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Abstract

The roots of the general equation of degree n satisfy an A-hypergeometric system of di�er-
ential equations in the sense of Gel’fand, Kapranov and Zelevinsky. We construct the n distinct
A-hypergeometric series solutions for each of the 2n−1 triangulations of the Newton segment.
This works over any �eld whose characteristic is relatively prime to the lengths of the segments
in the triangulation. c© 2000 Elsevier Science B.V. All rights reserved.

1. Solving the quintic

A classical problem in mathematics is to �nd a formula for the roots of the general
equation of degree n in terms of its n + 1 coe�cients. While there are formulas in
terms of radicals for n64, Galois theory teaches us that no such formula exists for
the general quintic

a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0 = 0: (1.1)

An alternative approach is to expand the roots into fractional power series (or Puiseux
series). In 1757 Johann Lambert expressed the roots of the trinomial equation
xp + x + r as a Gauss hypergeometric function in the parameter r. Series expansions
of more general algebraic functions were subsequently given by Euler, Chebyshev
and Eisenstein, among others. The poster ‘Solving the Quintic with Mathematica’ [12]
gives a nice introduction to these classical techniques and underlines their relevance
for symbolic computation.
The state of the art in the �rst half of our century appears in works of Richard

Birkeland [2] and Karl Mayr [10]. They proved that the roots are multivariate hyper-
geometric functions (in the sense of Horn) in all of the coe�cients and they gave
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series expansions for the roots and their powers. The purpose of this note is to re�ne
these results.
Our point of departure is the fact that the roots satisfy the A-hypergeometric

di�erential equations introduced by Gel’fand et al. [6,7]. Here A denotes the con-
�guration of n+1 equidistant points on the a�ne line. It follows from recent work of
McDonald [11] that there are 2n−1 distinct complete sets of series solutions, one for
each of the 2n−1 triangulations of A. The main result in this paper (Theorem 3.2) is
an explicit construction of these hypergeometric series.
Let us illustrate our general construction for the example of the quintic (1.1). Here

the set A has 16 distinct triangulations. The �nest triangulation divides A into �ve
segments of unit length. The coarsest triangulation of A is just a single segment of
length 5. For the �nest triangulation we get the following expressions for the �ve roots
of (1.1):

X1;−1 =−
[
a0
a1

]
; X2;−1 =−

[
a1
a2

]
+
[
a0
a1

]
; X3;−1 =−

[
a2
a3

]
+
[
a1
a2

]
;

X4;−1 =−
[
a3
a4

]
+
[
a2
a3

]
; X5;−1 =−

[
a4
a5

]
+
[
a3
a4

]
:

Each bracket represents a power series having the monomial in the bracket as its �rst
term: [

a0
a1

]
=

a0
a1
+

a20a2
a31

− a30a3
a41

+ 2
a30a

2
2

a51
+

a40a4
a51

− 5a
4
0a2a3
a61

− a50a5
a61

+ · · · ;
[
a1
a2

]
=

a1
a2
+

a21a3
a32

− a31a4
a42

− 3a0a
2
1a5

a42
+ 2

a31a
3
3

a52
+

a41a5
a52

− 5a
4
1a3a4
a62

+ · · · ;
[
a2
a3

]
=

a2
a3

− a0a5
a23

− a1a4
a23

+ 2
a1a2a5

a33
+

a22a4
a33

− a32a5
a43

+ 2
a32a

2
4

a53
+ · · · ;

[
a3
a4

]
=

a3
a4

− a2a5
a24

+
a23a5
a34

+
a1a25
a34

− 3a2a3a
2
5

a44
− a0a35

a44
+ 4

a1a3a35
a54

+ · · · ;
[
a4
a5

]
=

a4
a5

:

Note that the last bracket is just a single Laurent monomial. The other four brackets
[(ai−1)=ai] can easily be written as an explicit sum over N4. For instance,[

a0
a1

]
=

∑
i; j; k; l¿0

(−1)2i+3j+4k+5l(2i + 3j + 4k + 5l)!
i!j!k!l!(i + 2j + 3k + 4l+ 1)!

· a
i+2j+3k+4l+1
0 ai

2a
j
3a

k
4a

l
5

a2i+3j+4k+5l+11

:

Each coe�cient appearing in one of these series is integral. Therefore, our �ve series
solutions of the general quintic are characteristic-free. They work over any base �eld.
The situation is di�erent for the coarsest triangulation of A. Here we must assume

that the characteristic is di�erent from 5. The �ve series solutions of (1.1) are
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X5;� = �

[
a1=50
a1=55

]
+
1
5

(
�2
[

a1
a3=50 a2=55

]
+ �3

[
a2

a2=50 a3=55

]
+ �4

[
a3

a1=50 a4=55

]
−
[
a4
a5

])
;

where � runs over the �ve roots of the equation �5 = −1. The brackets denote the
series [

a1=50
a1=55

]
=

a1=50
a1=55

− 1
25

a1a4
a4=50 a6=55

− 1
25

a2a3
a4=50 a6=55

+
2
125

a21a3
a9=50 a6=55

+
3
125

a2a24
a4=50 a11=55

+ · · · ;

[
a1

a3=50 a2=55

]
=

a1
a3=50 a2=55

− 1
5

a23
a3=50 a7=55

− 2
5

a2a4
a3=50 a7=55

+
7
25

a3a24
a3=50 a12=55

+
6
25

a1a2a3
a8=50 a7=55

+ · · · ;

[
a2

a2=50 a3=55

]
=

a2
a2=50 a3=55

− 1
5

a21
a7=50 a3=55

− 3
5

a3a4
a2=50 a8=55

+
6
25

a1a2a4
a7=50 a8=55

+
3
25

a1a23
a7=50 a8=55

+ · · · ;

[
a3

a1=50 a4=55

]
=

a3
a1=50 a4=55

− 1
5

a1a2
a6=50 a4=55

− 2
5

a24
a1=50 a9=55

+
1
25

a31
a11=50 a4=55

+
4
25

a1a3a4
a6=50 a9=55

+ · · · :

Each of these four series can be expressed as an explicit sum over the lattice
points in a four-dimensional polyhedron. The general formula will be presented in
Theorem 3.2 below.

2. The roots are A-hypergeometric

Our problem is to compute the roots of the general equation of degree n,

f(x) = a0 + a1x + a2x2 + · · ·+ an−1xn−1 + anxn: (2.1)

Each root of f(x) is an algebraic function in the indeterminate coe�cients:

X = X (a0; a1; a2; : : : ; an−1; an):

Proposition 2.1 (Karl Mayr [10, p. 284]). The roots of the general equation of degree
n satisfy the following system of linear partial di�erential equations:
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@2X
@ai@aj

=
@2X

@ak@al
whenever i + j = k + l; (2.2)

n∑
i=0

iai
@X
@ai

=−X and
n∑

i=0

ai
@X
@ai

= 0: (2.3)

System (2.2)–(2.3) is a special instance of the class of A-hypergeometric di�erential
equations introduced by Gel’fand et al. [5,7]. Namely, (2.2)–(2.3) is the A-hyper-

geometric system with parameters
(

−1
0

)
associated with the integer matrix

A :=
(
0 1 2 3 · · · n− 1 n
1 1 1 1 · · · 1 1

)
: (2.4)

The column vectors of A are homogeneous coordinates of n + 1 equidistant points
on the line. Their convex hull is a line segment: it is the Newton polytope of f(x).
The binomials (2.2) express the a�ne dependencies among the n + 1 points, and the

parameters
(

−1
0

)
come from (2:3):

The Euler-type equations (2.3) follow readily from the homogeneity relations

X (a0; ta1; t2a2; : : : ; tn−1an−1; tnan) =
1
t
X (a0; a1; a2; : : : ; an−1; an);

X (ta0; ta1; ta2; : : : ; tan−1; tan) = X (a0; a1; a2; : : : ; an−1; an):

Eq. (2.2) appeared in Karl Mayr’s 1937 paper [10, Eq. (2), p. 284].
I shall present two di�erent proofs. The �rst one was shown to me in the spring of

1992 by Jean-Luc Brylinski. See [3] for an appearance of (2.2) in di�erential geometry.

Brylinsky’s proof of (2.2): It uses implicit di�erentiation and works over any base
�eld. We consider the �rst derivative f′(x) =

∑n
i=1 iaixi−1 and the second derivative

f′′(x) =
∑n

i=2 i(i − 1)aixi−2. Note that f′(X ) 6= 0, since a0; : : : ; an are indeterminates.
Di�erentiating the de�ning identity

∑n
i=0 aiX (a0; a1; : : : ; an)i =0 with respect to aj, we

get

X j + f′(X )
@X
@aj

= 0: (2.5)

We next di�erentiate @X=@aj with respect to the indeterminate ai:

@2X
@ai@aj

=
@
@ai

(
− X j

f′(X )

)
=

@f′(X )
@ai

X jf′(X )−2 − jX j−1 @X
@ai

f′(X )−1: (2.6)

Using (2.5) and the resulting identity (@f′(X ))=@ai =−(f′′(X )=f′(X ))X i + iX i−1, we
can rewrite (2.6) as follows:

@2X
@ai@aj

=−f′′(X )X i+jf′(X )−3 + (i + j)X i+j−1f′(X )−2: (2.7)

Expression (2.7) depends only on the sum of indices i + j. This proves (2.2).
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A complex analysis proof of (2.2): Suppose we are working over the �eld of complex
numbers C. Consider the logarithmic derivative [log(f(x))]′=f′(x)=f(x). We view it
as a rational function in a0; a1; : : : ; an and di�erentiate with respect to these variables:

@2

@ai@aj
[log(f(x))]′ =

(−xi+j

f2(x)

)′
:

This shows that [log(f(x))]′ satis�es the quadratic A-hypergeometric equations (2.2).
Proposition 2.1 follows by di�erentiating under the integral sign in Cauchy’s formula

X =
1
2�i

∫
�

zf′(z)
f(z)

dz; (2.8)

where � is a su�ciently small loop in the complex plane.

3. Series expansions

For any rational number u and any integer v we abbreviate


(u; v) :=




1 if v= 0;
u(u− 1)(u− 2) · · · (u+ v+ 1) if v¡ 0;
0 if u is a negative integer and

u¿− v;
1

(u+1)(u+2)···(u+v) otherwise:

If u is not a negative integer then 
(u; v − 1) = (u + v)
(u; v) and we have 
(u; v) =
�(u+ 1)=�(u+ v+ 1), where � is the usual gamma function.
Let L denote the integer kernel of A. This is the (n − 1)-dimensional sublattice

of Zn+1 spanned by {ei−1 − 2ei + ei+1: i = 1; : : : ; n − 1}. Consider any monomial
au0
0 au1

1 · · · aun
n with rational exponents in the coe�cients of f(x). We de�ne the formal

power series

[au0
0 au1

1 · · · aun
n ] :=

∑
(v0 ;:::;vn)∈L

n∏
i=0

(
(ui; vi)a
ui+vi
i ): (3.1)

This series satis�es the linear di�erential equations (2.3) with their right-hand sides

−X and 0 replaced by 
1X and 
2X , where
(


1

2

)
=A(u0; u1; : : : ; un)T: The series also

satis�es the quadratic equations (2.2) in the following two cases. To prove the second
case it is best to �rst derive formula (4.2) below.

Lemma 3.1 (Gel’fand et al. [6, Lemma 1]). Let (u0; u1; : : : ; un) be a rational vector
which either has no negative integer coordinate or has the form (0; : : : ; 0; 1; −1;
0; : : : ; 0). Then the series [au0

0 · · · aun
n ] is a formal solution of the A-hypergeometric

system with parameters
(


1

2

)
.

Gel’fand, Kapranov and Zelevinsky constructed a complete set of series solutions
for each regular triangulations of the set A. We shall adapt their general construction
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to our special case. Extra care must be taken, however, because our Eqs. (2.3) do not
satisfy the non-resonance hypothesis which is necessary for [6, Theorem 3] to hold.
We write 0; 1; : : : ; n for the points in our con�guration A in (2.4). It has 2n−1

triangulations, all of which are regular. Each triangulation is indexed by a subset
I of {1; : : : ; n − 1}. Writing the complementary subset as {0; 1; : : : ; n}\I = {0 =
i0¡i1¡i2¡ · · ·¡ir−1¡ir = n}, the triangulation of A indexed by I consists of
the r segments [i0; i1]; [i1; i2]; : : : ; [ir−1; ir]. See [8, Sections 7.3.A and 12.2.A] for de-
tails. If r = n (resp. r = 1) then this is the �nest (resp. coarsest) triangulation referred
to in Section 1.
We are now prepared to present the main result of this note. In the remainder of

Section 3 we shall be working over the �eld of complex numbers C. Fix any of the
2n−1 triangulations of A. For j = 1; : : : ; r we write dj := ij − ij−1 for the length of
the jth segment in that triangulation. Clearly, d1 + d2 + · · ·+ dr = n. Let �= (−1)1=dj

be any of the djth roots of −1. We de�ne the A-hypergeometric series

Xj; � := �[a1=dj
ij−1

a−1=dj
ij ] +

1
dj

dj∑
k=2

�k [aij−1+k−1a
(k−dj)=dj
ij−1

a−k=dj
ij ] +

1
dj

[
aij−1−1
aij−1

]
:

If j = 1 then the expression [(a−1)=a0] appears in the rightmost summand. We de�ne
it to be zero. Note that by varying j and � we have de�ned n distinct series in total.

Theorem 3.2. The n series Xj; � are roots of the general equation of order n; that is;
f(Xj; �) = 0. There exists a constant M such that all n series Xj; � converge whenever

|aij−1 |ij−k |aij |k−ij−16M |ak |dj for all 16j6r and k 6∈ {ij−1; ij}: (3.2)

Proof. Consider the open convex cone

C = {w ∈ Rn+1: (ij − k)wij−1 + (k − ij−1)wij ¡djwk

for j = 1; : : : ; r; k 6∈ {ij−1; ij}}:
This is the normal cone to the secondary polytope �(A) at the vertex corresponding
to the triangulation I of A (cf. [8, Theorem 12.2.2]). Equivalently, the cone C consists
of all vectors w = (w0; w1; : : : ; wn) which induce the triangulation in question.
Let U be the region in the coe�cient space Cn+1 de�ned by the inequalities (3.2)

for M/0. There exists a vector V ∈ Rn+1 such that (log(|a0|); : : : ; log(|an|))− V ∈ C
for all (a0; : : : ; an) in U. Let H be the space of all complex-valued functions on U

which are A-hypergeometric with parameters
(

−1
0

)
. The A-hypergeometric system is

holonomic of rank n and its singular locus, the discriminantal locus of f, is disjoint
from U (see [6]). Hence H is a complex vector space of dimension at most n. We
shall identify n linearly independent elements in H, which will imply that H has
dimension exactly n.
It follows from [6, Proposition 2] that the series [au0

0 · · · aun
n ] de�ned in (3.1) con-

verges in U provided at most two of the exponents ui are non-integers. Each of the
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summands in the de�nition of Xj; � has this property. Therefore, Xj; � converges in U.
Using Lemma 3.1, we conclude that the n series Xj; � lie in the vector space H.
We �x an vector w=(w0; : : : ; wn) in C such that all coordinates wi are integers and

such that no two of the lines spanned by pairs {(wi; i); (wj; j)} in R2 are parallel. The
weight of a monomial ai0

0 a
i1
1 · · · ain

n (with rational exponents) is de�ned to be w0i0 +
w1i1 + · · ·+ wnin. We replace the input equation by its toric deformation

ft(x) = a0tw0 + a1tw1x + a2tw2x2 + · · ·+ an−1twn−1xn−1 + antwnxn: (3.3)

We shall study the n roots as an algebraic function of t. The purpose of this toric
deformation is two-fold: �rst, to show that the series Xj; � are linearly independent,
and, second, to show that they coincide with the relevant Puiseux series expansions of
the roots.
We observe that for t close to the origin the n roots split into r groups, one for

each segment [ij−1; ij], for j = 1; : : : ; r. (This is a special case of the multivariate
construction in [9, Section 3].) The roots in the jth group possess a Puiseux expansion
of the form

 j; �(t) = �a1=dj
ij−1

a−1=dj
ij t1=dj(wij−1−wij ) + higher terms in t;

where � satis�es �dj=−1. We shall prove that  j; �(1)=Xj; � for all (a0; : : : ; an) ∈ U. To
this end we �rst determine the second lowest term in the series  j; �(t). The convergence
of the Puiseux series  j; � in the relevant region is guaranteed by [11, Theorem 2].
After modifying the weight vector w by an a�ne transformation wi 7→ �wi+�, which

does not alter the structure of the series, we may assume that wij =wij−1 =0, and there
is a unique index r with wr = 1, and wl ¿ 1 for l ∈ {0; 1; : : : ; n}\{ij; ij−1; r}. An
explicit calculation reveals

 j; �(t) = �a1=dj
ij−1

a−1=dj
ij +

1
dj

�r+1−ij−1ara
(r+1−ij)=dj
ij−1

a(ij−1−r−1)=dj
ij t

+higher terms in t: (3.4)

By varying w within the cone C we can arrange that the role of r is played by any
index in the set

({0; 1; : : : ; n}\{i1; i2; : : : ; ir}) ∪ {ij−2; ij+1}: (3.5)

Note that the cardinality of this set is at least dj − 1. Consider the linear map that
extracts from a series in a0; : : : ; an all those terms which are lowest or second lowest
with respect to the grading de�ned by some w ∈ C. Call this map T . Consider the image
of a root  j; �(1) under T . This is a polynomial (with fractional exponents) having at
least dj distinct terms, one for the lowest term in (3.4) and at least dj−1 for the distinct
values of r coming from (3.5). The coe�cients of these terms are distinct powers of �
divided by dj. These considerations imply that the images of the roots  j; �(1) under T
are linearly independent. Therefore, the roots themselves are linearly independent over

C. Moreover, they all satisfy the A-hypergeometric system with parameter
(

−1
0

)
, by

Proposition 2.1. We conclude that the space H is n-dimensional and the roots  j; �(1)
form a basis for H.
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We wish to prove  j; �(1) = Xj; �. It su�ces to show T ( j; �(1)) = T (Xj; �) because
the functional T de�ned above separates the space H. Equivalently, given any generic
w in C, we must show that, in the w-grading, Xj; � has the same �rst two terms as
 j; �(1). This is clear for the �rst term, so we only need to look at the second term

(1=dj)�r+1−ij−1ara
(r+1−ij)=dj
ij−1

a(ij−1−r−1)=dj
ij . Let av denote this monomial. Let k be the

unique integer between 1 and dj such that r is congruent to ij−1−1+k modulodj. If k=1

then av equals the second lowest term (with respect to w) of the series �[a1=dj
ij−1

a−1=dj
ij ].

If 26k6dj − 1 then av equals the w-lowest term of the series indexed by k in the
central sum in the de�nition of Xj; �. For k = dj there are two subcases: if r ¿ ij−1
then av equals the w-lowest term of the series indexed by k = dj in the center sum; if
r ¡ ij−1 then av equals the w-lowest term of the rightmost series (1=dj)[aij−1−1=aij−1].
In each of these four cases av is the second lowest term in Xj; �. This completes the
proof of Theorem 3.2.

It is a natural question whether the series in Theorem 3.2 provide a practical method
for approximating the roots of an nth-order equation. We believe that this is indeed the
case if the convergence conditions in (3.2) are satis�ed. However, there are two essen-
tial drawbacks. First, no good bound for M seems to be currently known, and, second,
for many concrete instances the inequalities (3.2) will not hold for any triangulation.
In this case one has to carry out analytic continuation: using the di�erential equa-
tions (2.2) and (2.3) one can derive series expansions around any suitable �nite point
(a0; a1; : : : ; an). This was not done here. Our series are only concerned with expansions
at the ‘toric in�nity’.

4. Integrality issues

To prove the identity f(Xj; �)=0 in Theorem 3.2 we used the complex numbers. But,
a posteriori, there is no need to stick with an algebraically closed �eld of characteristic
zero. If K is any integral domain such that the equation �dj = −1 has dj distinct
solutions and the coe�cients of Xj; � are de�ned in K , then f(Xj; �) = 0 is a valid
identity in a suitable fractional power series ring over K . The following result shows
that K can be an algebraically closed �eld of characteristic p, provided p is relatively
prime to d1d2 · · ·dr . The proof of Theorem 4.1 using Hensel’s Lemma was suggested
to me by Hendrik Lenstra.

Theorem 4.1. All coe�cients of the series Xj; � lie in the ring Z[1=dj][�].

Proof. The series  j; �(t) in (3.4) lies in the fractional power series ring R1[[t1=dj ]];
where

R1 :=Q[�][as: s 6∈ {ij−1; ij}][a±1=dj
ij−1

; a±1=dj
ij ]:

This holds because ! is integral and each term of Xj; � =  j; �(1) lies in R1. To prove
Theorem 4.1, it su�ces to show that  j; �(t) is an element of the subring R2[[t1=dj ]],
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where

R2 :=Z
[
1
dj

]
[�][as : s 6∈ {ij−1; ij}][a±1=dj

ij−1
; a±1=dj

ij ]:

We shall apply Hensel’s Lemma [5, Theorem 7.3] to the integral domain R2[[t1=dj ]].
This domain is complete with respect to the principal ideal m := 〈t1=dj〉, and it contains
all coe�cients of the polynomial ft(x) in (3.3). The constant term of  j; �(t) lies in R2;

we denote it by A := �a1=dj
ij−1

a−1=dj
ij . It is an ‘approximate root’ in the sense that ft(A) ∈ m

and f′
t(A) is the sum of a unit in R2 and an element of m. By Hensel’s Lemma there

exists a unique element B in R2[[t1=dj ]] such that ft(B)=0 and A−B ∈ m. By repeating
the uniqueness part of this application of Hensel’s Lemma for the coe�cient domain
R1 instead of R2, we conclude that B must be equal to our Puiseux series  j; �(t).

A case of special interest is the �nest triangulation, where I = {1; 2; : : : ; n − 1},
r = n, dj = 1 for all j. Theorem 4.1 implies that in this case our construction is
characteristic-free. In other words, the series solutions Xj;−1 have integer coe�cients.
These series are

Xj;−1 =−
[
aj−1
aj

]
+
[
aj−2
aj−1

]
for j = 1; 2; : : : ; n; (4.1)

where [(aj−1)=aj] is the sum over all Laurent monomials

(−1)ij
ij−1 + 1

(
ij

i0 : : : ij−1ij+1 : : : in

) ai0
0 a

i1
1 · · · aij−2

j−2a
ij−1+1
j−1 aij+1

j+1 · · · ain
n

aij+1
j

; (4.2)

where i0; i1; : : : ; in are non-negative integers satisfying the relations

i0 + i1 + i2 + i3 + · · ·+ ij−1 − ij + ij+1 + · · ·+ in = 0
i1 + 2i2 + 3i3 · · ·+ ( j − 1)ij−1 − jij + ( j + 1)ij+1 + · · ·+ nin = 0:

(4.3)

For generating the series [(aj−1)=aj] on a computer it convenient to rewrite (4.3) as
follows.

ij−1 =−ji0 − ( j − 1)i1 − ( j − 2)i2 − · · · − 2ij−2 + ij+1 + 2ij+2 + · · ·+ (n− j)in;

ij =−( j − 1)i0 − ( j − 2)i1 − · · · − ij−2 + 2ij+1 + 3ij+2 + · · ·+ (n− j + 1)in:

These equations ensure that the multinomial coe�cient in (4.2) is divisible by ij−1+1.

5. Multivariate outlook

Consider a system of n polynomial equations in n variables, where the terms in the
ith equation have their exponent vectors in a �xed set Ai ⊂Zn. (This is the mean-
ing of ‘sparse’ in [9].) By Bernstein’s Theorem, the system has mixed volume many
roots (X1; : : : ; Xn). Each coordinate Xi is an algebraic function in all the coe�cients. It
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is natural to wonder whether Xi satis�es the A-hypergeometric di�erential equations
where A is the con�guration arising from the ‘Cayley trick’ (cf. [7, 2.5; 8, p. 273]):

A :=A1 × {e1} ∪A2 × {e2} ∪ · · · ∪An × {en}⊂Z2n:
The answer is no. The coordinates of the roots (X1; : : : ; Xn) are not A-hypergeometric.
For example, let (X1; X2) be the unique solution of the system of two linear equations

a0 + a1x1 + a2x2 = b0 + b1x1 + b2x2 = 0:

Then we �nd

@2X2
@a0@b1

6= @2X2
@a1@b0

:

Note also that Mayr’s di�erential equations (40) and (45) in [10] are no longer
binomial.
The correct generalization of Proposition 2.1 to higher dimensions is the following.

Let J (x1; : : : ; xn) denote the Jacobian det(@fi=@xj) of the given equations f1 = · · ·
= fn = 0.

Proposition 5.1. For any integers u1; u2; : : : ; un the algebraic function

X u1
1 X u2

2 · · ·X un
n

J (X1; X2; : : : ; Xn)
(5.1)

satis�es the A-hypergeometric di�erential equations arising from the Cayley trick.

Over the �eld of complex numbers, we can derive Proposition 5.1 from Theorem 2.7
in [7] using Cauchy’s formula in several variables. An alternative algebraic proof
follows from the construction in [1, Section 2]. The quantity in (5.1) should be thought
of as a local residue on a toric variety [4]. The sum over all (mixed volume many)
local residues is the global residue associated with the monomial xu11 · · · xunn relative to
the given equations f1 = · · ·=fn=0. The global residue is a rational function. It is of
importance in elimination theory. We plan to extend the techniques in Section 3 to the
setting of Proposition 5.1 in a subsequent joint work with Cattani and Dickenstein. The
goal of that project is to develop new formulas and algorithms for computing local and
global residues. Another interesting question is whether explicit Puiseux series expan-
sions of (5.1) might be useful to improve the numerical component in the homotopy
algorithm proposed in [9].

Acknowledgements

I am grateful to Carlos D’Andrea, Alicia Dickenstein, Hendrik Lenstra and Michael
Trott for helpful comments on earlier drafts of this paper. This project was partially
supported by grants from the National Science Foundation (NYI) and the David and
Lucile Packard Foundation.



B. Sturmfels / Discrete Mathematics 210 (2000) 171–181 181

References

[1] A. Adolphson, S. Sperber, Di�erential modules de�ned by systems of equations, Seminario Rendiconti
di Universita di Padova 95 (1996) 37–57.

[2] R. Birkeland, �Uber die Au
�osung algebraischer Gleichungen durch hypergeometrische Funktionen, Math.
Zeitschrift 26 (1927) 565–578.

[3] J.-L. Brylinski, Radon transform and functionals on the space of curves, The Gelfand Mathematical
Seminars, 1993–1995, Birkh�auser Boston, Boston, MA, 1996, pp. 45–73.

[4] E. Cattani, D. Cox, A. Dickenstein, Residues in toric varieties, Compositio Math. 108 (1997) 35–76.
[5] D. Eisenbud, Commutative Algebra with a View Towards Algebraic Geometry, Graduate Texts in

Mathematics, Springer, New York, 1995.
[6] I.M. Gel’fand, A.V. Zelevinsky, M.M. Kapranov, Hypergeometric functions and toral manifolds,

Functional Anal. Appl. 23 (1989) 94–106.
[7] I.M. Gel’fand, A.V. Zelevinsky, M.M. Kapranov, Generalized Euler integrals and A-hypergeometric

functions, Adv. Math. 84 (1990) 255–271.
[8] I.M. Gel’fand, A.V. Zelevinsky, M.M. Kapranov, Discriminants, Resultants, and Multidimensional

Determinants, Birkh�auser, Boston, 1994.
[9] B. Huber, B. Sturmfels, A polyhedral method for solving sparse polynomial systems, Math. Computat.

64 (1995) 1541–1555.
[10] K. Mayr, �Uber die Au
�osung algebraischer Gleichungssysteme durch hypergeometrische Funktionen,

Monatsh. Math. Phy. 45 (1937) 280–313.
[11] J. McDonald, Fiber polytopes and fractional power series, J. Pure Applied Algebra 104 (1995) 213–233.
[12] Solving the quintic with mathematica, poster distributed by Wolfram Research, 1994.


