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Abstract

Let G be a weighted rooted graph of k levels such that, for j ∈ {2, . . . , k}

(1) each vertex at level j is adjacent to one vertex at level j − 1 and all edges joining a vertex at level j
with a vertex at level j − 1 have the same weight, where the weight is a positive real number;

(2) if two vertices at level j are adjacent then they are adjacent to the same vertex at level j − 1 and all
edges joining two vertices at level j have the same weight;

(3) two vertices at level j have the same degree;
(4) there is not a vertex at level j adjacent to others two vertices at the same level.

We give a complete characterization of the eigenvalues of the Laplacian matrix and adjacency matrix of
G. They are the eigenvalues of leading principal submatrices of two nonnegative symmetric tridiagonal
matrices of order k × k and the roots of some polynomials related with the characteristic polynomial of the
referred submatrices. By application of the above mentioned results, we derive an upper bound on the largest
eigenvalue of a graph defined by a weighted tree and a weighted triangle attached, by one of its vertices, to
a pendant vertex of the tree.
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1. Introduction

Let T be an unweighted tree of k levels (the level of a vertex is one more than its distance from
the root vertex) with k a positive integer, such that at level j the vertices have degree dk−j+1, and
nk−j+1 is the number of vertices at level j. In [4], Rojo and Soto characterize the eigenvalues of
the adjacency and Laplacian matrix of T . In fact, they stated that the eigenvalues of these matrices
are the eigenvalues of principal submatrices of two nonnegative symmetric tridiagonal matrices
of order k × k. The codiagonal entries for both matrices are

√
dj − 1, 2 � j � k − 1 and

√
dk

while the diagonal entries are zero for the adjacency matrix, and dj , 1 � j � k, in the case of the
Laplacian matrix.

Later, Rojo [2] determines the eigenvalues of the adjacency and Laplacian matrix of T where,
at level 1, they include two vertices, that is, nk = 2. He also gives results concerning to their
multiplicities. It was established that they are the eigenvalues of leading principal submatrices
of nonnegative symmetric tridiagonal matrices of order k × k, where the codiagonal entries
for these matrices are

√
dj − 1, 2 � j � k − 1, while the diagonal entries are 0, . . . , 0, ±1,

in the case of the adjacency matrix and d1, d2, . . . , dk−1, dk ± 1 in the case of the Laplacian
matrix.

Recently, in [3], Rojo and Robbiano determine the eigenvalues of the adjacency and La-
placian matrices of a weighted rooted tree T of k levels such that vertices at the same level
have the same degree and the edges joining the vertices at level j with the vertices at level
j + 1 have a weight equal to wk−j , j ∈ {1, . . . , k − 1}. They are the eigenvalues of leading
principal submatrices of nonnegative symmetric tridiagonal matrices of order k × k. Moreover,
they also gave some results concerning their multiplicities. The results in [4] are obtained for
wk−j = 1, j ∈ {1, . . . , k − 1}.

Bearing in mind these results we consider a weighted rooted graph G with n vertices, i.e, G is
a weighted graph with a root vertex and k levels such that, for j ∈ {2, . . . , k},

1. each vertex at level j is adjacent to one vertex at level j − 1 and all edges joining a vertex
at level j with a vertex at level j − 1 have the same weight, where the weight is a positive
real number;

2. if two vertices at level j are adjacent then they are adjacent to the same vertex at level j − 1
and all edges joining two vertices at level j have the same weight;

3. two vertices at level j have the same degree;
4. there is not a vertex at level j adjacent to others two vertices in the same level.

The techniques used in this paper are similar to those used in [3] and [4].
Let �1 be the set of integers j ∈ {1, . . . , k − 1} for which each vertex at the level k − j + 1

is joined to other vertex at the same level. Observe that if j ∈ �1 then the number of vertices at
the level k − j + 1 is an even positive integer.

First we study the case �1 = {1}.
Using the labels 1, 2, . . . , n, in this order, our labeling for the vertices of G is: Label the vertices

from the bottom to the root vertex and, in each level, from the left to the right.
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Denote by {1, 2}, {3, 4}, and so on, the edges at level k. Let u1 be the weight of these edges.
Below we present a graph G in these conditions.

Example 1.1

Note that this graph has four levels with vertex degrees

d1 = 2, d2 = 3, d3 = 3, d4 = 2,

the number of vertices in each level is

n1 = 8, n2 = 4, n3 = 2, n4 = 1

and the edge weights are

u1 = 5, w1 = 4, w2 = 3 and w3 = 2.

2. Some preliminaries

Let nk−j+1 be the number of vertices at level j. Then, for j ∈ {2, 3, . . . , k − 1},
nk−j = (dk−j+1 − 1)nk−j+1,

nk−1 = dk.

Let mj = nj

nj+1
, j ∈ {1, . . . , k − 1} and em be the all ones column vector of dimension m.

For each j ∈ {1, 2, . . . , k − 1}, we have

Cj =

⎡⎢⎢⎢⎣
e nj

nj+1

0

. . .
0 e nj

nj+1

⎤⎥⎥⎥⎦ ,

with nj+1 diagonal blocks, where Cj is nj × nj+1.

The edges joining the vertices at level j with the vertices at level j + 1 have a weight equal to
wk−j . The edges {1, 2}, {3, 4}, {5, 6} and so on have a weight equal to u1.

Next we define the adjacency matrix and Laplacian matrix for this type of graphs G with n

vertices. Let e = {i, j} be an edge of G, we denote by w(e) the weight of the edge e.
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Laplacian matrix L(G) = [lij ] is an n × n matrix defined as

lij =
⎧⎨⎩

−w(e) if i /= j and e is the edge joining i and j,

0 if i /= j and i is not adjacent to j,

−∑
k /=i lik if i = j

and the adjacency matrix is the n × n matrix A(G) = [aij ] defined by

aij =
⎧⎨⎩

w(e) if i /= j and e is the edge joining i and j,

0 if i /= j and i is not adjacent to j,

0 if i = j.

Recall that A(G) and L(G) are real symmetric matrices.
Here, dk is the degree of the vertex at level 1 (root vertex), nk = 1 and nj+1|nj , for all

j ∈ {1, . . . , k − 1}.
Our labeling for the vertices of G in Example 1.1 yields the block tridiagonal matrices for

L(G) and A(G) :

L(G) =

⎡⎢⎢⎣
L1 ⊕ L2 ⊕ L3 ⊕ L4 −4C1 0 0

−4CT
1 11I4 −3C2 0

0 −3CT
2 8I2 −2C3

0 0 −2CT
3 4

⎤⎥⎥⎦ ,

where L1 = L2 = L3 = L4 =
[

9 −5
−5 9

]
, and

A(G) =

⎡⎢⎢⎣
A1 ⊕ A2 ⊕ A3 ⊕ A4 4C1 0 0

4CT
1 0 3C2 0

0 3CT
2 0 2C3

0 0 2CT
3 0

⎤⎥⎥⎦ ,

where A1 = A2 = A3 = A4 =
[

0 5
5 0

]
.

Definition 2.1. Let

δ1 = u1 + w1;
δj = (dj − 1)wj−1 + wj , j ∈ {2, 3, . . . , k − 1};
δk = dkwk−1.

Note that when wj = 1, for all j and u1 = 1, δj = dj is the vertex degree at level k − j + 1.

From the previous definition we can observe that these numbers are the diagonal entries of
Laplacian matrix given in Example 1.1. Note also that the upper codiagonal blocks in this matrix
is −w1C1, −w2C2 and −w3C3. In general, if �1 = {1}, our labelling for the vertices yields the
block triadiagonal matrices for L(G) and A(G) :

L(G)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1 ⊕ · · · ⊕ Ln1
2

−w1C1

−w1C
T
1 δ2In2 −w2C2

−w2C
T
2 δ3In3 −w3C3

−w3C
T
3

. . .
. . .

. . . δk−1Ink−1 −wk−1Ck−1

−wk−1C
T
k−1 δk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where L1 = · · · = Ln1
2

=
[

δ1 −u1
−u1 δ1

]
and

A(G) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A1 ⊕ · · · ⊕ An1
2

w1C1

w1C
T
1 0 w2C2

w2C
T
2 0 w3C3

w3C
T
3

. . .
0 wk−1Ck−1

wk−1C
T
k−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where A1 = · · · = An1
2

=
[

0 u1
u1 0

]
.

Lemma 2.1 [5]. The characteristic polynomials, Qj (λ), of the j × j leading principal subma-
trices of the k × k symmetric tridiagonal matrix

Qk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1
b1 a2 b2

b2
. . .

. . .
. . .

. . .
. . .

. . . ak−1 bk−1
bk−1 ak

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.1)

satisfy the three-term recursion formula

Q0(λ) = 1,

Q1(λ) = λ − a1, (2.2)

Qj(λ) = (λ − aj )Qj−1(λ) − b2
j−1Qj−2(λ)

Lemma 2.2 [1]. Let A be an m × m symmetric tridiagonal matrix with nonzero codiagonal
entries, where m is a positive integer. Then the eigenvalues of any (m − 1) × (m − 1) princi-
pal submatrix strictly interlace the eigenvalues of A. In particular, the eigenvalues of A are
simple.

3. The spectrum of L(G) when �1 = {1}

Lemma 3.1. Let M be the block tridiagonal matrix

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M1 ⊕ · · · ⊕ Mn1
2

w1C1

w1C
T
1 α2In2 w2C2

w2C
T
2 α3In3 w3C3

w3C
T
3

. . .
αk−1Ink−1 wk−1Ck−1

wk−1C
T
k−1 αk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where M1 = · · · = Mn1
2

=
[

α1 u1
u1 α1

]
. Let
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β1 = α1,

β2 = α2 − n1

n2

w2
1

(u1 + α1)
, α1 /= −u1,

βj = αj − w2
j−1

nj−1

nj

1

βj−1
, j ∈ {3, . . . , k}, βj−1 /= 0.

If β1 /= −u1, βj /= 0, for j ∈ {2, . . . , k − 1}, then

det(M) = ((β1 − u1)(β1 + u1))
n1
2 β

n2
2 · · · βnk−1

k−1 βk.

Proof. Suppose that β1 /= −u1, βj /= 0 for all j ∈ {2, . . . , k − 1}. Performing elementary oper-
ations without row interchanges to M we obtain the block upper triangular matrix

M ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M1 ⊕ · · · ⊕ Mn1
2

w1C1

0 β2In2 w2C2
0 β3In3 w3C3

0
. . .

wk−1Ck−1
0 0 βk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Then the conclusions follow easily. �

Definition 3.1. Let P0(λ) = 1 and

P1(λ) = λ − w1,

Pj (λ) = (λ − δj )Pj−1(λ) − w2
j−1

nj−1

nj

Pj−2(λ), j ∈ {2, . . . , k}. (3.1)

Definition 3.2. For j ∈ {1, . . . , k − 1}, let Tj be the j × j leading principal submatrix of the
k × k symmetric tridiagonal matrix

Tk =

⎡⎢⎢⎢⎢⎢⎢⎣
w1 (

√
d2 − 1)w1

(
√

d2 − 1)w1 δ2

. . . (
√

dk−1 − 1)wk−2

(
√

dk−1 − 1)wk−2 δk−1 (
√

dk)wk−1

(
√

dk)wk−1 δk

⎤⎥⎥⎥⎥⎥⎥⎦ .

Lemma 3.2. If Tj , j ∈ {1, . . . , k − 1}, is the leading principal submatrix referred in Definition
3.2, we have

det(λI − Tj ) = Pj (λ), j ∈ {1, . . . , k}.

Proof. For Qk = Tk we have, by (2.1),

a1 = w1;
aj = δj , j ∈ {2, . . . , k};
bj = (

√
dj+1 − 1)wj , j ∈ {1, . . . , k − 2};

bk−1 = (
√

dk)wk−1.
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Because nk−j = (dk−j+1 − 1)nk−j+1, j ∈ {2, . . . , k − 1} and nk−1 = dk , we have(√
dj+1 − 1

)
wj =

(√
nj

nj+1

)
wj , j ∈ {1, . . . , k − 2}

and (√
dk

)
wk−1 = (√

nk−1
)
wk−1 =

√
nk−1

nk

wk−1.

So, (2.2) gives the polynomials Pj (λ), j ∈ {0, . . . k}. �

Corollary 3.3. For j ∈ {1, . . . , k} the zeros of the polynomial Pj (λ) are real and simple.

Proof. Let λ0 such that Pj (λ0) = 0.From Lemma 3.2, λ0 is an eigenvalue of the matrix Tj . Since
Tj is a real symmetric matrix, λ0 ∈ R. Moreover, from Lemma 2.2, λ0 is a simple eigenvalue of
Tj . Thus, λ0 is a simple zero of Pj (λ). �

Let� = {1, . . . , k − 1} and� = {j ∈ � : nj > nj+1, j /= 1} ∪ {j ∈ � : nj > 2nj+1, j = 1}.
The proof of the next theorem is a slight variation of the proof of [3, Theorem 5].

Theorem 3.4. Let P0(λ) = 1 and

P1(λ) = λ − w1,

Pj (λ) = (λ − δj )Pj−1(λ) − w2
j−1

nj−1

nj

Pj−2(λ), j ∈ {2, . . . , k}.

Then

(a) det(λI − L(G)) = (P1(λ) − 2u1)
n1
2 P1(λ)

n1
2 −n2

∏
i∈�\{1} Pi(λ)ni−ni+1Pk(λ).

(b) σ(L(G)) = (∪j∈�∪{k}{λ ∈ R : Pj (λ) = 0}) ∪ {λ ∈ R : P1(λ) = 2u1}.

Proof. (a) We first consider λ ∈ R such that Pj (λ) /= 0, for all j ∈ {1, . . . , k − 1}. Applying
Lemma 3.1 to the matrix λI − L(G), we have

β1 = (λ − w1) − u1 = P1(λ) − u1,

β2 = (λ − δ2) − n1

n2

w2
1

u1 + β1
= (λ − δ2)P1(λ) − n1

n2
w2

1P0(λ)

P1(λ)
= P2(λ)

P1(λ)
.

For j ∈ {3, . . . , k},

βj = (λ − δj ) − nj−1

nj

w2
j−1

βj−1
=

(λ − δj )Pj−1(λ) − w2
j−1

nj−1
nj

Pj−2(λ)

Pj−1(λ)
= Pj (λ)

Pj−1(λ)
.

Therefore,

det(λI − L(G)) = (P1(λ) − 2u1)
n1
2 P1(λ)

n1
2 −n2

∏
j∈�\{1}

Pi(λ)ni−ni+1Pk(λ)

and the result follows.
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Consider now λ0 ∈ R such that Ps(λ0) = 0 for some s ∈ {1, . . . , k − 1}.
Since the zeros of any nonzero polynomial are isolated, which is the case for the polynomials

Pj , there exists a neighborhood N(λ0) of λ0 such that

Pj (λ) /= 0 for all λεN(λ0) − {λ0} and for all j ∈ {1, . . . , k − 1}.
Hence, the equality follows, for all λεN(λ0) − {λ0}. By continuity, taking the limit as λ tends to
λ0 we obtain

det(λ0I − L(G)) = (P1(λ0) − 2u1)
n1
2 P1(λ0)

n1
2 −n2

∏
j∈�\{1}

Pi(λ0)
ni−ni+1Pk(λ0).

(b) It is an immediate consequence of part (a). �

The next theorem gives a complete characterization of the eigenvalues of L(G) and some
results about their multiplicities.

Theorem 3.5

(a) σ(L(G)) = (∪j∈�∪{k}σ(Tj )) ∪ {2u1 + w1}.
(b) The multiplicity of each eigenvalue of the matrix Tj , as an eigenvalue of L(G) is at least

nj − nj+1 for j ∈ � \ {1}, n1−2n2
2 for j = 1 and 1 for j = k.

(c) The eigenvalue λ = 2u1 + w1, of L(G), has multiplicity at least n1
2 .

Proof. (a), (b) and (c) are consequences of Theorem 3.4, Lemma 3.2 and Corollary 3.3. �

Example 3.1. Let G be the graph presented in Example 1.1. For this graph,

T4 =

⎡⎢⎢⎣
4 4

√
2 0 0

4
√

2 11 3
√

2 0
0 3

√
2 8 2

√
2

0 0 2
√

2 4

⎤⎥⎥⎦ .

The eigenvalues of L(G) are the eigenvalues of T2, T3, T4 and 14 = 2u1 + w1. To four decimal
places these eigenvalues are

T2 : 0.8479; 14.1521 each one with multiplicity 2
T3 : 0.2202; 6.8351; 15.9447 each one with multiplicity 1
T4 : 0; 2.7347; 8.1881; 16.0772 each one with multiplicity 1

14 with multiplicity 4.

Using Theorem 3.5 and Lemma 2.2 it is easy to prove that

Theorem 3.6. The spectral radius of L(G) (the largest eigenvalue of L(G)) is the

max{the spectral radius of Tk, 2u1 + w1}.

4. The spectrum of A(G) when �1 = {1}

The proofs of the following lemmas and theorems are similar to the proofs of Section 3.
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Lemma 4.1. Let N be the block tridiagonal matrix

N =

⎡⎢⎢⎢⎢⎢⎢⎣

N1 ⊕ · · · ⊕ Nn1
2

−w1C1

−w1C
T
1 α2In2 −w2C2

−w2C
T
2 α3In3 −w3C3

−w3C
T
3

. . .
αk−1Ink−1 −wk−1Ck−1

−wk−1C
T
k−1 αk

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where N1 = · · · = Nn1
2

=
[

α1 −u1
−u1 α1

]
.

Let

β1 = α1;
β2 = α2 − n1

n2

w2
1

(−u1 + α1)
, α1 /= u1;

βj = αj − w2
j−1

nj−1

nj

1

βj−1
, j ∈ {3, . . . , k}, βj−1 /= 0.

If β1 /= u1, βj /= 0, for j ∈ {2, . . . , k − 1} then

det(N) = ((β1 − u1)(β1 + u1))
n1
2 β

n2
2 · · · βnk−1

k−1 βk.

Definition 4.1. Let S0(λ) = 1 and

S1(λ) = λ − u1,

Sj (λ) = λSj−1(λ) − w2
j−1

nj−1

nj

Sj−2(λ), j ∈ {2, . . . , k}. (4.1)

Definition 4.2. For j ∈ {1, . . . , k − 1}, let Rj be the j × j leading principal submatrix of the
k × k symmetric tridiagonal matrix

Rk =

⎡⎢⎢⎢⎢⎢⎣
u1 (

√
d2 − 1)w1

(
√

d2 − 1)w1 0
. . . (

√
dk−1 − 1)wk−2

(
√

dk−1 − 1)wk−2 0 (
√

dk)wk−1
(
√

dk)wk−1 0

⎤⎥⎥⎥⎥⎥⎦ .

Lemma 4.2. If Rj , j ∈ {1, . . . , k − 1}, is the leading principal submatrix referred in Definition
4.2, we have

det(λI − Rj ) = Sj (λ), j ∈ {1, . . . , k}.

Corollary 4.3. For j ∈ {1, . . . , k} the zeros of the polynomial Sj (λ) are real and simple.

Let� = {1, . . . , k − 1} and� = {j ∈ � : nj > nj+1, j /= 1} ∪ {j ∈ � : nj > 2nj+1, j = 1}.

Theorem 4.4. Let S0(λ) = 1 and

S1(λ) = λ − u1,

Sj (λ) = λSj−1(λ) − w2
j−1

nj−1

nj

Sj−2(λ), j ∈ {2, . . . , k}.
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Then

(a) det(λI − A(G)) = (S1(λ) + 2u1)
n1
2 S1(λ)

n1
2 −n2

∏
i∈�\{1} Si(λ)ni−ni+1Sk(λ).

(b) σ(A(G)) = (∪j∈�∪{k}{λ ∈ R : Sj (λ) = 0}) ∪ {λ ∈ R : S1(λ) = −2u1}.

The next theorem gives a complete characterization of the eigenvalues of A(G) and some
results about their multiplicities.

Theorem 4.5. (a) σ(A(G)) = (∪j∈�∪{k}σ(Rj )) ∪ {−u1}.
(b) The multiplicity of each eigenvalue of the matrix Tj , as an eigenvalue of A(G) is at least

nj − nj+1 for j ∈ � \ {1}, n1−2n2
2 for j = 1 and 1 for j = k.

(c) The eigenvalue λ = −u1, of A(G), has multiplicity at least n1
2 .

Proof. (a), (b) and (c) are consequences of Theorem 4.4, Lemma 4.2 and Corollary 4.3. �

Example 4.1. Let G be the graph presented in Example 1.1. For this graph,

R4 =

⎡⎢⎢⎣
5 4

√
2 0 0

4
√

2 0 3
√

2 0
0 3

√
2 0 2

√
2

0 0 2
√

2 0

⎤⎥⎥⎦ .

The eigenvalues of A(G) are the eigenvalues of R2, R3, R4 and −5. To four decimal places these
eigenvalues are

R2 : −3.6847; 8.6847 each one with multiplicity 2
R3 : −5.9486; 1.6222; 9.3264 each one with multiplicity 1
R4 : −6.3527; −1.3114; 3.2716; 9.3926 each one with multiplicity 1

−5 with multiplicity 4.

Using Theorem 4.5 and Lemma 2.2 it is easy to prove that

Theorem 4.6. The spectral radius of A(G) (the largest eigenvalue of A(G)) is the spectral radius
of Rk.

5. Bounding the largest eigenvalue of some weighted graphs

Let G be a weighted graph. We denote by μ(G) and λ(G) the largest eigenvalue of L(G) and
A(G), respectively.

In [3] the following lemmas are proved.

Lemma 5.1. Let G = (V , E) be a weighted graph. Let we be the weight of e ∈ E. Let G̃ be the
weighted graph obtained from G replacing the weight we by w̃e. Then

λ(G) � λ(G̃) if we � w̃e

and

μ(G) � μ(G̃) if we � w̃e.
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Lemma 5.2. Let G = (V , E) be a weighted graph with n vertices. Let v ∈ V . Let G̃ = (Ṽ , Ẽ)

be the graph with (n + 1) vertices obtained by adding to G a vertex u and an edge {u, v} with
weight w. Then

λ(G) � λ(G̃)

and

μ(G) � μ(G̃).

Now, let G = (V , E) be a graph defined by a weighted tree and a weighted triangle attached, by
one of its vertices, to a pendant vertex of the tree.

Let us denote by ex the excentricity of x (largest distance from x to any other vertex) and by
diam(G) the diameter of G (diam(G) = max{d(v, z) : z, v ∈ V } and d(v, z) is the distance from
v to z, i.e., the length of the shortest path from v to z).

Suppose, w.l.g., that x1, x2, x3 are the vertices of the triangle and x1, x2 have degree two. Let
u ∈ V such that

d(x1, u) =
⌈ex1

2

⌉
,

where �a	 is the smallest integer greater than or equal to a.

Let k =
⌈

ex1
2

⌉
+ 1. For j = {1, 2, . . . , k} let

�k−j+1 = max{dv : d(v, u) = j − 1},
where dv is the degree of v. For j = {1, 2, . . . , k − 1} let

Wk−j = max{wz,y : d(z, u) = j − 1, d(y, u) = j},
where wz,y is the weight of the edge joining z to y. Let U1 be the weight of the edge {x1, x2}.
Define

δ1 = U1 + W1;
δj = (�j − 1)Wj−1 + Wj, j ∈ {2, . . . , k − 1};
δk = �kWk−1.

In these conditions, we can prove the following theorem.

Theorem 5.3. We have

μ(G) � max

{
max

2�j�k−2

{√
�j − 1Wj−1 + δj +

√
�j+1 − 1Wj

}
,

√
�k−1 − 1Wk−2 + δk−1 + √

�kWk−1,
√

�kWk−1 + δk, 2U1 + W1

}

and

λ(G) � max

{
max

2�j�k−2

{√
�j − 1Wj−1 +

√
�j+1 − 1Wj

}
√

�k−1 − 1Wk−2 + √
�kWk−1, U1 + √

�2 − 1W1

}
.
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Proof. Consider the weighted rooted graph with k levels, G̃, such that

• the vertex u previously consider is the rooted vertex,
• the vertices at level j have degree �k−j+1, for j ∈ {1, . . . , k},
• the edges joining the vertices at level j with the vertices at level j + 1 have weight equal to

Wk−j , for j ∈ {1, . . . , k − 1},
• the edges joining two vertices at level k have weight equal to U1.

Since G is an induced subgraph of G̃, using the previous lemmas we have μ(G) � μ(G̃) and
λ(G) � λ(G̃). Using the results of Sections 3 and 4, we have that μ(G̃) = max{the spectral radius
of Tk, 2U1 + W1} and λ(G̃) is the spectral radius of Rk . By Grešgorin theorem the result
follows. �

Example 5.1. Consider the following graph G

Then, if x1, x2, x3 are the vertices previously defined, ex1 = 6 and k = 4.

Using the previous notation, we have

W3 = max{1.3, 1.2, 1, 1.1} = 1.3,

W2 = max{1.5, 1.4, 1.1, 1.2} = 1.5,

W1 = max{1.2, 1.3} = 1.3,

U1 = 4,

�1 = 2, �2 = 3, �3 = 3, �4 = 4,

δ1 = 5.3, δ2 = 2(1.3) + 1.5 = 4.1, δ3 = 2(1.5) + 1.3 = 4.3, δ4 = 4.(1.3) = 5.2.

Therefore

T4 =

⎡⎢⎢⎣
1.3 1.3

√
2 0 0

1.3
√

2 4.1 1.5
√

2 0
0 1.5

√
2 4.3 2.6

0 0 2.6 5.2

⎤⎥⎥⎦ .
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Using Theorem 5.3,

μ(G) � max{1.3
√

2 + 4.1 + 1.5
√

2, 1.5
√

2 + 4.3 + 2.6, 2.6 + 5.2, 2(4) + 1.3} = 9.3.

On the other hand the spectral radius of L(G) is 9.2518. Clearly μ(G) < μ(G̃) = 9.3.

For λ(G), using Theorem 5.3, we have

λ(G) � max
{

1.3
√

2 + 1.5
√

2, 1.5
√

2 + 2.6, 4 + 1.3
√

2
}

= 5.8384.

On the other hand the spectral radius of A(G) is 4.7489. Clearly λ(G) < λ(G̃) = 5.8384.

6. The spectra of L(G) and A(G) in the general case

In this section we are going to generalize the results obtained in sections 3 and 4. The results
established in [4] and [3] are corollaries of these results.

Let G be a weighted rooted graph with n vertices and k levels. Let φ1 be the set of integers
j ∈ {1, . . . , k − 1} for which each vertex at level k − j + 1 is joined to other vertex at the same
level and let φ2 = {1, . . . , k − 1} \ φ1. (If φ1 = ∅ then G is a weighted rooted tree).

Let nk−j+1 be the number of vertices at level j , wk−j be the weight of the edges joining the
vertices at level j with the vertices at level j + 1 and for j ∈ φ1 let uj be the weight of the edges
at level k − j + 1. Then

nj−1 =
{
(dj − 2)nj ifj ∈ φ1 \ {1},
(dj − 1)nj ifj ∈ φ2 \ {1}.

nk−1 = dk.

Let mj = nj

nj+1
, j ∈ {1, . . . , k − 1}.

Definition 6.1. Let

δ1 =
{
w1 if 1 ∈ φ2,

u1 + w1 if 1 ∈ φ1,

δj =
{
(dj − 1)wj−1 + wj if j ∈ φ2 \ {1},
(dj − 2)wj−1 + wj + uj if j ∈ φ1 \ {1}.

δk = dkwk−1.

Let

Vnj
=
{

Inj
if j ∈ φ2,

L1 ⊕ . . . ⊕ Lnj
2

if j ∈ φ1,

where L1 = · · · = Lnj
2

=
[

1 − uj
δj

− uj
δj

1

]
and

Unj
=
{

0nj
if j ∈ φ2,

A1 ⊕ . . . ⊕ Anj
2

if j ∈ φ1,

where A1 = · · · = Anj
2

=
[

0 uj

uj 0

]
.
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So, Laplacian matrix is

L(G) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

δ1Vn1 −w1C1
−w1C

T
1 δ2Vn2 −w2C2

−w2C
T
2 δ3Vn3 −w3C3

−w3C
T
3

. . .
. . .

. . . δk−1Vnk−1 −wk−1Ck−1
−wk−1C

T
k−1 δk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and the adjacency matrix is

A(G) =

⎡⎢⎢⎢⎢⎢⎢⎣

Un1 w1C1
w1C

T
1 Un2 w2C2

w2C
T
2 Un3 w3C3

w3C
T
3

. . .
Unk−1 wk−1Ck−1

wk−1C
T
k−1 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Lemma 6.1. Let M be the block tridiagonal matrix

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1U
∗
n1

w1C1

w1C
T
1 α2U

∗
n2

w2C2

w2C
T
2 α3U

∗
n3

w3C3

w3C
T
3

. . .
αk−1U

∗
nk−1

wk−1Ck−1

wk−1C
T
k−1 αk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where U∗
nj

= Inj
+ 1

αj
Unj

, j ∈ φ1. Let

β1 = α1,

βj =
{

αj − w2
j−1

nj−1
nj

1
βj−1

if j − 1 ∈ φ2, βj−1 /= 0,

αj − w2
j−1

nj−1
nj

1
uj−1+βj−1

if j − 1 ∈ φ1, βj−1 /= −uj−1.

(6.1)

If βj /= −uj for j ∈ φ1 and βj /= 0 for j ∈ φ2 then

det(M) =
∏
j∈φ1

(
(βj − uj )(βj + uj )

) nj
2
∏
j∈φ2

β
nj

j βk.

Proof. Suppose that βj /= −uj for j ∈ φ1 and βj /= 0 for j ∈ φ2. Performing elementary oper-
ations without row interchanges to M we obtain the block upper triangular matrix

M ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1U
∗
n1

w1C1

0 β2U
∗
n2

w2C2

0 β3U
∗
n3

w3C3

0
. . .
. . . βk−1U

∗
nk−1

wk−1Ck−1

0 βk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then the conclusion follows easily. �



2668 R. Fernandes et al. / Linear Algebra and its Applications 428 (2008) 2654–2674

Definition 6.2. Let P0(λ) = 1, P1(λ) = λ − w1 and

Pj (λ) =
{

(λ − δj )Pj−1(λ) − w2
j−1

nj−1
nj

Pj−2(λ) if j ∈ φ2\{1} ∪ {k},
(λ − δj + uj )Pj−1(λ) − w2

j−1
nj−1
nj

Pj−2(λ) if j ∈ φ1\{1}.

Let

rj =
{√

dj − 1 if j ∈ φ2,√
dj − 2 if j ∈ φ1

and

sj =
{
δj if j ∈ φ2,

δj − uj if j ∈ φ1.

Definition 6.3. For j ∈ {1, . . . , k − 1}, let Tj be the j × j leading principal submatrix of the
k × k symmetric tridiagonal matrix

Tk =

⎡⎢⎢⎢⎢⎢⎣
s1 r2w1

r2w1 s2
. . . rk−1wk−2

rk−1wk−2 sk−1 (
√

dk)wk−1

(
√

dk)wk−1 δk

⎤⎥⎥⎥⎥⎥⎦ .

Lemma 6.2. If Tj , j ∈ {1, . . . , k − 1}, is the leading principal submatrix referred in Definition
6.3, we have

det(λI − Tj ) = Pj (λ), j ∈ {1, . . . , k}.

The proof of the previous lemma is similar to the proof of Lemma 3.2.

Corollary 6.3. For j ∈ {1, . . . , k} the zeros of the polynomial Pj (λ) referred in Definition 6.2
are real and simple.

The proof of the previous corollary is similar to the proof of Corollary 3.3.
Let � = {j ∈ φ2 : nj > nj+1} ∪ {j ∈ φ1 : nj > 2nj+1}.

Theorem 6.4. Let P0(λ) = 1, P1(λ) = λ − w1 and

Pj (λ) =
{

(λ − δj )Pj−1(λ) − w2
j−1

nj−1
nj

Pj−2(λ) if j ∈ φ2\{1} ∪ {k},
(λ − δj + uj )Pj−1(λ) − w2

j−1
nj−1
nj

Pj−2(λ) if j ∈ φ1\{1}. (6.2)

Then

(a) det(λI − L(G)) = ∏
j∈φ1

(Pj (λ) − 2ujPj−1(λ))
nj
2 Pj (λ)

nj
2 −nj+1

∏
j∈φ2

Pj (λ)nj −nj+1Pk(λ).

(b) σ(L(G)) = (∪j∈�∪{k}{λ ∈ R : Pj (λ) = 0}) ∪ (∪j∈φ1{λ ∈ R : Pj (λ) = 2ujPj−1(λ)}).

Proof. We first consider λ ∈ R such that Pj (λ) /= 0 , for all j ∈ {1, . . . , k − 1}. Applying Lemma
6.1 to the matrix λI − L(G), we have

β1 = λ − δ1 = P1(λ) − u1 if 1 ∈ φ1
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and

β1 = λ − δ1 = P1(λ) if 1 ∈ φ2.

This gives

β1 = P1(λ) − u1P0(λ)

P0(λ)
if 1 ∈ φ1

and

β1 = P1(λ)

P0(λ)
if 1 ∈ φ2.

Suppose now that j � 2 and

βj−1 = Pj−1(λ)

Pj−2(λ)
− uj−1 if j − 1 ∈ φ1 (6.3)

and

βj−1 = Pj−1(λ)

Pj−2(λ)
if j − 1 ∈ φ2. (6.4)

If j − 1 ∈ φ2, by (6.1)

βj = (λ − δj ) − nj−1

nj

w2
j−1

βj−1
.

By (6.4), we have

βj = (λ − δj ) − nj−1

nj

w2
j−1

Pj−2(λ)

Pj−1(λ)
,

that is,

βj =
(λ − δj )Pj−1(λ) − nj−1

nj
w2

j−1Pj−2(λ)

Pj−1(λ)
.

If j ∈ φ1, using (6.2), we have

βj =
(λ − δj )Pj−1(λ) − nj−1

nj
w2

j−1Pj−2(λ)

Pj−1(λ)
= Pj (λ) − ujPj−1(λ)

Pj−1(λ)

and if j ∈ φ2 ∪ {k}, using (6.2), we have

βj = Pj (λ)

Pj−1(λ)
.

Suppose now that j − 1 ∈ φ1. By (6.1) we have,

βj = (λ − δj ) − w2
j−1

nj−1

nj

1

uj−1 + βj−1
.

By (6.3),

βj = (λ − δj ) − w2
j−1

nj−1

nj

1

uj−1 +
(

Pj−1(λ)

Pj−2(λ)
− uj−1

) .
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Therefore

βj =
(λ − δj )Pj−1(λ) − w2

j−1
nj−1
nj

Pj−2(λ)

Pj−1(λ)
.

Again, if j ∈ φ1, using (6.2), we have

βj =
(λ − δj )Pj−1(λ) − nj−1

nj
w2

j−1Pj−2(λ)

Pj−1(λ)
= Pj (λ) − ujPj−1(λ)

Pj−1(λ)

and if j ∈ φ2 ∪ {k}, using (6.2), we have

βj = Pj (λ)

Pj−1(λ)
.

Therefore,

det(λI − L(G)) =
∏
j∈φ1

(Pj (λ) − 2ujPj−1(λ))
nj
2 Pj (λ)

nj
2 Pj−1(λ)−nj

×
∏

j∈φ2∪{k}
Pj (λ)nj Pj−1(λ)−nj ,

det(λI − L(G)) =
∏
j∈φ1

(Pj (λ) − 2ujPj−1(λ))
nj
2 Pj (λ)

nj
2

×
∏

j∈φ2∪{k}
Pj (λ)nj

∏
j∈φ1∪φ2

Pj (λ)−nj+1 ,

det(λI − L(G)) =
∏
j∈φ1

(Pj (λ) − 2ujPj−1(λ))
nj
2 Pj (λ)

nj
2 −nj+1

∏
j∈φ2

Pj (λ)nj −nj+1Pk(λ).

and the result follows.
Consider now λ0 ∈ R such that Ps(λ0) = 0 for some s ∈ {1, . . . , k − 1}.
Since the zeros of any nonzero polynomial are isolated, which is the case for the polynomials

Pj (λ), there exists a neighborhood N(λ0) of λ0 such that

Pj (λ) /= 0 for all λεN(λ0) − {λ0} and for all j ∈ {1, . . . , k − 1}.
Hence, the equality follows, for all λεN(λ0) − {λ0}. By continuity, taking the limit as λ tends to
λ0 we obtain

det(λ0I − L(G)) =
∏
j∈φ1

(Pj (λ0) − 2ujPj−1(λ0))
nj
2 Pj (λ0)

nj
2 −nj+1

×
∏
j∈φ2

Pj (λ0)
nj −nj+1Pk(λ0).

(b) It is an immediate consequence of part (a). �

The next theorem gives a complete characterization of the eigenvalues of Laplacian matrix.
In fact, they are the eigenvalues of leading principal submatrices of Tk and the roots of some
polynomials related with these submatrices.
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Theorem 6.5

(a) σ(L(G)) = (∪j∈�∪{k}σ(Tj )) ∪ (∪j∈φ1{λ ∈ R : det(λI − Tj ) = 2uj det(λI − Tj−1)}).
(b) The multiplicity of each eigenvalue of the matrix Tj , as an eigenvalue of L(G) is at least

nj − nj+1 for j ∈ φ2,
nj −2nj+1

2 for j ∈ φ1 and 1 for j = k.

(c) For j ∈ φ1, each root of the polynomial

det(λI − Tj ) = 2uj det(λI − Tj−1)

is an eigenvalue of L(G) with multiplicity at least
nj

2 .

Proof. (a), (b) and (c) are consequences of Theorem 6.4, Lemma 6.2 and Corollary 6.3. �

For A(G) we have similar results.

Lemma 6.6. Let N be the block tridiagonal matrix

N =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1Vn1 −w1C1

−w1C
T
1 α2Vn2 −w2C2

−w2C
T
2 α3Vn3 −w3C3

−w3C
T
3

. . .
αk−1Vnk−1 −wk−1Ck−1

−wk−1C
T
k−1 αk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Let

β1 = α1,

βj =
{

αj − w2
j−1

nj−1
nj

1
βj−1

if j − 1 ∈ φ2, βj−1 /= 0,

αj − w2
j−1

nj−1
nj

1
−uj−1+βj−1

if j − 1 ∈ φ1, βj−1 /= uj−1.
(6.5)

If βj /= uj for j ∈ φ1 and βj /= 0 for j ∈ φ2 then

det(N) =
∏
j∈φ1

(
(βj − uj )(βj + uj )

) nj
2
∏
j∈φ2

β
nj

j βk.

Proof. Suppose thatβj /= uj for j ∈ φ1 andβj /= 0 for j ∈ φ2.Performing elementary operations
without row interchanges to N we obtain the block upper triangular matrix

N ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1Vn1 −w1C1
0 β2Vn2 −w2C2

0 β3Vn3 −w3C3

0
. . .
. . . βk−1Vnk−1 −wk−1Ck−1

0 βk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then the conclusion follows easily. �
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Definition 6.4. Let S0(λ) = 1, S1(λ) = λ − u1 and

Sj (λ) =
{

λSj−1(λ) − w2
j−1

nj−1
nj

Sj−2(λ) if j ∈ φ2\{1} ∪ {k},
(λ − uj )Sj−1(λ) − w2

j−1
nj−1
nj

Sj−2(λ) if j ∈ φ1\{1}.
Let

rj =
{√

dj − 1 if j ∈ φ2,√
dj − 2 if j ∈ φ1

and

s∗
j =

{
0 if j ∈ φ2,

uj if j ∈ φ1.

Definition 6.5. For j ∈ {1, . . . , k − 1}, let Rj be the j × j leading principal submatrix of the
k × k symmetric tridiagonal matrix

Rk =

⎡⎢⎢⎢⎢⎢⎣
s∗

1 r2w1
r2w1 s∗

2
. . . rk−1wk−2

rk−1wk−2 s∗
k−1 (

√
dk)wk−1

(
√

dk)wk−1 0

⎤⎥⎥⎥⎥⎥⎦ .

Lemma 6.7. If Rj , j ∈ {1, . . . , k − 1}, is the leading principal submatrix referred in Definition
6.5, we have

det(λI − Rj ) = Sj (λ), j ∈ {1, . . . , k}.

Corollary 6.8. For j ∈ {1, . . . , k} the zeros of the polynomial Sj (λ) referred in Definition 6.4
are real and simple.

Let � = {j ∈ φ2 : nj > nj+1} ∪ {j ∈ φ1 : nj > 2nj+1}.

Theorem 6.9. Let S0(λ) = 1, S1(λ) = λ − u1 and

Sj (λ) =
{

λSj−1(λ) − w2
j−1

nj−1
nj

Sj−2(λ) if j ∈ φ2\{1} ∪ {k},
(λ − uj )Sj−1(λ) − w2

j−1
nj−1
nj

Sj−2(λ) if j ∈ φ1\{1}. (6.6)

Then

(a) det(λI − A(G))=∏
j∈φ1

(Sj (λ)+2ujSj−1(λ))
nj
2 Sj (λ)

nj
2 −nj+1

∏
j∈φ2

Sj (λ)nj −nj+1Sk(λ).

(b) σ(A(G)) = (∪j∈�∪{k}{λ ∈ R : Sj (λ) = 0}) ∪ (∪j∈φ1{λ ∈ R : Sj (λ) = −2ujSj−1(λ)}).

The proof of this theorem is similar to the proof of Theorem 6.4.
The next theorem gives a complete characterization of the eigenvalues of the adjacency matrix.

In fact, they are the eigenvalues of leading principal submatrices of Rk and the roots of some
polynomials related with these submatrices.

Theorem 6.10

(a) σ(A(G)) = (∪j∈�∪{k}σ(Rj )) ∪ (∪j∈φ1{λ ∈ R : det(λI − Rj ) = −2uj det(λI−Rj−1)}).
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(b) The multiplicity of each eigenvalue of the matrix Rj , as an eigenvalue of A(G) is at least

nj − nj+1 for j ∈ φ2,
nj −2nj+1

2 for j ∈ φ1 and 1 for j = k.

(c) For j ∈ φ1, each root of the polynomial

det(λI − Rj ) = −2uj det(λI − Rj−1)

is an eigenvalue of A(G) with multiplicity at least
nj

2 .

Proof. (a), (b) and (c) are consequences of Theorem 6.9, Lemma 6.7 and Corollary 6.8. �

Next, we present an example for �1 = {2}.

Example 6.1

This graph has four levels with vertex degrees

d1 = 1, d2 = 4, d3 = 3, d4 = 2,

the number of vertices in each level is

n1 = 8, n2 = 4, n3 = 2, n4 = 1

and the edge weights are

u2 = 5, w1 = 4, w2 = 3 and w3 = 2.

Let δ1 = w1 = 4, δ2 = u2 + (d2 − 2)w1 + w2 = 16, δ3 = (d3 − 1)w2 + w3 = 8 and δ4 =
d4w3 = 4.

For this graph let

T4 =

⎡⎢⎢⎣
4 4

√
2 0 0

4
√

2 11 3
√

2 0
0 3

√
2 8 2

√
2

0 0 2
√

2 4

⎤⎥⎥⎦ .

The eigenvalues of L(G) are the eigenvalues of T1, T3, T4 and the roots of the polynomial λ2 −
25λ + 52. To four decimal places these eigenvalues are
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T1 : 4 with multiplicity 4
T3 : 0.2202 6.8351 15.9445 each one with multiplicity 1
T4 : 0 2.7347 8.1881 16.0772 each one with multiplicity 1
2.2897 22.7103 each one with multiplicity 2.

Acknowledgments

The authors express their thanks to the referee for the valuable comments which led to an
improved version of the paper.

References

[1] G.H. Golub, C.F. Van Loan, Matrix Computations, second ed., Johns Hopkins University Press, Baltimore, 1989.
[2] O. Rojo, The spectra of some trees and bounds for the largest eigenvalue of any tree, Linear Algebra Appl. 414 (2006)

199–217.
[3] O. Rojo, M. Robbiano, On the spectra of some weighted rooted trees and applications, Linear Algebra Appl. 420

(2007) 310–328.
[4] O. Rojo, R. Soto, The spectra of the adjacency matrix and Laplacian matrix for some balanced trees, Linear Algebra

Appl. 403 (2005) 97–117.
[5] L.N. Trefethen, D. Bau III, Numerical linear algebra, Soc. Ind. Appl. Math. (1997).


	Introduction
	Some preliminaries
	The spectrum of L(G) when UUUU1={1}
	The spectrum of A(G) when UUUU1={1}
	Bounding the largest eigenvalue of some weighted graphs
	The spectra of L(G) and A(G) in the general case
	Acknowledgments
	References

