
Mar/d Modelling. Vol. 9, No. 1, pp. 63-68, 1987 0270-0255/87 $3.00 + 0.00

Printed in Great Britain. All rights resefvcd Copyright 0 1987 Pergamon Journals Ltd

A LOCALLY OPTIMAL FAST OBSTACLE-AVOIDING
PATH-PLANNING ALGORITHM

Y. LIROV

Department of Systems Science and Mathematics, Washington University, St Louis, MO 63130, U.S.A.

(Received 22 December 1986)

Communicated by E. Y. Rodin

Abstract-Two algorithms to compute the shortest collision-free paths in the Euclidean plane are
presented. The f obstacles are assumed to be described by disjoint convex polygons having N vertices in
total. After preprocessing time O(N + flog N), a suboptimal shortest path between two arbitrary query
points can be found in O(f+ Nlog N) time using Dijkstra’s algorithm and in O(N) time using the A*
algorithm. The space complexity is O(N + f).

1. INTRODUCTION

The class of problems of collision-free paths finding for a moving object in the Euclidean plane
cluttered with obstacles is known as collision-free path planning. The solutions to this class of
problems find their applications in such areas as mobile robots path planning and computer
graphics.

Previous attempts at collision-free path planning can be classified into two different approaches
[l]: a model-based approach and a non-model-based approach. In the model-based approach
models of the object and the obstacles are preprocessed and stored in the computer, and used as
references in the path-planning algorithms. In the non-model-based approach the image maps
based on visual input are utilized when planning a path.

The non-model-based approach reduces the representation cost to a minimum while the planning
cost is usually high. Examples of utilizing this approach can be found in Refs [1,2].

The model-based approach can be further subdivided into the configuration space approach and
the free-space representation space approach. The configuration space approach [3] is based on
the idea to shrink the object into a single point while at the same time expanding the obstacles
according to the object shape. The visibility graph is constructed and the search for the minimum
path is subsequently performed on that graph. The visibility graph indicates all collision-free
straight-line paths among the expanded polygonal obstacle vertices.

The free-space approach is based on direct representation of the free space by using basic shape
primitives. Chatila [4] uses convex polygons to represent the free space. The connectivity graph,
where each node is a free-space convex polygon and each link corresponds to the common edge
segments shared by adjacent polygons, is constructed. The overlapping generalized cones [S] can
also be used to represent the free space. The path planning reduces to the search through the
connectivity graph where each node corresponds to the intersection of two generalized cone axes
and each link corresponds to the cone axis.

The main advantage of the model-based algorithms over the non-model-based algorithms is the
faster running speed. The main disadvantage is the high preprocessing time demands that the
model-based algorithms require before the actual planning can start. The best recent result is
proposed by Ronhert [6], who achieves O(f’ + N log N) running time and O(N + f2 log N)
preprocessing time complexities by cleverly constructing the visibility graph and then implementing
Dijkstra’s algorithm.

In this paper we present a solution to the collision-free path-planning problems using the model-
based, configuration space approach. By employing Voronoi diagrams in the preprocessing stage,
we achieve the O(N + flog N) preprocessing time complexity and O(f + N log N) running time
complexity using Dijkstra’s algorithm. This result is further improved to O(N), linear expected
running time complexity, by utilizing the A* search algorithm.

63
WY/l-E

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81193704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

64 Y. LIROV

2. VISIBILITY GRAPH CONSTRUCTION

We assume throughout the paper that the obstacles are represented byfdisjoint convex polygons
with N vertices in total. Furthermore, we assume that the two query points s and t describing the
optimal collision-free path do not lie in the interior of any polygon and that no three vertices are
colinear.

Lemma 1 [6]

The shortest path between s and t in the plane avoiding convex polygonal obstacles is defined
by edges of the polygons and supporting segments of pairs of polygons.

The problem of obstacle-avoiding path planning, therefore, is transformed to the problem of
supporting segments efficient construction and search in the resulting visibility graph. The visibility
graph is constructed of all N vertices, obstacle edges and those supporting segments that do not
intersect any of the polygons.

3. SUPPORTING-LINE GENERATION

Lemma 2 [6]

For two disjoint convex polygons there exist at most four common supporting segments.

Lemma 3 [7]

The four supporting segments between two polygons Pi and Pj can be computed in O(log (ni * nj))
time, where ni and “j are the number of vertices of Pi and P,, respectively.

Efficient supporting segments generation becomes the key issue in the preprocessing stage.
Two approaches can be used on this matter: full set of supporting segments generation

[
total off(j - ‘) - , 2 1 as done by Ronhert [6], or selective supporting-line generation. Most of the

supporting lines in the full set are not useful, since it is intuitively clear that most of them will cross
the interior of other convex polygons. This intuition is supported also by the results of Ronhert
[6], who generates the full set in quadratic time and then eliminates the non-useful ones in
O(fz logf) time.

Our approach is to selectively generate only those supporting segments that have the most
chances to be included in the shortest path. We propose to construct the supporting segments only
between the neighboring obstacles.

Efficient determination of the neighboring obstacles can be performed by introducing the Voronoi
diagram of the set of obstacles. The f regions partition of the plane, such that every region consists
of the set of points which are closest to a particular obstacle, is called the Voronoi diagram of the
set of obstacles. However, the Voronoi diagram of the convex polygons is a complex curve which
is difficult to compute [8].

For our purposes it is enough to use only the polygon centers to define the neighborhood
relations.

ff

c -
Fig. 1. Segment A cannot belong to the shortest
path, since otherwise the path could be improved by

taking B or C.

Fig. 2. The four supporting segments A, B, C and D.

Collision-free path-planning algorithms 65

Let the set of points (T1,. . . , T,), each corresponding to some polygon, be defined by the respective
polygon’s arithmetic sum of some of its vertices.

Lemma 4

The nearest neighbors for every point in the set (Ti , . . . , 7”) are computed in O(flog j) time and
this is optimal.

Proof. Use the Voronoi diagram and apply Theorem 5.15 of Preparata and Shamos [9].

Lemma 5

Every nearest neighbor defines an edge in the Voronoi diagram (Theorem 5.9 in Preparata and
Shamos [9 3).

Lemma 6

The Voronoi diagram has at most 3f - 6 edges and 2f - 5 vertices.
Proof. Corollary 5.2 in Preparata and Shamos [9].

Theorem 1

There are at most 4(3f - 6) supporting lines between the nearest neighboring polygonal obstacles.
Proof. Follows from Lemmas 2, 5 and 6.

Theorem 2

The supporting lines between the neighboring polygonal obstacles can be computed in

0
(>

flog N time.
f

Proof. In the worst case there will be 3f - 6 neighbors, each having

pair will have all 4 supporting lines. Every pair requires O(logn, + lognj) = 0

construct the supporting lines. Summation over all the neighbors gives at most 0

running time.
As mentioned in Section 2, the shortest paths traverse obstacles and the supporting segments of

pairs of polygons. However, a supporting segment that intersects the interior of a polygon does
not belong to the shortest path. Following Ronhert [6], we call the segments that intersect the
interior of an obstacle non-useful.

Lemma 7

The non-useful supporting segments can be eliminated in O(N) time and O(f) storage.
Proof. Since the supporting lines were constructed only between neighboring polygons, they can

intersect only a neighboring polygon. The total of neighboring polygons at every Voronoi diagram

node is 3. In the worst case, each has N [I f
edges. So at most there will be 12 tests for segments

intersection of a polygon having [I E edges, which takes 0
f 0

N time. Since the number of vertices
f

on the Voronoi diagram is at most 2f - 5, in total, there will be at most (2f - 5) 0
0
N
f

= O(N)

time.
The visibility graph constructed using the supporting lines only between the neighboring polygons

has at most 4-(3f - 6) supporting lines, according to Theorem 1.

66 Y. LIROV

4. SUBOPTIMALITY vs SPEED

Observe, that, using our approach there may be cases when some supporting lines that could
belong to the optimal path are not constructed at all. For example, in Fig. 4, the polygons B and
D are not neighbors and therefore, no supporting segments are constructed. If there was an optimal
path from D to B, then it would have to touch either A or C, and no straight supporting line
between B and D would exist.

In order to judge the above described observation, let us first consider the main merits which
are usually used when choosing an algorithm for the shortest path planning. In practical applications
three criteria play major roles in choosing a planning algorithm:

(1) the resulting path must connect the two given points and must avoid the obstacles;
(2) it must be as short as possible; and
(3) it must be computed as fast as possible.

In real-time applications, when the terminal point is allowed to move, or, when the obstacles set
is changing its configuration or, when the obstacles themselves change their shapes, the requirement
for the global path optimality becomes senseless. On the other hand, the demand for the
computational speed becomes the major consideration when choosing the shortest path-planning
algorithm, since the planning process is repeatedly performed at every predefined time increment.

In such cases our approach for the visibility graph construction is the most useful one (cf. Lemma
4, Theorem 2 and Lemma 7). Moreover, since the resulting visibility graph is as sparse as it can
possibly be, the shortest path-search algorithm will require also the least running time.

5. VISIBILITY GRAPH SEARCH

We may use either of the following two approaches to search for the solution in the visibility
graph. The first employs Dijkstra’s algorithm and the second employs the A* algorithm.

Theorem 3

The shortest suboptimal path between two points s and t in the presence off disjoint convex
polygonal obstacles with N vertices in total can be computed in O(N + f) space, and O(f + N log N)
time after O(N + flog N) preprocessing time.

Proof. The input has cost O(N). The Voronoi diagram construction is done in O(flogf) time.

The supporting segments are constructed in 0
()

flog’ time, according to Theorem 2. The
f

elimination of the non-useful ones can be done in O(N) time, according to Lemma 7. So, the total

Fig. 3. The Voronoi diagram. Fig. 4. The supporting segments will be constructed
between A, C, D and A, B, C but not between Band D.

Collision-free path-planning algorithms 67

* I
is O(N + flog N) time for the preprocessing stage to construct the connectivity graph. Note that

N>f.
Dijkstra’s algorithm can be implemented according to Fredman and Tarjan [IO] in O(lEl +

1 VI log I VI) time. In our case, (VI = N + 2, and /El -C 4(3f - 6) + 4f + N. Therefore, we get a run
time of O(f + N log N).

Space complexity is O(N + f), since every polygon and every vertex and all the information
pertaining to the above must be stored.

The second approach to the search is based on the use of the A* algorithm [l I]. The evaluation
function f used to evaluate an expanded node is of the form

f(n) = m + 44

for every node n, where

g(d) = g(n) + c(n, n’),

n’ belongs to the set of successors of n, g(n) is the cost of the path from s to n, h(n) is the heuristic
estimate of the cost of the remaining path from n to n’ and c(n, n’) is the cost of the path from n to

, n.
We take the cost function to be defined by the distance between two nodes, and the estimate of

remaining cost to be the straight-line distance to the goal.

Theorem 4

The A* algorithm returns an optimal solution when one exists in linear expected time complexity
O(N).

Proof. The admissibility follows from the choice of the heuristic function h, since

h(n) < h*(n), Vn

where h*(n) is the cheapest cost of the path going from n to t. The linear expected time complexity
is proved by Pearl [ll] for the case where the N vertices are randomly scattered with uniform
density.

Note that the A* algorithm performance is independent of the visibility graph complexity.

6. SUMMARY

Three criteria play major roles in choosing an algorithm for the shortest path planning in
obstacle-cluttered space between two given points:

(1) the resulting path must connect the two given points and must avoid the obstacles;
(2) the resulting path must be as short as possible; and
(3) the resulting path must be computed in the shortest possible time.

The visibility space approach is utilized to solve the collision-free shortest path in the Euclidean
plane cluttered with convex polygonal obstacles. The preprocessing stage is shown to have
O(N + f log N) time complexity to construct the visibility graph. Dijkstra’s algorithm performing
the search on the resulting graph runs in O(f + N log N) time complexity. These results improve
the best known time complexities of O(N + f 2 log N) and O(f2 + N log N), respectively. The use
of the A* algorithm yields the O(N) expected running time.

The Voronoi diagram of the set of obstacles provides an efficient mechanism to construct such
a visibility graph.

The significant reductions in the reprocessing and running times are achieved by giving up the
global optimality requirement of the resulting shortest path. This requirement relaxation enables
one to consider the visibility graph consisting of the obstacles edges and of the supporting segments
between the neighboring obstacles only.

68 Y. LIROV

I

REFERENCES

1. E. K. Wong and K. S. Fu, A hierarchical orthogonal space approach to three dimensional planning. IEEE JZ Robotics
Automn RA-2(l), 42-53 (1986).

2. S. Kambhampati and L. Davis, Multiresolution path planning for mobile robots. IEEE .I1 Robotics Automn RA-2(3),
135-145 (1986).

3. T. Lozano-Perez, Automatic planning of manipulator transfer movements. IEEE Trans. Syst. Man Cybernet. SMC-11,
681-698 (1981).

4. R. Chatila, Path planning and environment learning in a mobile robot system. In Proc. Eur. Conf. on Artijcial
Intelligence, Orsay, France (1982).

5. R. A. Brooks, Solving the find-path problem by good representation of free space. IEEE Trans. Syst. Man. Cybernet.
SMC-U(3), 190-197 (1983).

6. H. Ronhert, Shortest paths in the plane with convex polygonal obstacles. 1nf. Process. Lett. 23, 71-76 (1986).
7. H. Edelsbrunner, Finding extreme distances between convex polygons. J. Algorithms 6(2), 213-224 (1985).
8. R. L. Drysdale, Generalized Voronoi diagrams and geometric searching. Stanford, CS Report STAN-es-79-705, Stanford,

Calif. (1979).
9. F. P. Preparata and M. I. Shamos, Computational Geometry. Springer, New York (1985).

10. M. Fredman and R. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms. In Proc.
25th A. IEEE Symp. on Foundations of Computer Science, pp. 338-346 (1984).

11. J. Pearl, Heuristics-Intelligent Search Strategiesfor Computer Problem Solving. Addison-Wesley, Reading, Mass. (1984).

