
Computational Geometry 23 (2002) 281–290
www.elsevier.com/locate/comgeo

Computing the face lattice of a polytope
from its vertex-facet incidences

Volker Kaibel1, Marc E. Pfetsch

TU Berlin, Fakultät II, Institut für Mathematik, MA 6–2, Straße des 17. Juni 136, 10623 Berlin, Germany

Received 7 June 2001; received in revised form 22 January 2002; accepted 22 July 2002

Communicated by D. Avis

Abstract

We give an algorithm that constructs the Hasse diagram of the face lattice of a convex polytopeP from its vertex-
facet incidences in time O(min{n,m} · α · ϕ), wheren is the number of vertices,m is the number of facets,α is the
number of vertex-facet incidences, andϕ is the total number of faces ofP . This improves results of Fukuda and
Rosta [Computational Geometry 4 (4) (1994) 191–198], who described an algorithm for enumerating all faces of
a d-polytope in O(min{n,m} · d · ϕ2) steps. For simple or simpliciald-polytopes our algorithm can be specialized
to run in time O(d ·α ·ϕ). Furthermore, applications of the algorithm to other atomic lattices are discussed, e.g., to
face lattices of oriented matroids.
 2002 Elsevier Science B.V. All rights reserved.

Keywords:Polytope; Face lattice; Enumeration; Vertex-facet incidences; Algorithm; Oriented matroid

1. Introduction

Let P be ad-polytope, i.e., ad-dimensional bounded convex polyhedron. It is well-known that the
setF of its faces (including∅ andP itself), ordered by inclusion, is a graded, atomic and coatomic
lattice: theface latticeof P . In particular, each face can be identified with its set of vertices or the
set of facets it is contained in. In this paper, a face is usually identified with its vertex set. We define
ϕ := |F | and denote byL the Hasse diagram (as an abstract graph) of the face lattice. Hence,L is a
directed rooted acyclic graph whose nodes correspond to the elements ofF . If
H ,
G are nodes inL and
H,G ∈ F are the corresponding faces ofP , then there is an arc(
H ,
G) in L if and only if H � G and
dim(G)= dim(H)+ 1.

E-mail addresses:kaibel@math.tu-berlin.de (V. Kaibel), pfetsch@math.tu-berlin.de (M.E. Pfetsch).
1 Supported by a DFG Gerhard-Hess-Forschungsförderungspreis donated to Günter M. Ziegler (Zi 475/2-3).

0925-7721/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0925-7721(02)00103-7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81193204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

282 V. Kaibel, M.E. Pfetsch / Computational Geometry 23 (2002) 281–290

Thecombinatorial face lattice enumeration problemis the following: given a vertex-facet incidence
matrix of P (see Section 2 for a definition), construct the Hasse diagramL of the face lattice. By
definition,L is unlabeled. Nevertheless, it might be desired to label each node ofL corresponding to
a faceF with the set of (indices of) vertices contained inF , the set of (indices of) facets containingF ,
or with the dimension ofF .

Fukuda and Rosta [1] gave an algorithm for the combinatorial face lattice enumeration problem for
d-polytopesP which runs in O(min{n,m} · d · ϕ2) time, wherem is the number of facets andn is the
number of vertices ofP . Sinceϕ can be exponential inn andm (consider thed-simplex, for instance) it
is desirable to have an algorithm whose running time depends only linearly onϕ (and polynomially onn
andm). The main result of this paper is such an algorithm.

For thegeometric face lattice enumeration problem, which asks for the face lattice of a polytope that is
given by an inequality description, there are algorithms satisfying this requirement on the running time,
e.g., by Fukuda et al. [2]. However, in our context no geometric data are available.

Ganter [3] described an algorithm which, given the incidences of atoms and coatoms of a general
atomic and coatomic lattice, enumerates all elements of the lattice in lexicographic order, where each
element is identified with the set of atoms below it (which are ordered arbitrarily). Specialized to our
situation, one obtains an algorithm that computes all vertex sets of faces ofP in O(min{n,m} · α · ϕ)
steps, whereα is the number of vertex-facet incidences ofP . Note thatd · max{n,m} � α � n · m,
in particular,α is bounded polynomially inn andm. This algorithm, however, does not compute the
inclusion relations between the faces, i.e., the edges of the Hasse diagram of the face lattice. Of course,
once all (vertex sets of) faces are computed, one may construct the Hasse diagram in an obvious way
afterwards, but this would require a number of steps which is quadratic in the total numberϕ of faces.

Inspired by Ganter’s algorithm, we developed the (quite different) algorithm presented below, which
computes the entire Hasse diagram in the same running time of O(min{n,m} · α · ϕ), see Theorem 5. It
requires O(ϕ · min{n,m}) memory (without output storage). In our algorithm, the vertex set of each
face or the set of facets it is contained in, as well as its dimension, is readily available (or can be
computed without increasing the asymptotic running time). Of course, this may increase the (output)
storage requirements significantly.

Fukuda and Rosta [1] also considered the combinatorial face lattice enumeration problem for the
special case of simple or simplicial polytopes. They presented an algorithm that computes the face
lattice of a simple polytope in O(d · ϕ) steps, provided that in addition to the vertex-facet incidences
an acyclic orientation of the graph of the polytope is given that induces precisely one sink on every non-
empty face. Such an orientation is called agood orientationor anabstract objective function orientation.
Unfortunately, no polynomial time algorithm is known that computes a good orientation of a simple
polytopeP—neither ifP is given by its vertex-facet incidences nor if it is specified by its whole face
lattice.

For simple or simplicial polytopes, our algorithm can be specialized such that it computes the Hasse
diagram of the face lattice in O(d ·α ·ϕ) steps from the vertex-facet incidences, where no good orientation
is required (see Section 3.1).

In Section 2.1 we give a rough sketch of the algorithm, which is followed by a more detailed
description in Sections 2.2, 2.3 and 2.4. In Section 2.5 we analyze the algorithm. We present the
specialization of the algorithm for simple or simplicial polytopes in Section 3.1 and a variant that
computes thek-skeleton in Section 3.2. Furthermore, in Section 3.3 a version that needs significantly
less memory is described which enumerates just the faces together with their dimensions (i.e., without

V. Kaibel, M.E. Pfetsch / Computational Geometry 23 (2002) 281–290 283

the edges of the Hasse diagram). Finally, a modification that computes the face lattice of an oriented
matroid from its cocircuits (Section 3.4) is explained.

For the basic properties of polytopes that are important in our context, we refer to Ziegler’s book [4].
The few concepts from the theory of algorithms and data structures that play a role in the paper can be
found in any corresponding textbook (e.g., in the one by Cormen et al. [5]). Our running time estimates
refer to the uniform time measure (i.e., every arithmetic operation/comparison takes one unit of time),
while our statements on memory requirements refer to the bit model.

2. The algorithm

Define m to be the number of facets andn the number of vertices of thed-polytope P . Let
A = (af v) ∈ {0,1}m×n be avertex-facet incidence matrixof P . Hence the facets ofP can be identified
with F := {1, . . . ,m} and its vertices can be identified withV := {1, . . . , n}, such thataf v = 1 if facetf
contains vertexv, and af v = 0 otherwise. Denote byα the number of vertex-facet incidences, i.e.,
the number of ones inA. For S ⊆ V , define F(S) := {f ∈ F : af s = 1 for all s ∈ S}, the set of facets
containing all vertices ofS. ForT ⊆ F , define V(T) := {v ∈ V : atv = 1 for all t ∈ T }, the set of vertices
contained in all facets ofT .

For S ⊆ V , the set cl(S) := V(F(S)) is the (vertex set of) the smallest face ofP containingS (in
lattice theoretic terms, thejoin of the elements inS). One can check easily that this defines aclosure map
on the subsets ofV , i.e., for allS,S ′ ⊆ V we have

S ⊆ cl(S), cl(cl(S))= cl(S), S ⊆ S ′ ⇒ cl(S)⊆ cl(S ′).

The faces ofP correspond exactly to theclosed setsof V with respect to this closure map (i.e., sets
S ⊆ V with cl(S)= S). Our algorithm crucially relies on the fact that closures can be computed fast (see
Section 2.2).

2.1. The skeleton of the algorithm

The strategy is to build up the Hasse diagramL of the face lattice from bottom (∅) to top (P).
Consequently,L is initialized with the single face∅ and then enlarged iteratively by adding out-neighbors
of nodes that have already been constructed. We will say that a face has beenseen, once its corresponding
node inL has been constructed.

During the algorithm, we keep a setQ containing those faces that we have seen so far, but for which
we have not yet inserted their out-arcs into the Hasse diagram. At each major step, we remove a faceH

from the setQ and construct the setG of all facesG with H � G and dim(G) = dim(H)+ 1. For each
faceG ∈ G we check whether it has already been seen. If this is not the case, then a new node inL
representingG is constructed, andG is added toQ. In any case, an arc from the node corresponding
to H to the node corresponding toG is inserted intoL.

In order to compute the setG, we exploit the fact thatG consists of the inclusion minimal faces among
the ones that properly containH . Since the face lattice of a polytope is atomic, each faceG ∈ G must be
of the formH(v) := cl(H ∪ {v}) for some vertex (atom)v; in particular, the Hasse diagram has at most
n · ϕ arcs. Thus, we first construct the collectionH of all setsH(v), v ∈ V \H , and then computeG as
the set of inclusion minimal sets ofH.

284 V. Kaibel, M.E. Pfetsch / Computational Geometry 23 (2002) 281–290

ComputingH(v) for somev ∈ V \ H requires determining a closure. In Section 2.2, we describe a
method to perform this task in O(α) steps. Determining the inclusion minimal sets in the collectionH
clearly could be done in O(n3) steps by pairwise comparisons, sinceH has at mostn elements, each of
size at mostn. In Section 2.3 we show that this can even be performed in O(n2) time.

Another crucial ingredient is a data structure, described in Section 2.4, that allows us to locate the
node inL representing a given faceG or to assert thatG has not yet been seen. This can be performed
in O(α) steps.

A summary of the analysis of the time complexity of the algorithm, along with a pseudo-code
description of it, is given in Section 2.5.

2.2. Computing closures

In order to be able to compute closures fast, we store the incidence matrixA in asorted sparse format
both in a row and column based way. For each vertexv ∈ V , the elements in F({v}) ⊆ {1, . . . ,m} are
stored increasingly in a list. Similarly, for each facetf ∈ F , we store the sorted set V({f }) in a list. This
preprocessing can be performed in O(n · m) time (which is dominated by O(n · α) and thus does not
influence the estimate of the asymptotic running time in Proposition 4 below). The sorted sparse format
uses O(α · log max{n,m}) storage.

Whenever we want to compute the closure of a setS ⊆ V , the first step is to compute F(S), i.e., the
intersection of the lists F({v}), v ∈ S. Since the intersection of two sorted lists can be computed in time
proportional to the sum of the lengths of the two lists and because the intersection of two lists is at most
as long as the shorter one, F(S) can be computed in time O(

∑
v∈S |F({v})|)⊆ O(α). Similarly, V(T) can

be computed in time O(α) for a setT ⊆ F .

Lemma 1. The closurecl(S) of a setS ⊆ V can be computed inO(α) steps(provided that the vertex-facet
incidence matrix is given in the sorted sparse format).

2.3. Identifying the minimal sets

Suppose thatH � V is a face ofP and H is the collection of facesH(v) = cl(H ∪ {v}) ⊆ V ,
v ∈ V \H .

Our procedure to identify the setG of minimal sets in the collectionH starts by assigning a label
candidateto each vertex inV \ H . Subsequently, the labelcandidateof each vertex will either be
removed or replaced by a labelminimal. We keep the following three invariants: For each vertexv that is
labeledminimalwe haveH(v) ∈ G; if two different verticesv andw both are labeledminimal, then we
haveH(v) �= H(w); G is contained in the set of allH(v) for which v is labeledminimalor candidate.
Clearly, if no vertex is labeledcandidateanymore, the set of vertices labeledminimal is in one-to-one
correspondence toG via H(·).

Suppose there is still somev labeledcandidateavailable. IfH(v) \ {v} contains some vertexw, then
we haveH(w) ⊆ H(v), becauseH(w) is the intersection of all faces containingH andw, and one of
these faces isH(v). Hence, ifw is labeledminimalor candidate, we remove the labelcandidatefrom v;
otherwise we labelv minimal.

V. Kaibel, M.E. Pfetsch / Computational Geometry 23 (2002) 281–290 285

It follows by induction that the three invariants are satisfied throughout the procedure. Moreover, at
each major step (choosing acandidatev) the number ofcandidatelabels decreases by one. Since each
such step takes O(n) time, the entire procedure has complexity O(n2).

Lemma 2. The setG of inclusion minimal sets inH = {H(v): v ∈ V \ H } can be identified inO(n2)

steps.

2.4. Locating nodes

During the algorithm, we have to keep track of the faces that we have seen so far and their
corresponding nodes inL. To this end, we maintain a special data structure, theface tree. In this data
structure, a faceS = {s1, . . . , sk} ⊆ V (with s1 < · · ·< sk) is represented by the lexicographically smallest
setC(S)⊆ S that generatesS, i.e., cl(C(S))= S. We callC(S) thecanonical spanning setof the faceS.
The mapC(·) is one-to-one; its inverse map is the closure map.

The setC(S) can be computed efficiently as follows. Fork = 1 and k = 2 setC(S) := S. For
k � 3, C(S) is computed iteratively: initializeC(S) with {s1, s2}; at each iteration extendC(S) by the
smallestsi such that cl(C(S)) � cl(C(S)∪ {si}). Note that|C(S)| � dim(S)+ 1� d + 1. Recall that we
stored the vertex-facet incidences in the sorted sparse format (see Section 2.2). Similarly to the method
for computing closures, this computation can be performed in O(α) steps, since just the intersections
F({s1})∩ · · · ∩ F({si}), i = 1, . . . , k, have to be computed iteratively. Then,C(S) is obtained as the set of
thosesi for which the intersection becomes smaller.

We now explain the structure of the face tree. Its arcs are directed away from the root. They are
labeled with vertex numbers, such that no two arcs leaving the same node have the same label and on
every directed path in the tree the labels are increasing. Via the sets of labels on the paths from the root,
the nodes of the tree correspond to the sorted setsC(S) for the facesS ⊆ V that have been seen so far. In
particular, the root node represents the face∅. Each node has a pointer to the corresponding node ofL.
By construction, the depth of the tree is bounded byd + 1.

Suppose we want to find the node
S corresponding to some faceS ⊆ V in the part ofL that we have
already constructed or to assert that this face has not yet been seen. We first sortS (a subset of{1, . . . , n})
increasingly in O(n) steps (by counting or bucket sort, see [5, Chapter 8]) and computeC(S) in O(α)

steps. Then, starting from the root, we proceed (as long as possible) downwards in the face tree along arcs
labeled by the successive elements ofC(S). Either we find an existing node in the tree which corresponds
to S, or we have to introduce new labeled arcs (and nodes) into the tree until we have constructed a node
representingS.

In the latter case, it might be necessary to construct an entire new path in the tree. The definition of
the canonical spanning setsC(S) ensures that all “intermediate nodes” on that path will correspond to
canonical spanning sets of faces as well. Hence, the number of nodes in the face tree always will be
bounded byϕ, the total number of faces of the polytope. The faces represented by intermediate nodes
will be seen later in the algorithm. Consequently, the corresponding pointers toL are set tonil for the
meantime. Later in the algorithm, when we are searching for the face represented by such a tree-node for
the first time, thenil-pointer will indicate that this face is not yet represented inL. Thenil-pointer is
then replaced by a pointer to a newly created node representing the face inL.

286 V. Kaibel, M.E. Pfetsch / Computational Geometry 23 (2002) 281–290

In any case, since the face tree has depth at mostd + 1 and the out-degree of each node is at mostn,
we need a total time of O(n+α+ (d +1) ·n)= O(α) to either locate or create the tree-node representing
a certain face.

Lemma 3. Using the face tree, it is possible to locate or create the node inL representing a face inO(α)

steps(provided the vertex-facet incidence matrix is stored in the sorted sparse format).

In the description given above, we have assumed that for each node in the face tree the out-arcs are
stored in a list which is searched linearly for a certain label when walking down the tree. Of course, one
can store the set of out-arcs in a balanced search tree (see e.g. [5, Chapter 13]), allowing to perform the
search for a certain label in logarithmic time. After computingC(S) for a faceS (in O(α) time), this
allows to locate or create the node corresponding toS in the face tree in O((d + 1) · logn) steps. The
total running time remains O(α); nevertheless this might speed up the algorithm in practice.

Instead of using the face tree, one can also store the faces in a balanced search tree. Again, the faces
are represented by their canonical spanning sets, which are ordered lexicographically. OnceC(S) is
computed for a faceS, searchingS can be performed in O((d +1) · logϕ)⊆ O((d +1) ·min{n,m}) steps
(sinceϕ � 2min{n,m}). This yields the same total asymptotic running time, but searching the tree takes
more (or the same) time compared to the variant of the face tree with balanced search trees at its nodes,
since logn� min{n,m}.
2.5. The analysis

We summarize the algorithm in pseudo-code (Algorithm 1):

Algorithm 1 Computing the face lattice of a polytope from its incidences.
1: Input: incidence matrix of a polytopeP
2: Output: Hasse diagramL of the face lattice ofP
3: initializeL and a face tree with
∅ corresponding to the empty face
4: initialize a setQ⊆ {nodes ofL} × {subsets ofV } by (
∅,∅)
5: while Q �= ∅ do
6: choose some(
H ,H) ∈Q and remove it fromQ
7: compute the collectionH of all H(v), v ∈ V \H
8: compute the setG of minimal sets inH
9: for eachG ∈ G do

10: locate/create the node
G corresponding toG in L
11: if
G was newly createdthen
12: add(
G,G) to Q
13: end if
14: add the arc(
H ,
G) to L
15: end for
16: end while

Proposition 4. Algorithm 1 computes the Hasse diagram of the face lattice of a polytopeP from its
vertex-facet incidences inO(n · α · ϕ) time. It can be implemented such that its space requirements
(without output space) are bounded byO(ϕ · n).

V. Kaibel, M.E. Pfetsch / Computational Geometry 23 (2002) 281–290 287

Proof. Algorithm 1 works correctly by the discussion above.
Step 7 can be performed in O(n · α) steps by Lemma 1. Lemma 2 shows that we can execute Step 8

in O(n2)⊆ O(n ·α) time. Hence, Steps 7 and 8 in total contribute at most O(n ·α ·ϕ) to the running time
(since the while-loop is executed once per face).

The body of the for-loop has to be executed for each of the O(n · ϕ) arcs in the Hasse diagramL.
Lemma 3 implies that each execution of the body of the for-loop can be performed in O(α) steps. Thus,
the claim on the running time follows.

Since each node of the face tree corresponds to a face ofP , the face tree has O(ϕ) nodes. Each label
on an edge of the face tree needs at most O(logn) bits, and we can estimate the space requirements of
any of the (internal and external) pointers by O(logϕ) ⊆ O(min{n,m}). Hence, the face tree needs no
more than O(ϕ · min{n,m}) bits.

The space required for the storage ofQ is bounded by O(ϕ ·n), if for each pair(
H ,H) ∈Q the setH
is stored as abit set, i.e., the characteristic vector ofH ⊆ V is stored bit by bit. ✷

If m< n, then it is more efficient to apply Algorithm 1 to the incidences of the dual polytope, i.e., to
the transpose of the incidence matrix. Of course, after the computations the roles of vertices and facets
have to be exchanged again. This yields the main result of the paper.

Theorem 5. The Hasse diagram of the face lattice of a polytopeP can be computed from the vertex-
facet incidences ofP in O(min{n,m} · α · ϕ) time, wheren is the number of vertices,m is the number
of facets,α is the number of vertex-facet incidences, andϕ is the total number of faces ofP . The space
requirements of the algorithm(without output space) can be bounded byO(ϕ · min{n,m}).

Whenever a new node representing a faceG in the Hasse diagramL is constructed, we can label
that node with the vertex set ofG, the set of facets containingG, or with the dimension ofG without
(asymptotically) increasing the running time of the algorithm. The output, however, might become
much larger with such labelings. For instance, labeling the Hasse diagram of thed-cube by vertex
labels requires�(4d · d) output storage space, while the Hasse diagram with facet labels needs only
O(d · 3d · logd) space.

In practice, the computation can be speeded up by exploiting that every vertex that is contained in a
faceG with H � G and dimG = dimH + 1 must be contained in some facet which containsH . Thus,
it suffices to consider only the setsH(v), v ∈ (

⋃
f∈F(H) V({f })) \H in Step 7.

3. Extensions

3.1. Simple or simplicial polytopes

For a simpled-polytopeP with n vertices, the above procedure can be implemented to run more
efficiently. We haveα = n · d in this case. From the incidences (stored in the sorted sparse format), the
graphG(P) of P (i.e., all one-dimensional faces) can be computed in time O(n2 · d), since a pair of
vertices forms an edge if and only if it is contained ind − 1 common facets.

After initialization with the vertices instead of∅ (in Steps 3 and 4), Steps 7 and 8 can now be simplified.
Consider an arbitrary vertexw ∈ H . For each neighborv /∈ H of w in G(P), H(v) yields the other end

288 V. Kaibel, M.E. Pfetsch / Computational Geometry 23 (2002) 281–290

node of an arc in the Hasse diagram; and each out-arc ofH is produced this way. Thus, we can avoid
constructing non-minimal faces in Step 7. Hence, Step 8 can be skipped. The total running time for
simpled-polytopes decreases to O(d · α · ϕ) (since the body of the for-loop is executed at mostd · ϕ
times).

The space complexity stays O(ϕ · n) (see Proposition 4). It can, however, be reduced to O(ϕ · m)

(we havem � n for simple polytopes): instead of storing pairs(
H ,H) in the setQ, we store the pairs
(
H ,F(H)), since|F(H)| � m. Converting betweenH and F(H) can be performed in O(α) steps and
hence does not increase the asymptotic total running time.

By duality, the same running times and space requirements can be achieved for simplicial polytopes.
Similarly to the situation with general polytopes, for both simple and simplicial polytopes we can

also output for each face its vertices, the facets containing it, or its dimension without (asymptotically)
increasing the running time.

3.2. Thek-skeleton

A variant of Algorithm 1 computes the Hasse diagram of thek-skeleton (all faces of dimension at
mostk) of a polytopeP . One simply prevents the computation of faces of dimensions larger thank by
not inserting any(k − 1)-face into the listQ. This leads to an O(n · α · ϕ�k) time algorithm, whereϕ�k

is the number of faces ofP of dimension at mostk.

3.3. Computing the “Hasse diagram without edges”

If we only want to compute the faces ofP together with their descriptions and dimensions (i.e., the
“Hasse diagram without edges”), there exists a variant of Algorithm 1 with the same asymptotic running
time, but significantly reduced space requirements. The difference is that no face tree is used, and the set
Q is organized as a stack, i.e., the faces are investigated in a depth-first search manner. At each step, we
take a faceH from the stack, output it, and compute the setG of (dimH + 1)-faces containingH , like
in Steps 7 and 8 of Algorithm 1. This needs time O(n ·α) for eachH . The for-loop beginning at Step 10,
including the search in the face tree, is replaced by an efficient way to decide which of the faces inG is
put onto the stackQ, such that every face appears exactly once on the stack during the algorithm. For
this, we compute for each faceG ∈ G a unique canonical facetH ′ of it. We putG onto the stack if and
only if H =H ′. This ensures that each face is picked exactly once.

We takeH ′ as the closure of a setD(G), which is computed similar to the setC(G) of Section 2.4,
except that we reject vertices which would produceG. More precisely, letG = {g1, g2, . . . , gl}, with
g1 < g2 < · · ·< gl . InitializeD(G) with ∅ and in each iteration extendD(G) by the smallestgi such that
cl(D(G))� cl(D(G)∪ {gi}) and cl(D(G)∪ {gi}) �=G. After the computation,H ′, the closure ofD(G),
clearly is a proper face ofG. Moreover, it is a facet ofG, since otherwise there exists a vertexg ∈G\H ′,
such that cl(H ′ ∪ {g}) � G. But theng would have been included intoD(G) when it was considered.
Hence,D(G) is the lexicographically smallest subset ofG which spans a facet ofG. It can be computed
in time O(α), and hence, checking for all facesG ∈ G whetherH is the canonical facetD(G) of G can
be performed in O(n · α) time.

Altogether, this leads to an O(n · α · ϕ) time algorithm (see the proof of Proposition 4). The algorithm
needs O(n2 · d · logn) space forQ; since the depth ofQ is at mostd + 1, there are never more than
n · (d + 1) sets on the stack, each of size at mostn. Additionally, we need O(α · log max{n,m}) space for

V. Kaibel, M.E. Pfetsch / Computational Geometry 23 (2002) 281–290 289

storing the incidences in the sorted sparse format. Applying this method to the dual polytope, if necessary,
we obtain an O(min{n,m} · α · ϕ) time algorithm.

3.4. Oriented matroids

Algorithm 1 can be used for the enumeration of the elements of any atomic lattice provided a
subroutine is available that computes the join of a set of atoms. For instance, this holds for every atomic
and coatomic lattice if the atom–coatom incidences are given, because in this case one can compute the
joins of atoms similarly to the case of face lattices of polytopes.

In the following, we describe such an application of our algorithm to oriented matroids. The set of
covectors of an oriented matroid with ground set{1, . . . , k} is a subset of{−,0,+}k that satisfies certain
axioms. We refer to Björner et al. [6, Chapter 4] for the definitions and concepts that are relevant in the
following. A specific, but illustrative, example arises from any finite setX of points inRd as follows.
For every linear functionalϕ ∈ (Rd)# denote bySIGN(ϕ) ∈ {−,0,+}X the vector whose component
corresponding tox ∈ X encodes the sign ofϕ(x). Then{SIGN(ϕ): ϕ ∈ (Rd)#} is the set of covectors of
an oriented matroidO(X).

For V,W ∈ {−,0,+}k theseparation setof V andW contains all indicesi such that one ofV i , Wi is +,
and the other one is−. ThecompositionV ◦ W of V andW is defined by(V ◦ W)i := V i if V i �= 0 and
(V ◦ W)i := Wi otherwise.

We define a partial order� on {−,0,+}k, whereV � W holds if and only if for alli we haveV i = 0
or V i = Wi . The �-minimal elements among the nonzero covectors of an oriented matroid are called
its cocircuits. If one adjoins an artificial maximal element1̂ to the poset formed by the covectors of an
oriented matroid (ordered by�), then one obtains its (big) face lattice.

If, in the above example,X is the vertex set of a polytopeP ⊂ Rd , then the faces ofP correspond
to thepositive covectors(i.e., the covectors with no component equal to−) of O(X). The facets ofP
correspond to the positive cocircuits ofO(X). The face lattice ofP is anti-isomorphic to a sublattice of
the face lattice ofO(X).

The face lattice of an oriented matroid is atomic and coatomic; its atoms are the cocircuits, and its
coatoms are calledtopes. Hence, we can compute its Hasse diagram from the abstract atom–coatom
incidences as above.

However, this is not the usual way to encode an oriented matroid. It is more common to specify
an oriented matroid by its cocircuits. The join of two covectors simply is their composition, if their
separation set is empty, or1̂ otherwise. Such a composition can be computed in O(k) steps, which enables
us to compute the face lattice (efficiently) from its cocircuits by a variant of Algorithm 1.

In Step 6,H now is a face of the oriented matroid, i.e., a covector. In Step 7, one has to compute the
joins of H with every cocircuitV �� H . Thus, Step 7 can be performed in O(n · k · ϕ) steps altogether
(whereϕ is the total number of covectors andn is the number of cocircuits). We do not know any method
to perform Step 8 faster than by pairwise comparisons, which take O(n2 · k · ϕ) time in total.

The face tree is organized similarly to the description in Section 2.4. One fixes an ordering C1, . . . ,Cn

of the cocircuits. For a covector S let{i1, . . . , ir} (i1 < · · ·< ir) be the set of indices of cocircuits Cij � S.
Then we iteratively form the joins of Ci1, . . . ,Cir , and letC(S) consist of all those indices for which the
“joins change”. ComputingC(S) from S takes O(n · k) steps. Note that|C(S)| � k.

Using this modified face tree, a given covector S can now be searched in the same way as in the case
of face lattices of polytopes. The depth of the face tree is bounded byk. Hence, location/creation of a

290 V. Kaibel, M.E. Pfetsch / Computational Geometry 23 (2002) 281–290

covector can be performed in O(n ·k) time. The rest of the analysis is similar to the proof of Proposition 4.
Thus, by this variant of Algorithm 1, the Hasse diagram of the face lattice of an oriented matroid can be
computed in O(n2 · k · ϕ) steps, requiring O(ϕ · k) working space (sinceϕ � 3k).

Finschi [7] describes a different algorithm that computes the covectors of an oriented matroid from its
cocircuits in O(n · k2 ·ϕ) time. His algorithm, however, does not produce the edges of the Hasse diagram.

The case where the topes (i.e., the�-maximal covectors) of an oriented matroid are given is a bit
different. Here, the number of faces is bounded bym2, wherem is the number of topes. Hence, the size
of the face lattice is polynomial inm. Fukuda et al. [8] give an O(k3 ·m2) time algorithm for constructing
the face lattice from the maximal covectors.

Acknowledgements

We are indebted to Michael Joswig and Jörg Rambau for stimulating discussions as well as to
Günter M. Ziegler for valuable comments on the paper. We also thank the two referees for their helpful
comments.

References

[1] K. Fukuda, V. Rosta, Combinatorial face enumeration in convex polytopes, Computational Geometry 4 (4) (1994) 191–198.
[2] K. Fukuda, T.M. Liebling, F. Margot, Analysis of backtrack algorithms for listing all vertices and all faces of a convex

polyhedron, Computational Geometry 8 (1997) 1–12.
[3] B. Ganter, Algorithmen zur formalen Begriffsanalyse, in: B. Ganter, R. Wille, K.E. Wolff (Eds.), Beiträge zur Begriffs-

analyse, B.I. Wissenschaftsverlag, 1987, pp. 241–254.
[4] G.M. Ziegler, Lectures on Polytopes, Springer-Verlag, 1995 (rev. ed. 1998).
[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 2nd Edition, MIT Press, Cambridge, 2001.
[6] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, G.M. Ziegler, Oriented Matroids, 2nd Edition, in: Encyclopedia of

Mathematics and its Applications, Vol. 46, Cambridge University Press, 1999.
[7] L. Finschi, A graph theoretical approach for reconstruction and generation of oriented matroids, PhD Thesis, IFOR, ETH

Zürich, 2001.
[8] K. Fukuda, S. Saito, A. Tamura, Combinatorial face enumeration in arrangements and oriented matroids, Discrete Appl.

Math. 31 (2) (1991) 141–149.

