 - q^s \right) - 1 \right|. \tag{4.6}$$

Using the inequality (see [15])

$$1 - \prod_{s=j}^{\infty} (1 - q^s) \leqslant \frac{q^j}{q(1-q)} \ln \frac{1}{1-q} \quad (j = 1, 2, ...),$$

we get

$$\left|1 - \prod_{s=n-k}^{\infty} (1 - q^s u)\right| \le 1 - \prod_{s=n-k}^{\infty} (1 - q^s) \le \frac{q^{n-k}}{q(1-q)} \ln \frac{1}{1-q} \quad (u \in [\omega, 1]), \tag{4.7}$$

and

$$\left| \prod_{s=n}^{\infty} (1 - \omega q^s) \prod_{s=n-k+1}^{n} (1 - q^s) - 1 \right| \le \left| 1 - \prod_{s=n}^{\infty} (1 - q^s) \prod_{s=n-k}^{n-1} (1 - q^s) \right| = \left| 1 - \prod_{s=n-k}^{\infty} (1 - q^s) \right|$$

$$\le \frac{q^{n-k}}{q(1-q)} \ln \frac{1}{1-q}.$$
(4.8)

Using (4.6)–(4.8) and the property of modulus of continuity (see [6, p. 20])

$$\omega(f, \lambda t) \leq (1 + \lambda)\omega(f, t), \quad \lambda > 0,$$

we get

$$I_{2} \leq \sum_{k=0}^{n} \omega(f, q^{k}) |B_{k}^{n}(u; \omega|q) - B_{k}^{\infty}(u; \omega|q)|$$

$$\leq \sum_{k=0}^{n} \omega(f, q^{n}) (1 + q^{k-n}) \frac{q^{n-k}}{q(1-q)} \ln \frac{1}{1-q} (B_{k}^{n}(u; \omega|q) + B_{k}^{\infty}(u; \omega|q))$$

$$\leq \frac{2\omega(f, q^{n})}{q(1-q)} \ln \frac{1}{1-q} \sum_{k=0}^{n} (B_{k}^{n}(u; \omega|q) + B_{k}^{\infty}(u; \omega|q))$$

$$\leq \frac{4\omega(f, q^{n})}{q(1-q)} \ln \frac{1}{1-q}.$$
(4.9)

From (4.4), (4.5), and (4.9), we conclude that

$$\|B_n^{\omega,q}(f) - B_{\infty}^{\omega,q}(f)\| \le C_q \omega(f,q^n),$$

where $C_q = 2 + \frac{4 \ln \frac{1}{1-q}}{q(1-q)}$.

At last we show that the estimate (2.11) is sharp. For each α , $0 < \alpha \le 1$, suppose that $f_{\alpha}(x)$ is a continuous function which is equal to zero in [0, 1-q] and $[1-q^2, 1]$, equal to $(x-(1-q))^{\alpha}$ in [1-q, 1-q+q(1-q)/2], and linear in the rest of [0, 1]. Then

$$\omega(f_{\alpha},t) \simeq t^{\alpha},$$

and

$$||B_n^{\omega,q}(f_\alpha;x)-B_\infty^{\omega,q}(f_\alpha;x)|| \simeq q^{\alpha n} ||B_1^n(u;\omega|q)|| \simeq q^{\alpha n}.$$

The proof of Theorem 6 is complete. \Box

Remark 8. From the proof of Theorem 6, we know that the rate of convergence for the ω , q-Bernstein polynomials depends only on the smoothness of the function f(x) at the points $1 - q^k$, k = 1, 2, ... (from the right), and at x = 1.

In order to prove Theorem 7, we need the following result (see [14]):

Theorem A. Let the sequence (L_n) of positive linear operators on C[0,1] satisfy the following conditions:

- (A) The sequence $(L_n(e_2))$ converges to a function $L_{\infty}(e_2)$ in C[0,1], where $e_i(x) = x^i$, i = 0,1,2.
- (B) The sequence $(L_n(f,x))_{n\geq 1}$ is non-increasing for any convex function f and for any $x\in [0,1]$.

Then there exists an operator L_{∞} on C[0,1] such that $L_n(f) \rightrightarrows L_{\infty}(f)$ for any $f \in C[0,1]$ as $n \to \infty$. Furthermore,

$$\left|L_n(f,x) - L_\infty(f,x)\right| \leqslant c\omega_2(f,\sqrt{\lambda_n(x)}),\tag{4.10}$$

where $\lambda_n(x) = L_n(e_2, x) - L_{\infty}(e_2, x)$, c is a constant dependent only on $||L_1(e_0)||$.

Proof of Theorem 7. From Theorem 3, we know that the ω , q-Bernstein operators satisfy condition (B). From Theorem 6 we know that for ω , $q \in (0, 1)$,

$$B_n^{\omega,q}(f,x) \rightrightarrows B_\infty^{\omega,q}(f,x) \quad [x \in [0,1]; \ n \to \infty].$$

Also, by (2.5) and (2.15), we get

$$0 \leqslant \lambda_n(x) := B_n^{\omega, q} \left(t^2; x \right) - B_{\infty}^{\omega, q} \left(t^2; x \right) = \frac{q^n (1 - q)(1 - \omega)x(1 - x)}{(1 - \omega q)(1 - q^n)} \leqslant q^n \tag{4.11}$$

and

$$\sup_{0 < \omega, q < 1} \lambda_n(x) = \sup_{0 < \omega, q < 1} \frac{q^n (1 - q)(1 - \omega)}{(1 - q^n)(1 - \omega q)} x(1 - x) = \frac{x(1 - x)}{n}.$$
(4.12)

Theorem 7 follows from (4.11), (4.12), and (4.10). \square

5. Proofs of Theorems 8-10

Proof of Theorem 8. It suffices to prove the statement that $B^{\omega,q}_{\infty}(t^r;x)$ is a polynomial of degree r. We use induction on r. For r=0 or r=1 the statement is true, since $B^{\omega,q}_{\infty}$ reproduce linear functions. Assume that the statement is true for $r \leq m$ and consider $B^{\omega,q}_{\infty}(t^{m+1};x)$. Set

$$\psi(x) = \frac{(u;q)_{\infty}}{(\omega;q)_{\infty}} \quad (u = \omega + (1-\omega)x).$$

By (2.8) and (2.9) we get

$$\begin{split} B^{\omega,q}_{\infty} \big(t^{m+1}; x \big) &= \sum_{k=1}^{\infty} \big(1 - q^k \big)^m \frac{\prod_{j=0}^{k-1} (u - \omega q^j)}{(q;q)_{k-1}} \psi(x) \\ &= \sum_{k=0}^{\infty} \big(1 - q + q \left(1 - q^k \right) \big)^m \big(u - \omega + \omega \left(1 - q^k \right) \big) \frac{\prod_{j=0}^{k-1} (u - \omega q^j)}{(q;q)_k} \psi(x) \\ &= \sum_{s=0}^{m-1} \binom{m}{s} q^s (1 - q)^{m-s} \sum_{k=0}^{\infty} \big((1 - \omega) x \left(1 - q^k \right)^s + \omega \left(1 - q^k \right)^{s+1} \big) \frac{\prod_{j=0}^{k-1} (u - \omega q^j)}{(q;q)_k} \psi(x) \\ &+ \sum_{k=0}^{\infty} \big((1 - \omega) q^m x \left(1 - q^k \right)^m + \omega q^m \left(1 - q^k \right)^{m+1} \big) \frac{\prod_{j=0}^{k-1} (u - \omega q^j)}{(q;q)_k} \psi(x) \\ &= \sum_{s=0}^{m-1} \binom{m}{s} q^s (1 - q)^{m-s} \big((1 - \omega) x B^{\omega,q}_{\infty} (t^s; x) + \omega B^{\omega,q_n}_{\infty} (t^{s+1}; x) \big) \\ &+ (1 - \omega) q^m x B^{\omega,q}_{\infty} (t^m; x) + \omega q^m B^{\omega,q}_{\infty} (t^{m+1}; x), \end{split}$$

which means

$$B_{\infty}^{\omega,q}(t^{m+1};x) = \frac{1}{1 - \omega q^{m}}((1 - \omega)q^{m}xB_{\infty}^{\omega,q}(t^{m};x)) + \sum_{s=0}^{m-1} {m \choose s}q^{s}(1 - q)^{m-s}((1 - \omega)xB_{\infty}^{\omega,q}(t^{s};x) + \omega B_{\infty}^{\omega,q}(t^{s+1};x)).$$

By the induction assumption this is a polynomial of degree m + 1. \Box

Proof of Theorem 9. It suffices to prove that f is linear if L(f) = f. Let g(x) = f(x) - f(0) - (f(1) - f(0))x. Then g(0) = g(1) = 0 and Lg = g, since L reproduces linear functions. We will prove g = 0. Assume $g \neq 0$. Without loss of generalization we may assume that there exist an $x_0 \in (0, 1)$ such that $g(x_0) > 0$. Then, for some $\alpha < 0$, $\alpha/4 > \alpha(x_0 - 1/2)^2 - g(x_0)$. Now $h(x) = \alpha(x - 1/2)^2 - g(x)$ is continuous on [0, 1] and $h(0) = h(1) > h(x_0)$. Let m be the minimum of h on [0, 1], and suppose it is assumed at ξ with $\xi \in (0, 1)$. Then for all $x \in [0, 1]$, $\alpha(x - 1/2)^2 - g(x) \ge m = \alpha(\xi - 1/2)^2 - g(\xi)$. Hence, $g(x) \le \alpha(x - \xi)^2 + \beta(x - \xi) + g(\xi)$ for some β and therefore,

$$L(g,\xi) \leqslant \alpha L\left((t-\xi)^2,\xi\right) + \beta L\left((t-\xi),\xi\right) + g(\xi) = \alpha \left(L\left(t^2,\xi\right) - \xi^2\right) + g(\xi).$$

Since $L(g,\xi) = g(\xi)$ and $L(t^2,\xi) - \xi^2 > 0$, we get $\alpha \ge 0$, which leads to a contradiction. Hence, g = 0 and therefore, f is linear. \square

Proof of Theorem 10. The proof is standard. We know that the limit ω , q-Bernstein operators are positive linear operators on C[0, 1] and reproduce linear functions. Also, by (2.15)

$$B_{\infty}^{\omega,q_n}(t^2;x) \rightrightarrows x^2 \quad [x \in [0,1]; q \to 1-].$$

Theorem 10 follows from the Korovkin theorem. □

References

- [1] G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge Univ. Press, Cambridge, 1999.
- [2] R.A. Devore, G.G. Lorentz, Constructive Approximation, Springer-Verlag, 1993.
- [3] A. Il'inskii, S. Ostrovska, Convergence of generalized Bernstein polynomials, J. Approx. Theory 116 (2002) 100-112.
- [4] S. Lewanowicz, P. Woźny, Generalized Bernstein polynomials, BIT 44 (1) (2004) 63–78.
- [5] S. Lewanowicz, P. Woźny, Dual generalized Bernstein basis, J. Approx. Theory 128 (2) (2006) 129-150.
- [6] G.G. Lorentz, Bernstein Polynomials, Math. Expo., vol. 8, University of Toronto Press, Toronto, 1953.
- [7] S. Ostrovska, q-Bernstein polynomials and their iterates, J. Approx. Theory 123 (2003) 232–255.
- [8] S. Ostrovska, On the q-Bernstein polynomials, Adv. Stud. Contemp. Math. 11 (2) (2005) 193–204.
- [9] S. Ostrovska, On the improvement of analytic properties under the limit q-Bernstein operator, J. Approx. Theory 138 (2006) 37–53.

- [10] S. Ostrovska, The approximation by q-Bernstein polynomials in the case $q \downarrow 1$, Arch. Math. 86 (3) (2006) 282–288.
- [11] G.M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4 (1997) 511–518.
- [12] G.M. Phillips, Interpolation and Approximation by Polynomials, Springer-Verlag, 2003.
- [13] V.S. Videnskii, On some classes of q-parametric positive operators, Oper. Theory Adv. Appl. 158 (2005) 213–222.
- [14] H. Wang, Korovkin-type theorem and application, J. Approx. Theory 132 (2) (2005) 258–264.
- [15] H. Wang, Voronovskaya type formulas and saturation of convergence for q-Bernstein polynomials for 0 < q < 1, J. Approx. Theory 145 (2) (2007) 182–195.
- [16] H. Wang, F. Meng, The rate of convergence of q-Bernstein polynomials for 0 < q < 1, J. Approx. Theory 136 (2) (2005) 151–158.
- [17] H. Wang, X. Wu, Saturation of convergence for q-Bernstein polynomials in the case q > 1, J. Math. Anal. Appl. 337 (1) (2008) 744–750.