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A simple alternative proof is given for a necessary and sufficient 
condition for the decodability of a sequence of codes. The proof in- 
volves no application of linear syntactical bases or other sophisticated 
algebraic criteria. 

A necessary and sufficient condition for unique decipherability of 
coded messages has been obtained by Sardinas and Patterson (1953). 
The condition is simple, but the proof requires quite sophisticated 
methods. The formalism necessary for the proof, as described by the 
authors (loc. cit. para. 2, p. 106), needs the knowledge of semi-groups 
with some special properties (the "linear syntactical basis"). The 
formalism has been given partly in the reference given above and 
partly in a short abstract (Patterson, 1951). The complete proof ap- 
pears in a n  unpublished research report (Sardinas and Patterson, 
1950). 

Since the condition is important in Information Theory a simp]ified 
proof without invoking any sophisticated formalism may be thought 
desirable. The desirability is further enhanced due to the fact that 
"linear syntactical basis" has not been necessary so far in any branch 
of Information Theory except for the above proof. For completeness 
the condition is restated and the terminology clarified in the next 
section before proving it. 

TERMINOLOGY AND ~?HE STATEMENT OF THE THEOREM 

We are given a set of code symbols (called symbol by Shannon (1948), 
coding digit by Huffman (1952), letters by Gilbert and Moore (1959), 
and code letter by Karp (1961)), like dot or dash in morse code. We 
shall designate them as D, E, F, etc. (the symbols A, C being reserved 
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for other purposes). From these symbols any finite symbol sequence like 
DE, D, EFD, etc. can be constructed. Of these sequences some are 
selected to represent messages. Each of these will be called codes, fol- 
lowing Shannon (1948) and will be denoted by  C1, C2, .-" ; C1', C2', 
C3 ~, . . .  , etc. A sequence of codes will be called a code sequence. Thus 
if D, DE, ED can be codes then DDDDEED is a code sequence, but  
EEEEE is not a code sequence. A code sequence is a symbol sequence; 
but  a symbol sequence is not Mways a code sequence. The aggregate 
of the set of all codes will be called a code set (called encoding by  Gilbert 
and Moore (1959) and code by  Karp (1961)). Following Huffman 
(1952) one symbol sequence will be called the prefix of another if the 
former can be obtained by  removing some symbols from the end of the 
latter. The symbol sequence left over in the latter by  taking away the 
prefix will be called, following Sardinas and Pat terson (1953), a member 
of segment 1 constructed from the code set. 

Segment I is complete when all its members have been obtained by 
considering each member of the code set and examining if it is a prefix 
of another. If now we take each member of segment 1 and examine if it 
is a prefix of any code or if any code is its prefix then the symbol se- 
quence obtained by removing the prefix is called a member of segment 2 
and the total i ty of members constitute segment 2. Segments 3, 4, 5, . . .  
are constructed from segments 2, 3, 4, • • • respectively, just in the same 
way as segment 2 was constructed from segment 1. Evident ly a code 
set is decipherable (i.e., any code sequence can be read unambiguously) 
if no two distinct code sequences have the identical symbol sequence. 
The theorem of Sardinas and Pat terson states: A Code Set is decipherable 
if  and only if  no segment contains a Code. We proceed to give a simple 
proof of the theorem in the next section. We shall have to use the idea 
of (geometrical) segment of a line in the proof.: Unless qualified by the 
adjective "geometrical" or marked by  the endpoints, e.g., AA, etc. 
the word segment will have the meaning as in the definitions above. 
Additional symbols will be used, which will be explained where they are 
needed, viz., at the lat ter  parts of the next section. 

PROOF OF THE THEOREM 

To prove that  the condition is necessary let us suppose that  two code 
sequences, C1, C2, . ' -  , C~ and C1 ~, C2', . "  , C~, have identical symbol 
sequences. Let  us further assume, without any loss of generality, tha t  
no two codes other than C~, Ck t in the above sequences end simul- 
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taneously. For convenience of our argument we shall represent the codes 
by (geometrical) segments of a straight line in Fig. 1. Let  A mark the 
beginning of C1 and Cs'. Let A1, A~ mark the end of C1, C2 and also 
the beginning of C2, C3 respectively. Thus if C~ stands for DEFD and 
C2 for FED then, AA~ will mean DEFD and AsA~ will mean FED. 
Let Ai', A2', . . .  , A'k,, have similar meanings in relation to C~ r, C2 r, . . .  
C~, . If C~' stands for DE then As'As will mean FD. We shall prove that  
at least one member of one of the segments is a code. 

Since AAI and AAs' are codes it follows that  As'A1 is a member of 
segment 1. (This is provided A1 ~ lies to the left of As, which we assume. 
Had it been otherwise the eorresponding argument would run analo- 
gously.) The member of segment 2 that  can be eonstrueted from AsrA~ ' is 
either A2'A~ or AsA2', depending on whether A~' is to the left or right 
of  As  . Construetion of segments will thus proceed and the r th segment 
will be A~A~; where A~' is the first of the A"s lying to the right of As. 
( I t  may be noted that  where A2' is to the left of As, A2'A~ is obtained 
from the first segment-member A~A~ by taking away from it the code 
As'A2' as prefix. In obtaining AsA,. r, however, the segment-member 
A'r_~A~ has been taken away as prefix from the code A~_IAr'). Con- 
tinuing in this manner it fo!lows that  A,/At is a member of (r + 1 - 1)th 
segment where At is the first of A's lying to the right of A~'. Thus every 
mark, for some finitely numbered segment, becomes either the begin- 
ing or the end of a member of a segment. Further,  every segment has 
its beginning in one of the A's and end in one of the A"s or vice versa. 
(This statement can be proved by induction, for if AT'At be a segment 
then the next segment is AtA~+s or Ar~+~Az according as A,'At is the 
prefix of a code or has a code as prefix. Also the member As'A~ or AIA~' is 
of the required form.' Now let A~_~ be the mark nearest to the common 
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point Ak, A~,. If A~_I is the end of a segment, the segment must be 
A~,_IA~_I. Hence the next segment, found by  taking this away as prefix 

! ! ! 
from the code Ak,-~Ak, is Ak_IA~,, i.e., Ak_~A~ which is a code. Similar 
arguments could be forwarded if A~,_~ would have been nearest to Ak. 
This completes the proof of necessity. 

To prove the sufficiency we assume for definiteness that  a member of 
segment 3 is a code. We shall demonstrate how two code sequences can 
be constructed which have an identical symbol sequence. Figure 2 shows 
different possibilities (i), (fi), (iii), (iv) that  arise when a member 
of segment 3 is a code. Figure 3 shows two code sequences with identical 
symbol sequence that  can be constructed in cases (i),  (ii), (iii), (iv). 
We describe below the essence of this construction. 

To construct two alternative code sequences each step of Fig. 2 is 
written down as purely algebraic equations as shown below. The codes 
are then transposed so tha t  no negative sign remains on either side. 
The set of codes on each side, taken in order, in which they occur in 
Fig. 2, represents the two alternative code sequences. To illustrate 
this, consider ease (fii). The equations are: 

S~ 3 = C ~ =  C q -  S~ ~ or S q 2 + C p =  C~ (1) 

S~ 2 =  S J - C ~  or C ~ + S ~  2 =  S~ 1 (2) 

S r  1 = Cs -- Ct o r  Ct + S r  1 = Cs  

• S~ -Cp 

i 
I 

S~ - Cq 

I 

i I I 
Sr -Cr Cr - S r  S~, -C r 

( i )  ( i i )  (iii) 
S r = C s - C  t 

I 
Cq-S~ 

I 

I 
G r - S  r 
. (iv) 

FIG. 2. S~ k stands for the pth member of segment 1. Sr ~ - C~ = S~ +I stands 
for the fact that S~ +~ has been formed by removing prefix C~ from Sr ~. Cr - Sr" = 
S~ +~ stands for the fact that S~ +I has been formed by removing prefix Sr ~ for Cr. 
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. . . .  C t .~¢--- Cr----~4,~---- Cq-----~4~-CI ~. 

( i i ) :  - - G s  
Ct 

Ciii) ~ - -  Cs - - - - - - - ~ - - - - -  Cp 
~-- - -  - -  - -  G t - -  - -  - -¢J~- -  - -  C r -  - - - -~i~ - -  Cq ~" 

(iv} ~ Cs ~ Cq -~  
"= Ct ~ C r . . . .  ~ - - - -  C p - -  - -  - - ~  

FIG. 3. Code sequences written above the line give one decomposition and 
the ones written below give another decomposition. 

Eliminating S's we have 

C p + C ~ =  C t + C r + C q  (3) 

We find the correspondence of this equation in Fig. 3(iii) where 
C, followed by  Cp, written above the line, has the same code sequence 
as C~ followed by  Cr followed by Cq, written below the line. 

That  the above process is justified for Eq, ( I )  can be taken to mean 
that  Sq 2 followed by C~ has the same symbol sequence as Cq. Placing 
now Cr to the left of each and using (2) one gets 

meaning that  Sr 1 followed by C~ has the same symbol sequence as C, 
followed by  Cq. Proceeding in this fashion Eq. (3), with analogous 
meaning, follows. 

All this means that  we can handle ( l ) ,  (2), etc. as algebraic equations 
provided proper order is maintained. The method can similarly be 
extended when a member of any other segment say 4, 5, 6, • • • is a code. 
This completes the proof. 

The literature on the subject (see references) contains some examples 
and also clarifies the interrelation between this condition, the prefix 
condition, and the usual condition of having a fixed terminating symbol. 
We do not enter into the discussion of these in this paper. 
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