=

metadata, citation and similar papers at core.ac.uk brought to you by .. CC

provided by Elsevier - Publisher Con

RO

3 Computational
?g Geometry
Theory and Applications

ELSEVIER Computational Geometry 23 (2002) 281-290

www.elsevier.com/locate/comgeo

Computing the face lattice of a polytope
from its vertex-facet incidences

\Volker Kaibel*, Marc E. Pfetsch

TU Berlin, Fakultat II, Institut fir Mathematik, MA 6-2, StraBe des 17. Juni 136, 10623 Berlin, Germany
Received 7 June 2001; received in revised form 22 January 2002; accepted 22 July 2002
Communicated by D. Avis

Abstract

We give an algorithm that constructs the Hasse diagram of the face lattice of a convex p&ljtopeits vertex-
facet incidences in time @in{n, m} - « - ¢), wheren is the number of vertices; is the number of facetsg, is the
number of vertex-facet incidences, apds the total number of faces d@f. This improves results of Fukuda and
Rosta [Computational Geometry 4 (4) (1994) 191-198], who described an algorithm for enumerating all faces of
ad-polytope in @min{n, m} - d - ¢?) steps. For simple or simplicial-polytopes our algorithm can be specialized
torunintime Qd - « -). Furthermore, applications of the algorithm to other atomic lattices are discussed, e.g., to
face lattices of oriented matroids.
0 2002 Elsevier Science B.V. All rights reserved.

Keywords:Polytope; Face lattice; Enumeration; Vertex-facet incidences; Algorithm; Oriented matroid

1. Introduction

Let P be ad-polytope, i.e., al-dimensional bounded convex polyhedron. It is well-known that the
set F of its faces (includingd and P itself), ordered by inclusion, is a graded, atomic and coatomic
lattice: theface latticeof P. In particular, each face can be identified with its set of vertices or the
set of facets it is contained in. In this paper, a face is usually identified with its vertex set. We define
¢ := |F| and denote by the Hasse diagram (as an abstract graph) of the face lattice. Héns&
directed rooted acyclic graph whose nodes correspond to the elemént# dfy, £ are nodes irC and
H, G € F are the corresponding faces Bf then there is an ar@y, ¢{¢) in L if and only if H C G and
dim(G) =dim(H) + 1.

E-mail addresseskaibel@math.tu-berlin.de (V. Kaibel), pfetsch@math.tu-berlin.de (M.E. Pfetsch).
1 Supported by a DFG Gerhard-Hess-Forschungsforderungspreis donated to Giinter M. Ziegler (Zi 475/2-3).

0925-7721/02/%$ — see front matter 2002 Elsevier Science B.V. All rights reserved.
PIl: S0925-7721(02)00103-7

https://core.ac.uk/display/81193204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

282 V. Kaibel, M.E. Pfetsch / Computational Geometry 23 (2002) 281-290

The combinatorial face lattice enumeration problamthe following: given a vertex-facet incidence
matrix of P (see Section 2 for a definition), construct the Hasse diagfapnf the face lattice. By
definition, £ is unlabeled. Nevertheless, it might be desired to label each nodecofresponding to
a faceF with the set of (indices of) vertices containedAn the set of (indices of) facets containig
or with the dimension of- .

Fukuda and Rosta [1] gave an algorithm for the combinatorial face lattice enumeration problem for
d-polytopesP which runs in @min{n, m} - d - ¢?) time, wherem is the number of facets andis the
number of vertices oP. Sincep can be exponential im andm (consider thel-simplex, for instance) it
is desirable to have an algorithm whose running time depends only lineagyamd polynomially om
andm). The main result of this paper is such an algorithm.

For thegeometric face lattice enumeration problewhich asks for the face lattice of a polytope that is
given by an inequality description, there are algorithms satisfying this requirement on the running time,
e.g., by Fukuda et al. [2]. However, in our context no geometric data are available.

Ganter [3] described an algorithm which, given the incidences of atoms and coatoms of a general
atomic and coatomic lattice, enumerates all elements of the lattice in lexicographic order, where each
element is identified with the set of atoms below it (which are ordered arbitrarily). Specialized to our
situation, one obtains an algorithm that computes all vertex sets of facedroD(min{n, m} - « - ¢)
steps, wherex is the number of vertex-facet incidences Bf Note thatd - max{n, m} < o <n - m,
in particular,« is bounded polynomially im andm. This algorithm, however, does not compute the
inclusion relations between the faces, i.e., the edges of the Hasse diagram of the face lattice. Of course
once all (vertex sets of) faces are computed, one may construct the Hasse diagram in an obvious way
afterwards, but this would require a number of steps which is quadratic in the total nyrob&aces.

Inspired by Ganter’s algorithm, we developed the (quite different) algorithm presented below, which
computes the entire Hasse diagram in the same running timémin®:, m} - « - ¢), see Theorem 5. It
requires Qg - min{n, m}) memory (without output storage). In our algorithm, the vertex set of each
face or the set of facets it is contained in, as well as its dimension, is readily available (or can be
computed without increasing the asymptotic running time). Of course, this may increase the (output)
storage requirements significantly.

Fukuda and Rosta [1] also considered the combinatorial face lattice enumeration problem for the
special case of simple or simplicial polytopes. They presented an algorithm that computes the face
lattice of a simple polytope in @ - ¢) steps, provided that in addition to the vertex-facet incidences
an acyclic orientation of the graph of the polytope is given that induces precisely one sink on every non-
empty face. Such an orientation is callegad orientatioror anabstract objective function orientation
Unfortunately, no polynomial time algorithm is known that computes a good orientation of a simple
polytope P—neither if P is given by its vertex-facet incidences nor if it is specified by its whole face
lattice.

For simple or simplicial polytopes, our algorithm can be specialized such that it computes the Hasse
diagram of the face lattice in@- « - ¢) steps from the vertex-facet incidences, where no good orientation
is required (see Section 3.1).

In Section 2.1 we give a rough sketch of the algorithm, which is followed by a more detailed
description in Sections 2.2, 2.3 and 2.4. In Section 2.5 we analyze the algorithm. We present the
specialization of the algorithm for simple or simplicial polytopes in Section 3.1 and a variant that
computes the-skeleton in Section 3.2. Furthermore, in Section 3.3 a version that needs significantly
less memory is described which enumerates just the faces together with their dimensions (i.e., without

V. Kaibel, M.E. Pfetsch / Computational Geometry 23 (2002) 281-290 283

the edges of the Hasse diagram). Finally, a modification that computes the face lattice of an oriented
matroid from its cocircuits (Section 3.4) is explained.

For the basic properties of polytopes that are important in our context, we refer to Ziegler's book [4].
The few concepts from the theory of algorithms and data structures that play a role in the paper can be
found in any corresponding textbook (e.g., in the one by Cormen et al. [5]). Our running time estimates
refer to the uniform time measure (i.e., every arithmetic operation/comparison takes one unit of time),
while our statements on memory requirements refer to the bit model.

2. Thealgorithm

Define m to be the number of facets and the number of vertices of th€-polytope P. Let
A = (as,) € {0, 1} be avertex-facet incidence matrof P. Hence the facets aP can be identified
with F:= {1, ..., m} and its vertices can be identified with:= {1, ..., n}, such that:;, = 1 if facet f
contains vertexv, andays, = O otherwise. Denote by the number of vertex-facet incidences, i.e.,
the number of ones id. For S C V, define KS) :={f € F: ay, =1 for all s € S}, the set of facets
containing all vertices of. ForT C F, define MT) :={ve V: a,, =1 forall ¢t € T}, the set of vertices
contained in all facets df.

For § C V, the set dlS) := V(F(S)) is the (vertex set of) the smallest face BfcontainingS (in
lattice theoretic terms, thein of the elements iy). One can check easily that this defineda@sure map
on the subsets of, i.e., for all S, S’ € V we have

S ccl(s), cl(cl(S)) =cl(S), SCS = cl(S) ccls).

The faces ofP correspond exactly to thelosed set®f V with respect to this closure map (i.e., sets
S C V with cl(S) = S). Our algorithm crucially relies on the fact that closures can be computed fast (see
Section 2.2).

2.1. The skeleton of the algorithm

The strategy is to build up the Hasse diagrdnof the face lattice from bottom@) to top (P).
Consequentlyf is initialized with the single fac@ and then enlarged iteratively by adding out-neighbors
of nodes that have already been constructed. We will say that a face hasele@@mce its corresponding
node inL has been constructed.

During the algorithm, we keep a sétcontaining those faces that we have seen so far, but for which
we have not yet inserted their out-arcs into the Hasse diagram. At each major step, we remov# a face
from the setQ and construct the sét of all facesG with H C G and dim(G) =dim(H) + 1. For each
face G € G we check whether it has already been seen. If this is not the case, then a new rbde in
representingG is constructed, and; is added toQ. In any case, an arc from the node corresponding
to H to the node corresponding @ is inserted intal.

In order to compute the sét we exploit the fact tha§ consists of the inclusion minimal faces among
the ones that properly contafi. Since the face lattice of a polytope is atomic, each faeeg must be
of the form H (v) := cl(H U {v}) for some vertex (atomy; in particular, the Hasse diagram has at most
n - @ arcs. Thus, we first construct the collectibhof all setsH (v), v € V \ H, and then comput§ as
the set of inclusion minimal sets &f.

284 V. Kaibel, M.E. Pfetsch / Computational Geometry 23 (2002) 281-290

ComputingH (v) for somev € V \ H requires determining a closure. In Section 2.2, we describe a
method to perform this task in (@) steps. Determining the inclusion minimal sets in the collecfibn
clearly could be done in @) steps by pairwise comparisons, sirf¢enas at most: elements, each of
size at most. In Section 2.3 we show that this can even be performed(irf)Qime.

Another crucial ingredient is a data structure, described in Section 2.4, that allows us to locate the
node inL representing a given faag& or to assert tha; has not yet been seen. This can be performed
in O(x) steps.

A summary of the analysis of the time complexity of the algorithm, along with a pseudo-code
description of it, is given in Section 2.5.

2.2. Computing closures

In order to be able to compute closures fast, we store the incidence matriasorted sparse format
both in a row and column based way. For each vertexV, the elements in §v}) C {1,...,m} are
stored increasingly in a list. Similarly, for each faget F, we store the sorted set(V/f}) in a list. This
preprocessing can be performed inOm) time (which is dominated by @ - «) and thus does not
influence the estimate of the asymptotic running time in Proposition 4 below). The sorted sparse format
uses Qo - log maxn, m}) storage.

Whenever we want to compute the closure of aSset V, the first step is to compute(5), i.e., the
intersection of the lists §v}), v € S. Since the intersection of two sorted lists can be computed in time
proportional to the sum of the lengths of the two lists and because the intersection of two lists is at most
as long as the shorter one($5 can be computed in time@_,_¢ [F({v})]) € O(w). Similarly, V(T') can
be computed in time @) for a setT C F.

Lemma 1. The closurecl(S) of a setS C V can be computed i@(«) stepq provided that the vertex-facet
incidence matrix is given in the sorted sparse fornat

2.3. ldentifying the minimal sets

Suppose that# C V is a face of P and H is the collection of faced (v) = cl(H U {v}) C V,
veV\H.

Our procedure to identify the sét of minimal sets in the collectiofi{ starts by assigning a label
candidateto each vertex inV \ H. Subsequently, the labelandidateof each vertex will either be
removed or replaced by a labminimal We keep the following three invariants: For each veitékat is
labeledminimalwe haveH (v) € G; if two different verticesv andw both are labeledhinimal then we
have H (v) # H(w); G is contained in the set of alif (v) for which v is labeledminimal or candidate
Clearly, if no vertex is labeledandidateanymore, the set of vertices labelednimalis in one-to-one
correspondence 1@ via H (+).

Suppose there is still somelabeledcandidateavailable. If H (v) \ {v} contains some vertex, then
we haveH (w) C H(v), becaused (w) is the intersection of all faces containiff) andw, and one of
these faces i#f (v). Hence, ifw is labeledminimal or candidate we remove the labalandidatefrom v;
otherwise we labeb minimal

V. Kaibel, M.E. Pfetsch / Computational Geometry 23 (2002) 281-290 285

It follows by induction that the three invariants are satisfied throughout the procedure. Moreover, at
each major step (choosingcandidatev) the number otandidatelabels decreases by one. Since each
such step takes @) time, the entire procedure has complexityné).

Lemma 2. The setG of inclusion minimal sets ifi{ = {H(v): v e V \ H} can be identified irO(n?)
steps.

2.4. Locating nodes

During the algorithm, we have to keep track of the faces that we have seen so far and their
corresponding nodes id. To this end, we maintain a special data structure fdlce tree In this data
structure, afacéd = {s1, ..., s} C V (withs; < --- < s5;) is represented by the lexicographically smallest
setC(S) C S that generates, i.e., cKC(S)) = S. We callC(S) thecanonical spanning setf the faces.

The mapC(-) is one-to-one; its inverse map is the closure map.

The setC(S) can be computed efficiently as follows. For=1 andk = 2 setC(S) := S. For
k > 3, C(S) is computed iteratively: initialize” (S) with {sq, so}; at each iteration extend(S) by the
smallests; such that dlC(S)) C cl(C(S) U {s;}). Note that|C(S)| < dim(S) + 1< d + 1. Recall that we
stored the vertex-facet incidences in the sorted sparse format (see Section 2.2). Similarly to the method
for computing closures, this computation can be performed (i) Gteps, since just the intersections
F{{sihn---NF{s;},i =1,...,k, have to be computed iteratively. TheryS) is obtained as the set of
thoses; for which the intersection becomes smaller.

We now explain the structure of the face tree. Its arcs are directed away from the root. They are
labeled with vertex numbers, such that no two arcs leaving the same node have the same label and or
every directed path in the tree the labels are increasing. Via the sets of labels on the paths from the root,
the nodes of the tree correspond to the sorted(G€ss for the facesS C V that have been seen so far. In
particular, the root node represents the fac&ach node has a pointer to the corresponding nod& of
By construction, the depth of the tree is boundediby 1.

Suppose we want to find the nodg corresponding to some fadeC V in the part of£ that we have
already constructed or to assert that this face has not yet been seen. We f¥gassarbset ofl, ..., n})
increasingly in Qn) steps (by counting or bucket sort, see [5, Chapter 8]) and compifiein O(w)
steps. Then, starting from the root, we proceed (as long as possible) downwards in the face tree along arc:
labeled by the successive element€08). Either we find an existing node in the tree which corresponds
to S, or we have to introduce new labeled arcs (and nodes) into the tree until we have constructed a node
representing.

In the latter case, it might be necessary to construct an entire new path in the tree. The definition of
the canonical spanning sef¥S) ensures that all “intermediate nodes” on that path will correspond to
canonical spanning sets of faces as well. Hence, the number of nodes in the face tree always will be
bounded byy, the total number of faces of the polytope. The faces represented by intermediate nodes
will be seen later in the algorithm. Consequently, the corresponding pointéraute set tani | for the
meantime. Later in the algorithm, when we are searching for the face represented by such a tree-node fol
the first time, theni | -pointer will indicate that this face is not yet represented i heni | -pointer is
then replaced by a pointer to a newly created node representing the face in

286 V. Kaibel, M.E. Pfetsch / Computational Geometry 23 (2002) 281-290

In any case, since the face tree has depth at mhasi and the out-degree of each node is at most
we need atotal time of @ + o + (d + 1) - n) = O(«) to either locate or create the tree-node representing
a certain face.

Lemma 3. Using the face tree, it is possible to locate or create the nodgrigpresenting a face i®(«)
steps(provided the vertex-facet incidence matrix is stored in the sorted sparse jormat

In the description given above, we have assumed that for each node in the face tree the out-arcs are
stored in a list which is searched linearly for a certain label when walking down the tree. Of course, one
can store the set of out-arcs in a balanced search tree (see e.g. [5, Chapter 13]), allowing to perform the
search for a certain label in logarithmic time. After computifigS) for a faceS (in O(«) time), this
allows to locate or create the node corresponding to the face tree in Qd + 1) - logn) steps. The
total running time remains @); nevertheless this might speed up the algorithm in practice.

Instead of using the face tree, one can also store the faces in a balanced search tree. Again, the face
are represented by their canonical spanning sets, which are ordered lexicographicalyC (ndig
computed for a facé, searchingS can be performed in @d + 1) - log¢) € O((d + 1) - min{n, m}) steps
(sincep < 2Mntnml) This yields the same total asymptotic running time, but searching the tree takes
more (or the same) time compared to the variant of the face tree with balanced search trees at its nodes
since log: < min{n, m}.

2.5. The analysis
We summarize the algorithm in pseudo-code (Algorithm 1):

Algorithm 1 Computing the face lattice of a polytope from its incidences.
1: Input: incidence matrix of a polytop@
2: Output: Hasse diagrant of the face lattice ofP
3: initialize £ and a face tree with, corresponding to the empty face
4: initialize a set@Q C {nodes ofL} x {subsets oV} by (¢4, ?)
5:while @ # ¢ do
6: choose som&y, H) € Q and remove it fronQ
7: compute the collectiof{ of all H(v),ve V\ H
8: compute the se&f of minimal sets irH
9: for eachG € G do

10: locate/create the nodg corresponding t@s in £
11: if £ was newly createthen

12: add(¢g, G)to @

13: end if

14: add the ar€¢ly, £g) to L

15: end for

16: end while

Proposition 4. Algorithm 1 computes the Hasse diagram of the face lattice of a poly®deom its
vertex-facet incidences i@(n - « -) time. It can be implemented such that its space requirements
(without output spageare bounded b¥D(¢ - n).

V. Kaibel, M.E. Pfetsch / Computational Geometry 23 (2002) 281-290 287

Proof. Algorithm 1 works correctly by the discussion above.

Step 7 can be performed in(®- «) steps by Lemma 1. Lemma 2 shows that we can execute Step 8
in O(n?) € O(n -) time. Hence, Steps 7 and 8 in total contribute at mast-@ - ¢) to the running time
(since the while-loop is executed once per face).

The body of the for-loop has to be executed for each of tke -@) arcs in the Hasse diagram
Lemma 3 implies that each execution of the body of the for-loop can be performe@ jrs@ps. Thus,
the claim on the running time follows.

Since each node of the face tree corresponds to a fafe thie face tree has @) nodes. Each label
on an edge of the face tree needs at magb@:) bits, and we can estimate the space requirements of
any of the (internal and external) pointers byl@@¢) € O(min{r, m}). Hence, the face tree needs no
more than Qg - min{n, m}) bits.

The space required for the storagedfs bounded by Qp - n), if for each pair(fy, H) € Q the setH
is stored as ait set i.e., the characteristic vector &f C V is stored bit by bit. O

If m < n, then it is more efficient to apply Algorithm 1 to the incidences of the dual polytope, i.e., to
the transpose of the incidence matrix. Of course, after the computations the roles of vertices and facets
have to be exchanged again. This yields the main result of the paper.

Theorem 5. The Hasse diagram of the face lattice of a polytapean be computed from the vertex-
facet incidences oP in O(min{n, m} - « - ¢) time, wheren is the number of vertices; is the number
of facets is the number of vertex-facet incidences, and the total number of faces &f. The space
requirements of the algorithifwithout output spagecan be bounded b®(¢ - min{n, m}).

Whenever a new node representing a facén the Hasse diagramd is constructed, we can label
that node with the vertex set d@f, the set of facets containing, or with the dimension o without
(asymptotically) increasing the running time of the algorithm. The output, however, might become
much larger with such labelings. For instance, labeling the Hasse diagram dfdhbe by vertex
labels requires2(4¢ - d) output storage space, while the Hasse diagram with facet labels needs only
O(d - 3! -logd) space.

In practice, the computation can be speeded up by exploiting that every vertex that is contained in a
face G with H C G and dimG = dim H + 1 must be contained in some facet which contaihsThus,
it suffices to consider only the sets(v), v € (UfeF(H) V{fD)\ Hin Step 7.

3. Extensions
3.1. Simple or simplicial polytopes

For a simpled-polytope P with n vertices, the above procedure can be implemented to run more
efficiently. We havex = n - d in this case. From the incidences (stored in the sorted sparse format), the
graphG(P) of P (i.e., all one-dimensional faces) can be computed in tinge?©d), since a pair of
vertices forms an edge if and only if it is containeddir- 1 common facets.

After initialization with the vertices instead @f(in Steps 3 and 4), Steps 7 and 8 can now be simplified.
Consider an arbitrary vertex € H. For each neighboy ¢ H of w in G(P), H(v) yields the other end

288 V. Kaibel, M.E. Pfetsch / Computational Geometry 23 (2002) 281-290

node of an arc in the Hasse diagram; and each out-aff if produced this way. Thus, we can avoid
constructing non-minimal faces in Step 7. Hence, Step 8 can be skipped. The total running time for
simple d-polytopes decreases to(d- « - ¢) (since the body of the for-loop is executed at mésty
times).

The space complexity stays(@- n) (see Proposition 4). It can, however, be reduced @ On)
(we havem < n for simple polytopes): instead of storing paié;, H) in the setQ, we store the pairs
Ly, F(H)), since|F(H)| < m. Converting betweerl and KH) can be performed in (&) steps and
hence does not increase the asymptotic total running time.

By duality, the same running times and space requirements can be achieved for simplicial polytopes.

Similarly to the situation with general polytopes, for both simple and simplicial polytopes we can
also output for each face its vertices, the facets containing it, or its dimension without (asymptotically)
increasing the running time.

3.2. Thek-skeleton

A variant of Algorithm 1 computes the Hasse diagram of Akgkeleton (all faces of dimension at
mostk) of a polytopeP. One simply prevents the computation of faces of dimensions largerktbgn
not inserting anyk — 1)-face into the listQ. This leads to an @ - « - ¢ <) time algorithm, where Sk
is the number of faces a? of dimension at most.

3.3. Computing the “Hasse diagram without edges”

If we only want to compute the faces & together with their descriptions and dimensions (i.e., the
“Hasse diagram without edges”), there exists a variant of Algorithm 1 with the same asymptotic running
time, but significantly reduced space requirements. The difference is that no face tree is used, and the se
@ is organized as a stack, i.e., the faces are investigated in a depth-first search manner. At each step, w
take a faceH from the stack, output it, and compute the §edf (dim H + 1)-faces containingd, like
in Steps 7 and 8 of Algorithm 1. This needs timé&QOw) for eachH . The for-loop beginning at Step 10,
including the search in the face tree, is replaced by an efficient way to decide which of the fgciss in
put onto the staclQ, such that every face appears exactly once on the stack during the algorithm. For
this, we compute for each fa&e € G a unique canonical facéf’ of it. We putG onto the stack if and
only if H= H'. This ensures that each face is picked exactly once.

We takeH’ as the closure of a sé&(G), which is computed similar to the s€{(G) of Section 2.4,
except that we reject vertices which would produgeMore precisely, letlG = {g1, g2, - .., g}, with
g1 < g < ---< g Initialize D(G) with ¢ and in each iteration extend(G) by the smallesp; such that
cl(D(G)) Ccl(D(G)U{g;}) and cI D(G) U{g;}) # G. After the computationH’, the closure oD (G),
clearly is a proper face @. Moreover, it is a facet ofs, since otherwise there exists a vertex G\ H',
such that dlA’ U {g}) C G. But theng would have been included intb(G) when it was considered.
Hence,D(G) is the lexicographically smallest subset@fwhich spans a facet @ . It can be computed
in time O(«), and hence, checking for all facése G whetherH is the canonical faceD(G) of G can
be performed in @: - «) time.

Altogether, this leads to an@- « - ¢) time algorithm (see the proof of Proposition 4). The algorithm
needs @n? - d - logn) space forQ; since the depth of is at mostd + 1, there are never more than
n - (d + 1) sets on the stack, each of size at mosAdditionally, we need Qx - log maxn, m}) space for

V. Kaibel, M.E. Pfetsch / Computational Geometry 23 (2002) 281-290 289

storing the incidences in the sorted sparse format. Applying this method to the dual polytope, if necessary,
we obtain an @min{n, m} - « - ¢) time algorithm.

3.4. Oriented matroids

Algorithm 1 can be used for the enumeration of the elements of any atomic lattice provided a
subroutine is available that computes the join of a set of atoms. For instance, this holds for every atomic
and coatomic lattice if the atom—coatom incidences are given, because in this case one can compute th
joins of atoms similarly to the case of face lattices of polytopes.

In the following, we describe such an application of our algorithm to oriented matroids. The set of
covectors of an oriented matroid with ground gkt . ., k} is a subset of—, 0, +}* that satisfies certain
axioms. We refer to Bjorner et al. [6, Chapter 4] for the definitions and concepts that are relevant in the
following. A specific, but illustrative, example arises from any finite Xedf points inR? as follows.

For every linear functionap € (RY)* denote bysiGN(¢) € {—, 0, +}* the vector whose component
corresponding ta € X encodes the sign @f(x). Then{SIGN(¢): ¢ € (RY)*} is the set of covectors of
an oriented matroid®(X).

Forv,w e {—, 0, +}* theseparation sebf v andw contains all indices such that one of;, w; is +,
and the other one is. Thecompositionv o w of v andw is defined by(v o w); :=v; if v; % 0 and
(V o W); :=w; otherwise.

We define a partial ordex on {—, 0, +}*, wherev < w holds if and only if for alli we havev; =0
or v; = w;. The <-minimal elements among the nonzero covectors of an oriented matroid are called
its cocircuits If one adjoins an artificial maximal elemebtto the poset formed by the covectors of an
oriented matroid (ordered by), then one obtains itb{g) face lattice

If, in the above exampleX is the vertex set of a polytope c R?, then the faces oP correspond
to thepositive covectorgi.e., the covectors with no component equaHpof O(X). The facets ofP
correspond to the positive cocircuits @ X). The face lattice of is anti-isomorphic to a sublattice of
the face lattice oD (X).

The face lattice of an oriented matroid is atomic and coatomic; its atoms are the cocircuits, and its
coatoms are calletbpes Hence, we can compute its Hasse diagram from the abstract atom—coatom
incidences as above.

However, this is not the usual way to encode an oriented matroid. It is more common to specify
an oriented matroid by its cocircuits. The join of two covectors simply is their composition, if their
separation set is empty, botherwise. Such a composition can be computed(in &teps, which enables
us to compute the face lattice (efficiently) from its cocircuits by a variant of Algorithm 1.

In Step 6,H now is a face of the oriented matroid, i.e., a covector. In Step 7, one has to compute the
joins of H with every cocircuitv # H. Thus, Step 7 can be performed irgO k - ¢) steps altogether
(whereg is the total number of covectors ands the number of cocircuits). We do not know any method
to perform Step 8 faster than by pairwise comparisons, which také-@ - ¢) time in total.

The face tree is organized similarly to the description in Section 2.4. One fixes an ordering,C,
of the cocircuits. For a covector S Ig, ..., i,} (i1 < - - < i,) be the set of indices of cocircuits G S.

Then we iteratively form the joins of ..., C;., and letC(S) consist of all those indices for which the
“joins change”. Computing (S) from S takes @: - k) steps. Note thaiC(S)| < k.

Using this modified face tree, a given covector S can now be searched in the same way as in the case

of face lattices of polytopes. The depth of the face tree is bounddd Bgnce, location/creation of a

290 V. Kaibel, M.E. Pfetsch / Computational Geometry 23 (2002) 281-290

covector can be performed in(@ k) time. The rest of the analysis is similar to the proof of Proposition 4.
Thus, by this variant of Algorithm 1, the Hasse diagram of the face lattice of an oriented matroid can be
computed in @2 - k - @) steps, requiring @ - k) working space (since < 3%).

Finschi [7] describes a different algorithm that computes the covectors of an oriented matroid from its
cocircuits in Qn - k2 - @) time. His algorithm, however, does not produce the edges of the Hasse diagram.
The case where the topes (i.e., tkemaximal covectors) of an oriented matroid are given is a bit
different. Here, the number of faces is boundedi3y wherem is the number of topes. Hence, the size

of the face lattice is polynomial im. Fukuda et al. [8] give an @3- m?) time algorithm for constructing
the face lattice from the maximal covectors.

Acknowledgements

We are indebted to Michael Joswig and Jorg Rambau for stimulating discussions as well as to
Glnter M. Ziegler for valuable comments on the paper. We also thank the two referees for their helpful
comments.

References

[1] K. Fukuda, V. Rosta, Combinatorial face enumeration in convex polytopes, Computational Geometry 4 (4) (1994) 191-198.

[2] K. Fukuda, T.M. Liebling, F. Margot, Analysis of backtrack algorithms for listing all vertices and all faces of a convex
polyhedron, Computational Geometry 8 (1997) 1-12.

[3] B. Ganter, Algorithmen zur formalen Begriffsanalyse, in: B. Ganter, R. Wille, K.E. Wolff (Eds.), Beitrdge zur Begriffs-
analyse, B.l. Wissenschaftsverlag, 1987, pp. 241-254.

[4] G.M. Ziegler, Lectures on Polytopes, Springer-Verlag, 1995 (rev. ed. 1998).

[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 2nd Edition, MIT Press, Cambridge, 2001.

[6] A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White, G.M. Ziegler, Oriented Matroids, 2nd Edition, in: Encyclopedia of
Mathematics and its Applications, Vol. 46, Cambridge University Press, 1999.

[7] L. Finschi, A graph theoretical approach for reconstruction and generation of oriented matroids, PhD Thesis, IFOR, ETH
Zdrich, 2001.

[8] K. Fukuda, S. Saito, A. Tamura, Combinatorial face enumeration in arrangements and oriented matroids, Discrete Appl.
Math. 31 (2) (1991) 141-149.

