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We investigate the spin structure of the pion within the framework of the nonlocal chiral quark model
from the instanton vacuum. We first evaluate the tensor form factors of the pion for the first and second
moment (n = 1,2) and compare it with the lattice data. Combining the tensor form factor of the pion
with the electromagnetic one, we determine the impact-parameter dependent probability density of
transversely polarized quarks inside the pion. It turns out that the present numerical results for the
tensor form factor as well as those for the probability density are in good agreement with the lattice
data. We also discuss the distortion of the spatial distribution of the quarks in the transverse plane
inside the pion.

© 2011 Elsevier B.V.

1. Introduction

The transversity of hadrons has been one of the most important issues well over decades (see a recent review [1]), since it allows one
to get access to their spin structures. It is pertinent to the tensor current of hadrons and is very difficult to be measured experimentally,
because there is no direct probe to measure it. Only very recently, it was suggested that the transverse spin asymmetry AT T in Drell–Yan
processes in pp̄ reactions [2–5] as well as the azimuthal single spin asymmetry in semi-inclusive deep inelastic scattering (SIDIS) [6]
can be used to obtain information on the transversity of the nucleon. Though it is even more difficult to measure the transversity of
the pion experimentally, it is still of great significance to understand it, since it provides the internal spin structure due to quarks, i.e.
it accommodates a novel concept called a hadron tomography. The first result of the pion transversity on lattice has been reported by
the QCDSF/UKQCD Collaborations [7]. They also presented the probability density of the polarized quarks inside the pion, combining the
electromagnetic form factor of the pion [8] with its tensor form factor. It was shown in Ref. [7] that when the quarks are transversely
polarized, their spatial distribution is strongly distorted. This first result in the lattice QCD has triggered several subsequent theoretical
works [9–11]. In Ref. [11], the tensor form factors of the pion have been studied within the local and nonlocal Nambu–Jona-Lasinio (NJL)
model [11], a direct comparison with the lattice results being emphasized. In doing so, they employed a larger value of the pion mass, i.e.
mπ = 600 MeV such that the results can be confronted with the lattice data. They also considered the case of the chiral limit.

In the present work, we first want to investigate the pion tensor form factor in the space-like momentum transfer region (0 � Q 2 �
1 GeV), based on the low-energy effective chiral action (EχA) from the instanton vacuum [12]. Combining the result of the tensor form
factor with the electromagnetic one of the pion which was already studied in Ref. [13] within the same framework, we then derive the
probability density of transversely polarized quarks inside the pion. Since the instanton vacuum realizes the spontaneous chiral symmetry
breaking (SχSB) naturally via quark zero modes, it may provide a good framework to study properties of the pion such as the electro-
magnetic and tensor form factors. Moreover, an important merit of this approach lies in the fact that there are only two parameters,
that is, the average (anti)instanton size ρ̄ ≈ 1/3 fm and average inter-instanton distance R̄ ≈ 1 fm. The normalization point is given by
the average size of instantons and is approximately equal to ρ−1 ≈ 0.6 GeV. The values of the ρ̄ and R̄ were estimated many years ago
phenomenologically in Ref. [14] as well as theoretically in Refs. [15–17]. The instanton framework has been proved to be reliable in repro-
ducing experimental data especially for the meson sector, such as the meson distribution amplitudes [18–20], semileptonic decays [21],
and etc. Furthermore, this approach was supported by various lattice simulations of the QCD vacuum [22–24]. The quark propagator from
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the instanton vacuum [15] is in a remarkable agreement with lattice calculations [25,26]. Finally the nonlocal chiral quark model from
the instanton vacuum has a practical virtue, since it does not have any adjustable parameter once the above-mentioned two parameters
ρ̄ and R̄ are determined.

We organize the present work as follows: In Section 2, we briefly explain the definitions of the probability densities of the transversely
polarized quarks, which are expressed in terms of generalized form factors of the pion. In Section 3, we show how to calculate the tensor
form factors within the nonlocal chiral quark model from the instanton vacuum. In Section 4, the numerical results are discussed and
compared with those in lattice QCD. The final section is devoted to summarize the present work, to draw conclusions, and to give outlook.

2. Generalized form factors of the pion

In this section, we define the probability density of transversely polarized quarks inside the pion. For definiteness, we choose the
positively charged pion π+ from now on. The probability density of transversely polarized quarks for the nth moment of the probability
density is given as

ρn(b⊥, s⊥) =
1∫

−1

dx xn−1ρ(x,b⊥, s⊥) = 1

2

[
An0

(
b2⊥

) − si⊥ε i jb j
⊥

mπ

∂ Bn0(b2⊥)

∂b2⊥

]
, (1)

where b⊥ denote the impact parameter that measures the distance from the center of momentum of the pion to the quark in the
transverse plane to its motion. The s⊥ stands for the fixed transverse spin of the quark. For simplicity, we choose the z direction for the
quark longitudinal momentum. The x indicates the momentum fraction possessed by the quark inside the pion. The An0(b2⊥) and Bn0(b2⊥)

are called the generalized form factors (GFFs). In fact, the GFFs are just the moments of the generalized parton distributions (GPDs) for
the unpolarized and transversely polarized pions, respectively:

1∫
−1

dx xn−1 H
(
x, ξ = 0,b2⊥

) = An0
(
b2⊥

)
,

1∫
−1

dx xn−1 E
(
x, ξ = 0,b2⊥

) = Bn0
(
b2⊥

)
. (2)

For the first moment, the GFFs A10 and B10 are identified with the electromagnetic and tensor form factors of the pion, respectively. Previ-
ously, we have studied A10(q2) in the momentum space within the nonlocal chiral quark model (NLχQM) from the instanton vacuum [13],
resulting in a good agreement with the experimental data. Hence, we can readily calculate A10(b⊥), using the results of Ref. [13]. Thus,
we will concentrate on calculating the tensor form factors B10,20 within the same framework, and they can be written in a general form
as follows:

〈
π+(p f )

∣∣Oμνμ1···μn−1
T

∣∣π+(pi)
〉 = AS

[
(pμqν − qμpν)

mπ

n−1∑
i=even

qμ1 · · ·qμi pμi+1 · · · pμn−1 Bni
(

Q 2)], (3)

where pi and p f stand for the initial and final on-shell momenta of the pion, respectively. We also use notations p = (p f + pi)/2 and
q = p f − pi . The tensor operator also can be given as:

Oμνμ1···μn−1
T = AS

[
q†σμν

(
i
←→
D Dμ1

) · · · (i
←→
D Dμn−1

)
q
]
. (4)

The A and S denote the anti-symmetrization in (μ,ν) and symmetrization in (ν, . . . ,μn−1) with the trace terms subtracted in all the
indices. Taking into account Eqs. (3) and (4), we can define the tensor form factors B10 and B20 of the pion in momentum space as the
matrix elements of the tensor current, using the auxiliary-vector method as in Ref. [27]:

〈
π+(p f )

∣∣q†(0)σabq(0)
∣∣π+(pi)

〉 = [
(pi · a)(p f · b) − (pi · b)(p f · a)

] B10(Q 2)

mπ
,

〈
π+(p f )

∣∣q†(0)σab(i
←→
D D · a)q(0)

∣∣π+(pi)
〉 = {

(p · a)
[
(pi · a)(p f · b) − (pi · b)(p f · a)

]} B20(Q 2)

mπ
, (5)

where the vectors satisfy the conditions, i.e. a2 = 0, a · b = 0 and b2 �= 0, and we have used a notation σab ≡ σμνaμbν . Due to this
auxiliary-vector method, one can eliminate the trace-term subtractions. We also introduce a notation i

←→
D Dμ ≡ (i

−→
D Dμ − i

←−
D Dμ)/2, where

Dμ indicates the SU(Nc) covariant derivative. Since we are interested in the spatial distribution of the transversely polarized quark inside
the pion, we need to consider the Fourier transform of the form factors:

F
(
b2⊥

) = 1

(2π)2

∫
d2q⊥e−ib⊥·q⊥ F

(
q2⊥

) = 1

2π

∞∫
0

Q dQ J0(bQ )F
(

Q 2), (6)

where F = (A10, B10) designates the generic pion form factor. The magnitudes of the transverse momentum and impact parameter are
expressed as |q⊥| ≡ Q and |b⊥| ≡ b. Similarly, the Fourier transform of the derivative of the GFF with respect to b2⊥ can be evaluated as:

∂ F (b2⊥)

∂b2⊥
≡ F ′(b2⊥

) = − 1

4πb

∞∫
Q 2 dQ J1(bQ )F

(
Q 2). (7)
0
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The J0 and J1 in Eqs. (6), (7) denote the Bessel functions of order 0 and 1, respectively. According to the definitions for the relevant
vectors q⊥ and b⊥ , the probability density in Eq. (1) reads as follows:

ρ1(b⊥, sx = ±1) = 1

2

[
A10

(
b2) ∓ b sin θ⊥

mπ
B ′

10

(
b2)], (8)

where the spin of the quark inside the pion is quantized along the x axis, s⊥ = (±1,0).

3. Nonlocal chiral quark model from the instanton vacuum

We now briefly explain the NLχQM from the instanton vacuum [28] and derive the GFFs of the pion. Considering first the dilute
instanton liquid, characterized by the average (anti)instanton size ρ̄ ≈ 1/3 fm and average inter-instanton distance R̄ ≈ 1 fm with the
small packing parameter πρ̄4/R̄4 ≈ 0.1, we are able to average the fermionic determinant over collective coordinates of instantons with
fermionic quasi-particles, i.e. the constituent quarks introduced. The averaged determinant is reduced to the light-quark partition function
that can be given as a functional of the tensor field in the present case. Having bosonized and integrated it over the quark fields, we
obtain the following effective nonlocal chiral action in the large Nc limit in Euclidean space:

Seff[m,π ] = −Sp ln
[
i/∂ + im + i

√
M(i∂)Uγ5(φ)

√
M(i∂) + σ · T

]
, (9)

where m, π , and Sp indicate the current quark mass, the Nambu–Goldstone (NG) boson field, and the functional trace over all relevant
spaces, respectively. In the numerical calculations, we will choose m ∼ mu ∼ md ≈ 5 MeV, taking into account isospin symmetry. The M(i∂)

stands for the momentum-dependent effective quark mass, generated from the nontrivial quark–(anti)instanton interactions [12]. Although
its analytical form is in general given by the modified Bessel functions, we will make use of its parametrization for numerical convenience:

M(i∂) = M0

(
2

2 + ρ̄2∂2

)2

, (10)

where M0 indicates the constituent quark mass, which can be determined self-consistently by solving the gap equation of the present
framework, resulting in M0 = 350 MeV [12]. The NG boson field is represented in a nonlinear form as [28]:

Uγ5(φ) = exp

[
iγ5(τ · φ)

Fφ

]
= 1 + iγ5(τ · φ)

Fφ

− (τ · φ)2

2F 2
φ

+ · · · , (11)

where φa is the SU(2) multiplet, defined as

τ · φ =
⎛
⎝ π0√

2
π+

π− π0√
2

⎞
⎠ . (12)

The Fφ denotes the weak-decay constant for NG bosons, whose empirical value is 93.2 MeV for the pion for instance. The last term in
Eq. (9) denotes σ · T = σμν Tμν , where σμν = i[γμ, γν ]/2 and Tμν represents the external tensor source field.

The three-point correlation function in Eq. (5) can be easily calculated by a functional differentiation with respect to the pion and
external tensor fields, which leads to the following two terms for the B10(Q 2):

δ3 Seff[m,π, T ]
δT δπaδπb

∣∣∣∣
T =0

= − 1

F 2
π

Sp

[
1

i/D

√
Mγ5τ

a
√

M
1

i/D

√
Mγ5τ

b
√

M
1

i/D
σμν

]
− i

2F 2
π

Sp

[
1

i/D

√
Mτ aτ b

√
M

1

i/D
σμν

]
, (13)

where we have introduced the shorthand notations M = M(i∂) and i/D = i/∂ + im + iM(i∂) = i/∂ + iM̄(i∂). The trace over the isospin space
yields trτ [τ aτ b] = 2δab . One can also do for the B20(Q 2) similarly. Having performed the functional trace and the trace over the color
space, we arrive at the matrix elements for the B(10,20)(Q 2), corresponding to Eq. (5), as follows:

〈
π+(p f )

∣∣q†(0)σabq(0)
∣∣π+(pi)

〉 = −2Nc

F 2
π

∫
d4k

(2π)4
Trγ

[
1

i/Da

√
Maγ5

√
Mb

1

i/Db

√
Mbγ5

√
Mc

1

i/Dc
σab

]
︸ ︷︷ ︸

(A)

− iNc

F 2
π

∫
d4k

(2π)4
Trγ

[
1

i/Db

√
Mb

1

i/Dc

√
Mcσab

]
︸ ︷︷ ︸

(B)

,

〈
π+(p f )

∣∣q†(0)σab(i
←→
D D · a)q(0)

∣∣π+(pi)
〉 = −2Nc

F 2
π

∫
d4k

(2π)4
Trγ

[
1

i/Da

√
Maγ5

√
Mb

1

i/Db

√
Mbγ5

√
Mc

1

i/Dc
σab

[(
k + pi

2

)
· a

]]
︸ ︷︷ ︸

(A)

− iNc

F 2
π

∫
d4k

(2π)4
Trγ

[
1

i/Db

√
Mb

1

i/Dc

√
Mcσab

[(
k + pi

2

)
· a

]]
︸ ︷︷ ︸ . (14)
(B)
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Fig. 1. Feynman diagrams for Bn0 in the NLχQM. We assign the initial and final pion momenta as pi and p f , respectively, while the momentum transfer as q. We also define
the loop momenta as ka = k − pi

2 − q
2 , kb = k + pi

2 − q
2 , and kc = k + pi

2 + q
2 .

Fig. 2. The numerical results for the electromagnetic form factor A10(Q 2) are presented in the left panel and those for the tensor form factors B10(Q 2) and B20(Q 2) in the
right panel. The solid curves depict the numerical results, whereas their parametrizations given respectively in Eqs. (17) and (21) are denoted by the squares. We also show
the parametrized lattice data [7] for the tensor form factors, designated by the triangles in the right panel.

The corresponding Feynman diagrams to the two terms (A) and (B) in the right-hand side of Eq. (14) are depicted in Fig. 1, respectively.
The relevant momenta are also defined as:

ka = k − pi

2
− q

2
, kb = k + pi

2
− q

2
, kc = k + pi

2
+ q

2
. (15)

In order to evaluate the matrix element, we define the initial and final pion momenta in the Breit (brick-wall) frame in Euclidean space
as done in Ref. [13]:

pi =
(

− Q

2
,0,0, i

√
Q 2

4
+ m2

π

)
, p f =

(
Q

2
,0,0, i

√
Q 2

4
+ m2

π

)
, q = (Q ,0,0,0). (16)

We also have chosen the auxiliary vectors for definiteness as a = (0,1,0, i) and b = (1,0,1,0), which satisfy the conditions mentioned in
Section 2. The denominators become /Da,b,c = /ka,b,c + iM̄a,b,c in Eq. (14). The momentum-dependent effective quark mass Ma,b,c can be
also defined by using Eqs. (10) and (15).

4. Numerical results and discussions

We first discuss the numerical results of the tensor form factors of the pion. Fig. 2 draws the numerical results for the electromagnetic
form factor of the pion A10 in the left panel and its tensor form factor B10 in the right panel as functions of Q 2 in the range of
0 � Q 2 � 1 GeV2. However, we want to mention that there is a caveat. Since we need the results of the form factors in principle up to
infinite Q 2 in order to perform the Fourier transform given in Eq. (6), we will use the parametrized one, as we will discuss later in the
context of the lattice data.

The numerical results for A10(Q 2) are taken from Ref. [13]. Though we have already discussed those for the electromagnetic form
factor in detail in Ref. [13], we want to recapitulate them in the context of the lattice data. It is well known that the electromagnetic form
factor can be parametrized by a monopole form

Fπ

(
Q 2) = A10

(
Q 2) = 1

2 2
. (17)
1 + Q /M
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Fig. 3. B10(0)/mπ (left) and B20(0)/mπ (right) as functions of m2
π . The numerical results for mπ = 0 and 140 MeV are given by the square and circle. The lattice data

(triangle) are taken from Ref. [7]. The shaded areas for mπ = (0 ∼ 140) MeV represent the lattice fits.

The monopole mass M was known to be M = (0.714 ± 0.004) GeV, based on the experimental data [29–31]. On the other hand, the
lattice calculation yields M = (0.727 ± 0.016) GeV with a linear chiral extrapolation to the physical pion mass taken into account [8].
The present result leads to M = 0.738 GeV, which indicates that of the pion electromagnetic form factor is in good agreement with the
lattice data. We also obtain the squared charge radius of the pion 〈r2〉 = 0.456 fm2, while in the lattice QCD it was evaluated to be
〈r2〉 = (0.441 ± 0.019) fm2. Considering the uncertainty of the lattice data, the present result is in remarkable agreement with them. In
the left panel of Fig. 2, we show the numerical result (solid curve) [13] and its monopole parametrization (square) of A10(Q 2), using the
values mentioned above and Eq. (17).

In the right panel of Fig. 2, we draw the numerical results for the tensor form factors B10(Q 2) and B20(Q 2) (solid curve). In order to
compare the present results with the lattice data, it is crucial to consider the evolution of the scale [1,11,32], since the tensor current is
not the conserved one. The tensor form factor is evolved at the leading order (LO) by the following equation [1,11]

Bn0
(

Q 2,μ
) = Bn0

(
Q 2,μ0

)[ α(μ)

α(μ0)

]γn/(2β0)

, (18)

where we have used the anomalous dimensions γ1 = 8/3 and γ2 = 8, and β0 = 11Nc/3 − 2N f /3 (Nc = 3 and N f = 2 in the present case).
Thus, the powers in the LO evolution equation are given as 4/29 and 12/29 respectively for n = 1 and n = 2, which indicate that the
dependence of the tensor charge on the normalization point turns out to be rather weak. Note that the anomalous dimension is simply
the same as that for the nucleon tensor charge [33]. We also take ΛQCD = 0.248 GeV which was also used in evolving the nucleon tensor
charges and tensor anomalous magnetic moments [34,35]. Since the normalization point of the present model is around 0.6 GeV, while
the lattice calculation was carried out at μ = 2 GeV, the scale factors turn out to be

B10
(

Q 2,μ = 2 GeV
) = 0.89B10

(
Q 2,μ0 = 0.6 GeV

)
, B20

(
Q 2,μ = 2 GeV

) = 0.70B20
(

Q 2,μ0 = 0.6 GeV
)
. (19)

Considering these scalings, we obtain B10(0) = 0.216 and B20(0) = 0.032. In the lattice calculation [7], the tensor charge of the pion for
n = 1 with the linear chiral extrapolation to the physical pion mass in m2

π was estimated to be about B10(0) = 0.216, which is almost
identical to the present result. As for n = 2, the lattice data estimated about B20(0) = 0.039, which is about 20% larger than the present
one, but is still comparable. We want to mention that one could use larger current-quark masses in order to compare directly with the
lattice data as done in Ref. [11]. However, it is rather unreliable in the present framework: Firstly it is nontrivial to include the larger
current quark mass [36–38]. Secondly, the present scheme is conceptually only valid when the current quark mass is small, at least up
to the strange current quark mass. Thus, the NLχQM from the instanton vacuum is a rather restricted one, so that we will compare the
present results with those of the lattice QCD with chiral extrapolation.

In Fig. 3, we present the mπ dependence of the pion tensor form factor scaled by the pion mass as a function of m2
π for mπ = 0

(square) and 140 MeV (circle). As shown in Fig. 3, the result in the chiral limit is slightly smaller than that with mπ = 140 MeV. As for
the case with mπ = 0, we take the current quark mass m = 0. The shaded bands represent the fits from the lattice calculation [7].

A simple p-pole parametrization of GFFs was used in Ref. [7] to get the tensor form factor of the pion:

Bn0
(

Q 2) = Bn0(0)

[
1 + Q 2

pn m2
pn

]−pn

. (20)

In this parametrization, the lattice QCD simulation estimated the pole mass mp1 = (0.756 ± 0.095) GeV and mp2 = (1.130 ± 0.265) at
mπ = 140 MeV with chiral extrapolation. Considering the condition p > 1.5 for the regular behavior of the probability density at b⊥ → 0
[39] and following Ref. [7], we take p1 = p2 = 1.6 as a trial. If this is the case, Eq. (20) gives us mp1 ≈ 0.761 GeV and mp2 ≈ 0.864 GeV to
reproduce the present results, which is compatible with that of the lattice simulation. Taking into account these results, we can write the
p-pole parametrized tensor form factor as follows:
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Fig. 4. In the upper panels, we show unpolarized (left) and polarized (right) probability densities, ρ1 in Eq. (1) as a function of bx and by for s⊥ = (+1,0). Similarly, we
show their three-dimensional profiles in the lower panels.

B10
(

Q 2) = 0.216

[
1 + Q 2

1.6 × 0.7612 GeV2

]−1.6

, B20
(

Q 2) = 0.032

[
1 + Q 2

1.6 × 0.8642 GeV2

]−1.6

. (21)

The result of this parametrized one in Eq. (21) is also depicted in the right panel of Fig. 2 (square), and reproduces well the present
numerical one. We also compare our result with the lattice one in the right panel of Fig. 2. As in the case of the electromagnetic form
factors, the present results are in excellent agreement with the lattice data (triangle). Note that in the present framework we do not have
any adjustable free parameter.

We are now in a position to discuss the results of the probability densities of the transversely polarized quarks inside the pion, defined
in Eq. (1). In the upper-left panel of Fig. 4, we show the unpolarized probability density with the tensor form factor turned off. As
expected, the quarks are distributed symmetrically on the bx–by plane. On the other hand, if we switch on the tensor form factor, the
spatial distribution of a transversely polarized quark inside the pion (π+) gets distorted as shown in the upper-right panel of Fig. 4. Its
maximum value is also shifted to the by direction in comparison to that for the unpolarized one. Thus, it is interesting to examine the
average transverse shift which is defined as [7]:

〈by〉 =
∫

d2b⊥ byρ(b⊥, s⊥)∫
d2b⊥ ρ(b⊥, s⊥)

= 1

2mπ

B10(0)

A10(0)
, (22)

where we have chosen s⊥ = (+1,0). Using Eq. (21) and mπ = 140 MeV, we obtain 〈by〉 = 0.152 fm, which is almost the same as that
of the lattice calculation 〈by〉 = (0.151 ± 0.024) fm. This finite value of 〈by〉 measures how much the polarized probability density is
distorted in the transverse plane. If we take the spin quantized along the y axis, i.e. s⊥ = (0,+1), the result of the polarized probability
density is similar but rotated by 90◦ clockwise. We also note that the present results are almost equivalent to those given by the lattice
simulation [7]. In the lower panel of Fig. 4, we show the three-dimensional profiles for the unpolarized (left) and transversely polarized
(right) distributions as functions of bx and by . One can obviously see that the maximum of the transversely polarized probability density
is shifted and distorted.
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Fig. 5. Comparison between the polarized probability densities from the present (square) and lattice (triangle) results for bx ≈ 0.2 fm.

Table 1
Numerical results for Bn0(0), mpn , and 〈by〉 in comparison with those of the lattice simulation [7] with the chiral extrapolation to the physical pion mass mπ = 140 MeV.

mπ = 140 MeV B10(0) mp1 [GeV] 〈by〉 [fm] B20(0) mp2 [GeV]

Present work 0.216 0.762 0.152 0.032 0.864
Lattice QCD [7] 0.216 ± 0.034 0.756 ± 0.095 0.151 0.039 ± 0.099 1.130±0.265

In Fig. 5, we draw the probability density as a function of by at bx ≈ 0.2 fm, comparing it with that of the lattice calculation. As
expected, the present result is almost identical to that of the lattice QCD. We summarize the main results of the present work in Table 1.

5. Summary and conclusion

In the present work, we have aimed at investigating the tensor form factors of the pion, B10 and B20, using the nonlocal chiral quark
model from the instanton vacuum. Combining it with the electromagnetic form factor of the pion [13], we were able to evaluate the
transversely polarized density of quarks inside the pion as functions of (bx,by) in comparison with the lattice simulation [7].

We first recapitulated the electromagnetic form factor of the pion computed previously in the context of the lattice calculation. We
found that the monopole mass is M = 0.738 GeV which is in a good agreement with that from the lattice QCD M = 0.727 GeV as well as
the experimental data M = (0.714±0.004) GeV. It indicates that the Q 2 dependence of the electromagnetic form factor is well reproduced
within the present work and compatible with the lattice results. We also presented the squared charge radius of the pion 〈r2〉 = 0.456 fm2

which is again in very good agreement with the lattice result 〈r2〉 = (0.441 ± 0.019) fm2.
We calculated the tensor form factor of the pion within the same framework as done in previous works. In order to compare the

results with the lattice data, we evolved them from the μ = ρ̄−1 = 600 MeV to the scale at which the lattice calculation was performed
(μ = 2 GeV). We also carried out the p-pole parametrization as in the lattice QCD. The results for the tensor form factor were obtained as
follows: The tensor form factors of the pion at Q 2 = 0 (B(10)(0), B(20)(0)) = (0.216,0.032) and the pole mass mp(1,2)

= (0.762,0.864) GeV.
Being compared to the lattice results with chiral extrapolation, i.e. B(10,20)(0) = (0.216 ± 0.034,0.039 ± 0.099) and mp(1,2)

= (0.756 ±
0.095,1.130 ± 0.265) GeV, they were found to be almost identical and comparable to those of the lattice QCD. In particular, these results
are remarkable, considering the fact that the present scheme does not contain any adjustable parameter.

Having combined the results of the tensor form factor with those of the electromagnetic one, we obtained straightforwardly the
probability density of transversely polarized quarks inside the pion. It turned out that the spatial distribution of the quarks on the
transverse plane were distorted, compared to that of the unpolarized quarks. Moreover, the maximum value of the density is shifted to
the by direction. In order to examine this shift, we also calculated the average value of by which turned out to be 〈by〉 = 0.152 fm. It is
in an excellent agreement with the lattice result 〈by〉 = 0.151 fm.

Finally, It is worth mentioning that it is also of great importance to study the spin structure of the kaon, since it sheds light on the
role of flavor SU(3) symmetry breaking inside the kaon. Related works are under progress and will appear elsewhere.
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