Annals of Pure and Applied Logic 54 (1991) 101–120 North-Holland 101

A slow growing analogue to Buchholz' proof*

Toshiyasu Arai

Department of Mathematics, Nagoya University, Nagoya, 464-01 Japan

Communicated by D. van Dalen Received 19 November 1989 Revised 30 October 1990

Abstract

Arai, T., A slow growing analogue to Buchholz' proof, Annals of Pure and Applied Logic 54 (1991) 101–120.

In this journal, W. Buchholz gave an elegant proof of a characterization theorem for provably total recursive functions in the theory iD_v for the v-times iterated inductive definitions $(0 \le v \le \omega)$. He characterizes the classes of functions by Hardy functions. In this note we will show that a slow growing analogue to the theorem can be obtained by a slight modification of Buchholz' proof.

In [3], W. Buchholz gave, among other things, an elegant proof of a boundedness theorem for provably total recursive functions in the theory ID_{ν} for the ν -times iterated inductive definitions ($0 \le \nu \le \omega$):

Theorem (Buchholz [3], cf. also Buchholz and Wainer [5]). Every provably total recursive function in ID_v is dominated by a Hardy function $\lambda nH_a(1)$ with $a = D_0 D_v^{\gamma} 0$.

In this note, we will show that a slow growing version of the theorem can be obtained by a slight modification of Buchholz's proof: we regard the set ω of natural numbers (or formally the corresponding predicate constant N) as inductively generated. Then for a finite ν , ID_{ν} is interpretable into $ID_{\nu+1}$ minus the scheme of complete induction. Also ID_{ω} is interpretable into $ID_{<*}$ minus complete induction, where $ID_{<*}$ denotes a theory in which inductive definitions are permissible along the accessible part \mathbb{N} of the arithmetic 'less than' relation <. For these theories proof theory is well developed in [1] and [3] by Buchholz.

^{*} This paper was presented at the International Symposium on Mathematical Logic and its Applications, Nagoya, Japan, November 7–11, 1988.

^{0168-0072/91/\$03.50 (}C) 1991 - Elsevier Science Publishers B.V. (North-Holland)

Hence it is easy to show our theorem. Let GID_v denote the theory ID_{p-1} if v is a positive integer p and the theory ID_u if $v = \Omega$. Then our theorem runs as follows:

Theorem A. GID_v $\vdash \forall n \exists m (a[n]^m = 0)$ for each $a \in T_0(v)$. $(a[n]^m := a[n][n] \cdots [n]$ with m[n]'s.)

Theorem B. Assume a Π_2^0 -sentence $\forall x \exists y \phi(x, y) \ (\phi \in \Sigma_1^0)$ is provable in GID_v. Then

(a) $\exists n_0 \forall n \geq n_0 \exists m < G_1(D_0 D_v^n 0) \phi(n, m),$

- (b) $\exists n_0 \forall n > 0 \exists m < G_n(D_0 D_v^n 0) \phi(n, m),$
- (c) $\exists n_0 \forall n \geq n_0 \exists m < G_n(D_0 D_{\nu+1} 0) \phi(n, m).$

Thus every provably total recursive function in GID_{ν} is dominated by a function $\lambda n G_n(D_0 D_{\nu}^m 0)$ for some $m \in \omega$ and by the function $\lambda n G_n(D_0 D_{\nu+1} 0)$. Also every provably total recursive function in $\text{ID}_{<\omega}$ is dominated by the function $\lambda n G_n(D_0 D_{\omega} 0)$. Theorems A and B yield a precise characterization of the provably total recursive functions of GID_{ν} in terms of the slow growing hierarchy.

Corollary 1. A recursive function f is provably total recursive in GID_{ν} if, and only if, it is primitive recursive in $\lambda n G_n(D_0 D_{\nu}^m 0)$ for some $m \in \omega$.

Corollary 2. (a) $\psi_0 \Omega_{\nu+1} = \min\{\alpha \in OT(\Omega) : GID_{\nu} \nvDash \forall n \exists m \alpha[n]^m = 0\},\$ (b) $\psi_0 \Omega_{\omega} = \min\{\alpha \in OT(\Omega) : ID_{<\omega} \nvDash \forall n \exists m \alpha[m]^m = 0\},\$

where $OT(\Omega)$ denotes the set of ordinal terms defined in [3], [4] and $\psi_0 \Omega_{\nu+1}$, $\psi_0 \Omega_{\omega}$ are ordinals also defined in [3], [4]. (The definition of the fundamental sequence $\{\alpha[n]\}_{n \in \omega}$ for a countable ordinal α in [4] differs from ours for $\alpha > \psi_0 \Omega_{\omega}$. Cf. Remark in Section 3.)

Part I. Finite cases

Throughout this part, p will denote an arbitrary but fixed positive integer.

1. The term structure $(T(p), \cdot [\cdot])$

In this section we will define a term structure $(T(p), \cdot [\cdot])$. T(p) denotes a set of finite sequences of the symbols 0 and D.

Inductive definition of the sets PT(p) and T(p)

(T0) $PT(p) \subseteq T(p)$. (T1) $0 \in T(p)$. (T2) If $a \in T(p)$ and $u \in \{0, ..., p\}$, then $D_u a \in PT(p)$. (T3) If $a_0, ..., a_k \in PT(p)$ (k > 0), then $(a_0, ..., a_k) \in T(p)$.

The letters a, b, c, z now always denote elements of T(p) and u, v, w denote elements of $\{0, \ldots, p\}$. a = b means that a is identical with b.

For $a_0, ..., a_k \in PT(p)$ and $k \in \{-1, 0\}$, we set

$$(a_0,\ldots,a_k):=\begin{cases} 0, & \text{if } k=-1, \\ a_0, & \text{if } k=0. \end{cases}$$

Definition of a + b and $a \cdot n \in T(p)$ for $a, b \in T(p)$ and $n \in \omega$ a + 0 := 0 + a := a, $(a_0, ..., a_k) + (b_0, ..., b_m) := (a_0, ..., a_k, b_0, ..., b_m) \quad (k, m \ge 0),$ $a \cdot 0 := 0, \qquad a \cdot (n + 1) := a \cdot n + a.$

Convention. We identify ω with the subset $\{0, 1, 1+1, ...\}$ of T(p). $(1 := D_0 0.)$

Definition of $T_u(p)$ for $u \leq p$

$$T_u(p) := \{ (D_{u_0}a_0, \ldots, D_{u_k}a_k) : k \ge -1, a_0, \ldots, a_k \in T(p), u_0, \ldots, u_k \le u \}.$$

Now we define, for every $a \in T(p)$, a subset dom(a) of T(p) and a function $z \mapsto a[z]$ from dom(a) into T(p).

Definition of dom(a) and a[z] for $a \in T(p)$ and $z \in dom(a)$

([].0) dom(0):=Ø. ([].1) dom(1):= {0}; 1[0]:=0. ([].2) dom($D_{u+1}0$):= $T_u(p)$; $(D_{u+1}0)[z]$:= z. ([].3) Let $a = D_v b$ with $b \neq 0$. 3.1. If $b = b_0 + 1$, then dom(a):= ω and a[n]:= $(D_v b_0) \cdot (n + 1)$. 3.2. If dom(b) $\in {\omega} \cup {T_u(p): u < v}$, then dom(a):= dom(b), a[z]:= $D_v b[z]$. 3.3. If dom(b) = $T_u(p)$ with $v \le u < p$, then dom(a):= ω , a[n]:= $D_v b[b_n]$, where b_0 := 1 and b_{m+1} := $D_u b[b_m]$. ([].4) Let $a = (a_0, \dots, a_k)$ with k > 0. dom(a):= dom(a_k);

$$a[z]:=(a_0,\ldots,a_{k-1})+a_k[z].$$

Remark. The definition of a[z] is the same as that given in [3] except 3.3. Also it is a variant of the fundamental sequences in [4, §5] when we restrict a[z] to the ordinal terms $a, z \in OT(p)$ in [2]. Hence, as in [3], [4], we have the following proposition:

Proposition. (a) $c, a \in OT(p) \& c < a \Rightarrow \exists z \in dom(a) \cap OT(p) (c \le a[z]).$ (b) $c, a \in OT(p) \cap T_0(p) \& c < a \Rightarrow$ the function $\lambda nG_n(c)$ is majorized by $\lambda nG_n(a)$.

Proposition 1. (a) $a \in T_v(p) \Rightarrow \operatorname{dom}(a) \in \{\phi, \{0\}, \omega\} \cup \{T_u(p): u < v\}, and a[z] \in T_v(p) \text{ for all } z \in \operatorname{dom}(a).$ (b) $\operatorname{dom}(a+b) = \operatorname{dom}(b) \& (a+b)[z] = a+b[z] \text{ if } b \neq 0.$

As in the Introduction, GID_p will denote the theory ID_{p-1} . (ID₀ is another name of PA, the first-order arithmetic.) The theory ID_{p-1} is defined in Section 2.

Convention. 0[n] := 0 and (a + 1)[n] := a for each $n \in \omega$ and any $a \in T(p)$.

Definition. For $a \in T_0(p)$ and $n, m \in \omega$, we set

 $a[n]^0 := a;$ $a[n]^{m+1} := (a[n]^m)[n]$ (cf. Proposition 1(a)).

We will prove Theorem A. In what follows, we will work in GID_p . Let *n* be a fixed natural number.

Iterated inductive definition of sets $W_{un} \subseteq T_u(p)$ (u < p)

(W1) $0 \in W_{un}$. (W2) $a \in T_u(p)$, dom $(a) \in \{\{0\}, \omega\}$, $a[n] \in W_{un} \Rightarrow a \in W_{un}$. (W3) $a \in T_u(p)$, dom $(a) = T_v(p)$ with v < u, $\forall z \in W_{vn}(a[z] \in W_{un}) \Rightarrow a \in W_{un}$.

Proposition 2. (a) $a \in W_{on} \Leftrightarrow \exists m \ (a[n]^m = 0) \text{ for } a \in T_0(p).$ (b) $v < u < p \Rightarrow W_{vn} \subseteq W_{un}.$

Abbreviations. Let X range over subsets of T(p) which are definable in the language of GID_p .

1. By $A_{un}(X, a)$ ($u \le p$) we denote the following statement:

$$a \in T_u(p) \& [a = 0 \lor (dom(a) \in \{\{0\}, \omega\} \& a[n] \in X)$$
$$\lor \exists v < u (dom(a) = T_v(p) \& \forall z \in W_{vn}(a[z] \in X))]$$

2. $A_{un}(X) := \{x \in T(p) : A_{un}(X, x)\}.$ 3. $X^{(a)} := \{y \in T(p) : a + y \in X\}.$ 4. $\bar{X} := \{y \in T(p) : \forall x \in X(x + D_p y \in X)\}.$ 5. $W_n^* := \{x \in T(p) : \forall u$

By the definition of W_{un} , for all u < p we have:

(A1) $A_{un}(W_{un}) = W_{un},$ (A2) $A_{un}(X) \subseteq X \Rightarrow W_{un} \subseteq X.$

The following lemma can be proved exactly as in [3].

1.1. Lemma. (a) $A_{un}(X) \subseteq X$ & $a \in X \cap T_u(p) \Rightarrow A_{un}(X^{(a)}) \subseteq X^{(a)} (u \leq p)$. (b) $a, b \in W_{un} \Rightarrow a + b \in W_{un} (u < p)$.

1.2. Lemma. (a) $A_{pn}(X) \subseteq X \Rightarrow \bigcup \{W_{un} : u < p\} \subseteq X$. (b) $0 \in W_n^*$. (c) $A_{pn}(W_n^*) \subseteq W_n^*$.

Proof. (a) This follows from (A2) and the fact:

$$A_{pn}(X) \subseteq X \Rightarrow \forall u$$

(b) We have to show $\forall u . Clearly (1) <math>D_0 0 \in W_{0n}$. If u = v + 1 < p, then $W_{vn} \subseteq W_{un}$, dom $(D_u 0) = T_v(p)$ and $(D_u 0)[z] = z$ for $z \in T_v(p)$. Therefore (2) $\exists v . We are done.$

(c) Assume $b \in A_{pn}(W_n^*)$ and u < p. We show $a := D_u b \in W_{un}$.

1. b = 0: This follows from (b).

2. $b = b_0 + 1$ and $b_0 \in W_n^*$: Then dom $(a) = \omega$ and $a[n] = (D_u b_0) \cdot (n+1)$. By u < p and $b_0 \in W_n^*$ we have $D_u b_0 \in W_{un}$. Using 1.1(b) we obtain $\forall m ((D_u b_0) \cdot m \in W_{un})$ by induction on m and hence $a \in W_{un}$.

3. dom(b) = $T_v(p)$, v < p, and $b[z] \in W_n^*$ for all $z \in W_{vn}$:

3.1. v < u: Then we have dom $(a) = T_v(p)$ and $a[z] = D_u b[z] \in W_{un}$ for all $z \in W_{vn}$, i.e., $a \in W_{un}$.

3.2. $u \le v$: Then we have $dom(a) = \omega$ and $a[n] = D_u b[b_n]$, where $b_0 = 1$ and $b_{m+1} = D_v b[b_m]$. By induction on *m* we have $\forall m \ (b_m \in W_{vn})$. Therefore $b_n \in W_{vn}$ and $D_u b[b_n] \in W_{un}$. Hence $a \in W_{un}$.

4. dom $(b) = \omega$: Then dom $(a) = \omega$ and $a[n] = D_u b[n]$. By $b[n] \in W_n^*$ we have $a[n] \in W_{un}$, i.e., $a \in W_{un}$. \Box

1.3. Lemma. $A_{pn}(X) \subseteq X \Rightarrow A_{pn}(\bar{X}) \subseteq \bar{X}$.

Proof. Assume $A_{pn}(X) \subseteq X$, $A_{pn}(\bar{X}, b)$ and $a \in X$. We have to show $a + D_p b \in X$, i.e., $D_p b \in X^{(a)}$.

1. b = 0: by 1.1(a) and 1.2(a) we have $\cup \{W_u : u < p\} \subseteq X^{(a)}$. dom $(D_p 0) = T_{p-1}(p), (D_p 0)[z] = z$ for $z \in T_{p-1}(p)$ and $W_{p-1,n} \subseteq X^{(a)}$. Hence $A_{pn}(X^{(a)}, D_p 0)$ and thus $D_p 0 \in X^{(a)}$, since $A_{pn}(X^{(a)}) \subseteq X^{(a)}$, by 1.1(a).

2. $b = b_0 + 1$ and $b_0 \in \overline{X}$: Then $dom(a + D_p b) = \omega$ and $(a + D_p b)[n] = a + (D_p b_0) \cdot (n+1)$. By induction we get $(a + D_p b)[n] \in X$ from $b_0 \in X$ and hence $a + D_p b \in X$.

3. dom $(b) = T_v(p)$, v < p, and $b[z] \in \overline{X}$ for all $z \in W_{vn}$: Then dom $(a + D_p b) = T_v(p)$ and $(a + D_p b)[z] = a + D_p b[z] \in X$ for all $z \in W_{vn}$. Hence $a + D_p b \in X$. 4. dom $(b) = \omega$ and $b[n] \in \overline{X}$: Similar to 3. \Box

1.4. Lemma. For each $a \in T(p)$,

(a) $a \in T_0(p) \Rightarrow a \in W_{0n}$, (b) $A_{pn}(X) \subseteq X \Rightarrow a \in X$.

Proof. By simultaneous metainduction on the length of *a*.

1. a = 0: Clear. 2. $a = (a_0, \ldots, a_k)$ (k > 0): By using 1.1 and IH (Induction Hypothesis) we get (a) and (b). 3. $a = D_u b$: By 1.2(c) and IH we have $b \in W_n^*$. (a) Assume $a \in T_0(p)$, i.e., u = 0. By $b \in W_n^*$ and 0 < p we get $a \in W_{0n}$. (b) Assume $A_{pn}(X) \subseteq X$. *Case* 1. $u \neq p$: By 1.2(a), $a \in W_{un} \subseteq X$. *Case* 2. u = p: Then by 1.3 and IH we have $b \in \overline{X}$. By $0 \in X$ we get $a = 0 + D_p b \in X$. \Box

Lemma 1.4(a) yields Theorem A for v = p.

Using 1.2(c) and 1.4(b), we get $a \in W_n^*$ for each $a \in T(p)$. Now we work outside GID_p. Then since GID_p is sound, we have:

1.5. Lemma. $\forall u$

For each $n \in \omega$, let \prec_n denote the following relation over T(p):

$$b <_n a \quad :\Leftrightarrow \quad a \neq 0 \& (\operatorname{dom}(a) \in \{\{0\}, \omega\} \Rightarrow b = a[n]) \\ \& (\operatorname{dom}(a) \in \{T_u(p) : u < p\} \Rightarrow \exists z \in \operatorname{dom}(a) (b = a[z])).$$

Let X_n denote the accessible part of $<_n$:

$$X_n = \bigcap \{ X \subseteq T(p) \colon \forall a \ (\forall b \leq_n a \ (b \in X) \Rightarrow a \in X) \}.$$

Then by 1.5 we have $A_{pn}(X_n) \subseteq X_n$ and hence $X_n = T(p)$. Therefore

1.6. Lemma. The relation \leq_n is well founded for all $n \in \omega$.

In what follows transfinite induction over T(p) or on $a \in T(p)$ means a transfinite induction with respect to \leq_n for an n.

Definition of $c \ll_k a$ by transfinite induction on $a \in T(p)$

 $c \ll_k a : \Leftrightarrow a \neq 0 \& \forall z \in d_k(a) (c \leq_k a[z])$

where

$$d_k(a) := \begin{cases} \{k\}, & \text{if dom}(a) \in \{\{0\}, \,\omega\}, \\ \{D_u e : \, 0 \neq e \in T(p)\}, & \text{if dom}(a) = T_u(p), \end{cases}$$

and

 $c \leq k a$: $\Leftrightarrow c \ll a$ or c = a.

Definition of the function $G_k: T_0(p) \rightarrow \omega$ by transfinite induction over $T_0(p)$

(G1) $G_k(0) = 0.$ (G2) $G_k(a+1) = G_k(a) + 1.$ (G3) $G_k(a) = G_k(a[k])$ if dom $(a) = \omega$.

Definition of $D_u^n a$ for $u \leq p$, $n \in \omega$ and $a \in T(p)$

$$D^0_u a := a, \qquad D^{n+1}_u a := D_u D^n_u a.$$

The following lemma is proved by transfinite induction over T(p) (cf. 3.1, 3.2, 3.5 and 3.7 in [3]):

1.7. Lemma. (a) $a \neq 0 \Rightarrow 1 \leq_k a$. (b) $c \ll_k a \& a \ll_k b \Rightarrow c \ll_k b$. (c) $c \ll_k b \Rightarrow a + c \ll_k a + b$. (d) $b \neq 0 \Rightarrow a \ll_k a + b$. (e) $a \ll_k b \Rightarrow D_u a \ll_k D_u b$. (f) $c \ll_k a \Rightarrow G_k(c) \leq G_k(a)$ for $c, a \in T_0(p)$. (g) dom(a) = $T_v(p) \& u \leq v \& 1 \leq k \Rightarrow (D_u a)[1] \ll_k D_u a$. (h) $D_u a + 1 \ll_k D_u(a + 1)$ for $k \geq 1$. (i) $(D_u^m a) \cdot (k + 1) \ll_k D_u^m (a + 1)$ for m > 0. (j) $(D_u^m 0) \cdot (k + 1) \ll_k D_u^{m+1} 0$.

Definition of $a \rightarrow_n^k b$ for $a, b \in T(p)$ and $k, n \in \omega$

$$a \rightarrow a_n^k b \quad :\Leftrightarrow \quad \exists a_0, \ldots, a_n [a = a_0 \& b = a_n \& \forall i < n (a_i + 1 \leq a_{i+1})].$$

Clearly $G_k(a) = \max\{n \in \omega : 0 \rightarrow k_n a\}$.

1.8. Lemma. (a)
$$a \rightarrow_n^k b \Rightarrow D_u a \rightarrow_n^k D_u b.$$

(b) $0 \rightarrow_{g_p(k)}^k D_p 0$ with $g_p(k) = (k+1)^p$.
(c) $0 \rightarrow_n^k a \Rightarrow 0 \rightarrow_{(k+1)^{p+n}}^k D_p a.$
(d) $0 \rightarrow_{f_p(k,l)}^k D_p^l 0$ with $f_p(k, 0) = 0$, $f_p(k, l+1) = (k+1)^{p+f_p(k,l)}$.

Proof. (b) $0 \rightarrow_1^k D_0 0$ and $(D_u 0) \cdot (k+1) \ll_k D_u 1 \ll_k D_{u+1} 0$ for u < p. Hence by induction on $u \leq p$ we get the assertion.

(c) By induction on *n*. The case n = 0 follows from (b). The induction step is seen easily.

(d) By induction on l using (b) and (c). \Box

2. The infinitary system GID_p^{∞}

Let L denote the first order language consisting of the following symbols:

- (i) logical constants \neg , \land , \lor , \forall \exists .
- (ii) number variables (indicated by x, y).
- (iii) a constant 0 (zero) and a unary function symbol ' (successor).

(iv) constants for primitive recursive predicates (among them the symbol < for the arithmetic 'less than' relation).

By s, t,... we denote arbitrary *L*-terms. The constant terms $0, 0', 0'', \ldots$ are called numerals; we identify numerals and natural numbers and denote them by k, m, n. A formula of the shape $Rt_1 \cdots t_n$ or $\neg Rt_1 \cdots t_n$ with an *n*-ary predicate symbol *R* of *L*, is called an arithmetic prime formula (abbreviated by a.p.f.).

Let X be a unary and Y a binary predicate variable. A positive operator form is a formula $\mathfrak{A}(X, Y, y, x)$ of L(X, Y) in which only X, Y, y, x occur free and all occurrences of X are positive. The language L_{1D} is obtained from L by adding a binary predicate constant $P^{\mathfrak{A}}$ and a 3-ary predicate constant $P^{\mathfrak{A}}_{<}$ for each positive operator form \mathfrak{A} .

Abbreviations

$$t \in P_s^{\mathfrak{A}} := P_s^{\mathfrak{A}} t := P^{\mathfrak{A}} st, \qquad t \notin P_s^{\mathfrak{A}} := \neg (t \in P_s^{\mathfrak{A}}), \qquad P_{
$$\mathfrak{A}_s(X, x) := \mathfrak{A}(X, P_{
$$\mathfrak{A}_y(F) \subseteq F := \forall x \ (\mathfrak{A}_y(F, x) \to F(x)) \quad \text{for each formula } F(x).$$$$$$

The formal theory GID_p is an extension of Peano Arithmetic, formulated in the language L_{ID} , by the following axioms;

$$\begin{array}{l} (P^{\mathfrak{A}}.1) \quad \forall y$$

PA formulated in L_{ID} means that GID_p has the following scheme of complete induction;

(CI)
$$F(0) \land \forall x (F(x) \rightarrow F(x')) \rightarrow \forall x F(x)$$
, for every L_{ID} -formula $F(x)$.

The infinitary system $\operatorname{GID}_p^{\infty}$ will be formulated in the language $L_{ID}(N)$ which arises from L_{ID} by adding a new unary predicate constant N. We assume all formulas to be in negation normal form, i.e., the formulas are built up from atomic and negated atomic formulas by means of \land , \lor , \forall , \exists . If A is a complex formula we consider $\neg A$ as a notation for the corresponding negation normal form.

Definition of the length |A| of an $L_{ID}(N)$ -formula A

- 1. $|A| := |\neg A| := 0$, if A is an a.p.f. or a formula of the form Nt, $P^{\aleph}st$.
- 2. $|P^{\mathfrak{A}}_{<} st_0 t_1| := |\neg P^{\mathfrak{A}}_{<} st_0 t_1| := 1.$
- 3. $|A \$ B| := \max\{|A|, |B|\} + 1 \text{ for } \$ \in \{\land, \lor\}.$
- 4. |QxA| := |A| + 1 for $Q \in \{\forall, \exists\}$.

Clearly $|\neg A| = |A|$, for each $L_{ID}(N)$ -formula A.

Inductive definition of formula sets Pos_u (u < p)

1. All a.p.f.'s belong to Pos_u . 2. $Nt \in \operatorname{Pos}_u$. 3. $\neg Nt \in \operatorname{Pos}_u \Leftrightarrow 0 < u$, i.e., $u \neq 0$. 4. $P_n^{\mathfrak{A}}t$, $(\neg)P_{<n}^{\mathfrak{A}}t_0t_1 \in \operatorname{Pos}_u \Leftrightarrow n+1 \leq u$. 5. $\neg P_n^{\mathfrak{A}}t \in \operatorname{Pos}_u \Leftrightarrow n+1 < u$. 6. $A \$ B \in \operatorname{Pos}_u \Leftrightarrow A, B \in \operatorname{Pos}_u, \$ \in \{\land, \lor\}$. 7. $Qx A \in \operatorname{Pos}_u \Leftrightarrow A \in \operatorname{Pos}_u, Q \in \{\forall, \exists\}$.

Remark. If a term s contains a variable, then formulas $(\neg)P_s^{\mathfrak{A}}t$, $(\neg)P_{<s}^{\mathfrak{A}}t_0t_1$ do not belong to Pos_u .

Notations. (1) In the following A, B, C always denote closed $L_{\rm ID}(N)$ -formulas.

(2) Γ and Δ denote finite sets of closed $L_{\rm ID}(N)$ -formulas, we write Γ , Δ , A for $\Gamma \cup \Delta \cup \{A\}$.

(3) A^N denotes the results of restricting all quantifiers in A to N.

(4) $t \in N := Nt, t \notin N := \neg Nt.$

Basic inference rules

 $\begin{array}{ll} (\wedge) & A_0, A_1 \vdash A_0 \wedge A_1. \\ (\vee) & A_i \vdash A_0 \vee A_1 \ (i = 0, 1). \\ (\forall^{\infty}) & (A(n))_{n \in \omega} \vdash \forall x \ A(x). \\ (\exists) & A(n) \vdash \exists x \ A(x). \\ (P^{\mathfrak{A}}_{\leq}) & P_j^{\mathfrak{A}} t \vdash P^{\mathfrak{A}}_{\leq n} jt, \ \text{if } j < n. \\ (\neg P^{\mathfrak{A}}_{\leq}) & \neg P_j^{\mathfrak{A}} t \vdash \neg P^{\mathfrak{A}}_{\leq n} jt, \ \text{if } j < n. \\ (N) & n = 0 \vee (n = m' \wedge Nm) \vdash Nn. \\ (P^{\mathfrak{A}}) & t \in N \land \mathfrak{A}_n^{\mathfrak{A}} (P^{\mathfrak{A}}_n, t) \vdash P^{\mathfrak{A}}_n t. \end{array}$

Every instance $(A_i)_{i \in I} \vdash A$ of these rules is called a basic inference. If $(A_i)_{i \in I} \vdash A$ is a basic inference with $A \in \text{Pos}_u$ (u < p), then $A_i \in \text{Pos}_u$ for all $i \in I$. We divide the basic inferences into three kinds: Every instance of rules (\land) , (\forall^{\cong}) , (P^{\aleph}) is said to be of kind 1. Every instance of rules (\lor) , (\exists) , $(\neg P^{\aleph})$ is said to be of kind 2. Every instance of rules (N), (P^{\aleph}) is said to be of kind 3. Next we define a derivability relation $k \vdash_m^{\alpha} \Gamma$ for GID_p^{∞} by an iterated inductive definition.

Inductive definition of $k \vdash_m^a \Gamma(a \in T(p) \text{ and } k, m \in \omega)$

- (Ax1) $k \vdash_m^a \Gamma$, A if A is a true a.p.f. or $A = \neg P_{\leq n}^{\mathbb{M}} jt$ with $n \leq j$.
- (Ax2) $k \vdash_m^a \Gamma, \neg A, A \text{ if } A \in Nn \text{ or } A = P_n^{\mathfrak{A}} t.$
- (Bas1) If $(A_i)_{i\in I} \vdash A$ is a basic inference of kind 1 with $A \in \Gamma$ and $\forall i \in I$ $(k \vdash_m^a \Gamma, A_i)$, then $k \vdash_m^a \Gamma$.
- (Bas2,3) If $(A_i)_{i \in I} \vdash A$ is a basic inference of kind 2 or of kind 3 with $A \in \Gamma$ and $\forall i \in I (k \vdash_m^a \Gamma, A_i)$, then $k \vdash_m^{a+1} \Gamma$.
- (Cut) $k \vdash_m^a \Gamma$, $\neg C$ and $k \vdash_m^a \Gamma$, C and $|C| < m \Rightarrow k \vdash_m^{a+1} \Gamma$.
- (Ω_{u+1}) If *Rt* is an atomic formula of the shape *Nt* or $P_n^{\mathfrak{A}}t$, and the following four conditions hold, then $k \models_m^a \Gamma$.
 - (1) dom(a) = $T_u(p)$. (2) $k \vdash_m^{a[1]} \Gamma$, Rt. (3) $\forall z \in T_u(p) \forall \Delta \subseteq \operatorname{Pos}_u (k \vdash_0^z \Delta, Rt \Rightarrow k \vdash_m^{a[z]} \Delta, \Gamma)$. (4) $Rt \in \operatorname{Pos}_u$. $k \vdash_m^b \Gamma$ and $b \ll_k a \Rightarrow k \vdash_m^a \Gamma$.

2.1. Lemma (Inversion). Let $(A_i)_{i \in I} \vdash A$ be a basic inference of kind 1. Then $k \vdash_m^a \Gamma$, A implies $\forall i \in I (k \vdash_m^a \Gamma, A_i)$.

Proof. By transfinite induction on $k \vdash_m^a \Gamma$, A. Precisely speaking, if $k \vdash_m^a \Gamma$, A holds in a stage of inductive definition of the derivability relation, then $k \vdash_m^a \Gamma$, A_i holds in the same or a previous stage for all *i*. \Box

2.2. Lemma (Reduction). Suppose $k \vdash_m^a \Gamma_0$, $\neg C$ and $|C| \leq m$, where C is a formula of the shape $A \lor B$ or $\exists x A$ or $\neg P_{\leq n}^{\mathfrak{A}} jt$ or $\neg P_n^{\mathfrak{A}} t$ or Nn or a false a.p.f. Then $k \vdash_m^b \Gamma$, C implies $k \vdash_m^{a+b} \Gamma_0$, Γ .

Proof. By transfinite induction on $k \vdash_m^b \Gamma$, C using 2.1, Proposition 1 and 1.7 in Section 1. If $k \vdash_m^b \Gamma$, C holds by (Ax1) and $C \equiv \neg P_{< n}^{\mathfrak{A}} jt$ with $n \leq j$, then use the following proposition. Cf. Lemma 4.4 in [3] for other cases. \Box

Proposition. $k \vdash_m^a \Gamma_0$, $P_{\leq n}^{\mathfrak{N}} jt \& n \leq j \Rightarrow k \vdash_m^a \Gamma_0$.

2.3. Theorem (Cut elimination). $k \vdash_{m+1}^{a} \Gamma \Rightarrow k \vdash_{m}^{D_{pq}} \Gamma$ for $k \ge 1$.

Proof. By transfinite induction on $k \vdash_{m+1}^{a} \Gamma$ using 1.7 and 2.2. Cf. Theorem 4.5 in [3]. \Box

2.4. Lemma. $k \vdash_0^a n \notin N$, Γ and $0 \rightarrow_m^k b$ and $2n + 2 \le m \Rightarrow k \vdash_0^{b+a} \Gamma$.

Proof. This follows from the fact;

 $k \models_0^b n \in N$ if $0 \rightarrow_m^k b$ and $2n + 2 \le m$. \Box

 (\ll_k)

2.5. Theorem (Collapsing). (a) $k \vdash_0^a \Gamma \& \Gamma \subseteq \operatorname{Pos}_u \Rightarrow k \vdash_0^{D_u a} \Gamma \text{ for } k \ge 1$. (b) $k \vdash_0^a \Gamma \& a \in T_0(p) \Rightarrow k \vdash_0^{G_k(a)} \Gamma \text{ for } k \ge 1$.

Proof. By transfinite induction on $k \models_0^a \Gamma$. Cf. Theorem 4.6 in [3] and 1.7(g).

Definition. For $\Gamma = \{A_1, \ldots, A_n\} \subseteq \text{Pos}_0$ we define: $\models \Gamma(j) : \Leftrightarrow A_1 \lor \cdots \lor A_n$ is true in the standard model when N is interpreted as $\{i \in \omega : i < j\}$.

2.6. Lemma (Truth). $k \vdash_0^j \Gamma \& \Gamma \subseteq \operatorname{Pos}_0 \& j \in \omega \Rightarrow \models \Gamma(j)$.

Proof. This follows from the fact:

$$\models n = 0 \lor (n = m' \land Nm)(j) \Rightarrow \models Nn(j+1). \square$$

In the remainder of this section we show that GID_p can be embedded into GID_p^{∞} .

2.7. Lemma. (a) $0 \rightarrow_n^k a \& k \vdash_0^n \Gamma \Rightarrow k \vdash_0^a \Gamma$. (b) $k \vdash_0^a \Gamma, A \lor B \Rightarrow k \vdash_0^a \Gamma, A, B$. (c) $k \vdash_0^a \Gamma, A \& A \text{ is a false a.p.f.} \Rightarrow k \vdash_0^a \Gamma$. (d) $k \vdash_0^0 \Gamma, A \lor B \Rightarrow k \vdash_0^0 \Gamma$.

Furthermore, in each case except (a), if $k \vdash_0^a \Delta$ holds under the condition, then $k \vdash_0^b \Delta'$ holds in the same or a previous stage of the inductive definition of the derivability relation.

Definition. $\tilde{n} := D_p^n 0.$

2.8. Lemma. For any $k \ge 1$, $k \models_0^{\tilde{l}} \neg A$, A where l := |A|.

Proof. By induction on the length of A we see that $k \models_0^l \neg A$, A if l = |A|. By 1.8(d), $0 \rightarrow_l^k \tilde{l}$. Hence the assertion follows from 2.7(a). \Box

Definition. In the following proposition and lemma we will use the following notations: R denotes a 'predicate constant' of the form N or $P_n^{\mathfrak{N}}$. F(x) denotes a formula with a variable x. For $A \in \operatorname{Pos}_u(u < p)$ let A^* denote the result of replacing all occurrences of R in A by $F(\cdot)$. $\{A_1, \ldots, A_m\}^* := \{A_1^*, \ldots, A_m^*\}$. Further let Θ denote the following set:

$$\Theta := \begin{cases} \{\neg F(0), \ \neg \forall x \in N \ (F(x) \to F(x'))\}, & \text{if } R \equiv N, \\ \{\neg \forall x \in N \ (\mathfrak{A}_n^N(F, x) \to F(x))\}, & \text{if } R \equiv P_n^{\mathfrak{A}} \end{cases}$$

Proposition. $\Delta \cup \Delta_0 \subseteq \operatorname{Pos}_u$, $\neg Rt \notin \operatorname{Pos}_u$, $z \in T_u(p)$, $k \vdash_0^z \Delta$, Δ_0 and $l = |F| \Rightarrow k \vdash_0^{\tilde{l}+z} \Delta$, Θ , Δ_0^* for $k \ge 1$.

Proof. By transfinite induction on $k \vdash_0^z \Delta$, Δ_0 .

1. If $k \vdash_0^z \Delta$, Δ_0 holds by (Ax2), then also $k \vdash_0^{\tilde{l}+z} \Delta$, Θ , Δ_0^* by (Ax2), since $\neg Rt \notin \Delta \cup \Delta_0$.

2. Suppose z = w + 1, $Nm \in \Delta_0$, $R \equiv N$ and $k \vdash_0^w \Delta$, Δ_0 , $m = 0 \lor (m = j' \land Nj)$. Then $F(m) \in \Delta_0^*$. By 2.8

(1) $k \vdash_0^{\tilde{l}} \neg F(m), F(m).$

2.1. m = 0: Then by (1) and $F(0) \in \Theta$ we get the assertion.

2.2. $m \neq 0 \& m \neq j + 1$: Then by 2.7(b),(c) and 2.1, we have $k \vdash_0^{w} \Delta$, Δ_0 . By IH we get the assertion.

2.3. m = j + 1; Then again by 2.7(b),(c) and 2.1, we have $k \vdash_0^w \Delta$, Δ_0 , Nj. By IH we have

(2) $k \vdash_0^{\tilde{l}+w} \Delta, \Theta, \Delta_0^*, Nj$ and (3) $k \vdash_0^{\tilde{l}+w} \Delta, \Theta, \Delta_0^*, F(j)$.

By (1), (2), (3) using (\land) and (\exists) we get the assertion.

3. Other cases can be treated as in [3]. \Box

From this proposition and (Ω_{u+1}) we get:

2.9. Lemma. If l = |F| and u = 0 if $R \equiv N$, u = n + 1 if $R \equiv P_n$, then $k \vdash_0^{\overline{l} + D_{u+1} 0} \Theta, \neg Rt, F(t)$ for any $k \ge 1$, and n .

2.10. Lemma. For each universal closure A of an axiom of the theory GID_p there exists an $n \in \omega$ such that $k \vdash_0^{\bar{n}} A^N$ for any $k \ge 1$.

Proof. This follows from 1.7 and 2.9. \Box

2.11. Theorem. If a sentence A is provable in GID_p , then there exists an $n \in \omega$ such that $k \vdash_n^{\tilde{n}} A^N$ for any $k \ge 1$.

Proof. This follows from 1.7 and 2.10. (Cf. Theorem 4.14 in [3].)

Proof of Theorem B. Assume $\text{GID}_p \vdash \forall x \exists y \ \phi(x, y) \ (\phi \in \Sigma_1^0)$. By 2.11 and 2.3 (also by 2.1 and 2.7(b)), there exists an n_1 such that

 $k \vdash_0^{\tilde{n}_1} n \notin N, \exists y \in N \phi^N(n, y)$ for all n and all $k \ge 1$.

W.l.o.g. we can assume $n_1 \ge 2$.

...

(a) Put $n_0:=n_1+1$ and k:=1. If $3 \le n_0 \le n$, then $2n+2 \le f_p(1, n-1)$. Hence by 1.8(d) and 2.4 we have

$$1 \vdash_{0}^{a_{n}} \exists y \in N \phi^{N}(n, y) \text{ with } a_{n} = D_{p}^{n-1} 0 + D_{p}^{n} 0.$$

By 1.7, we have $D_0 a_n \ll_1 D_0 D_p^n 0$ and hence by 2.5 and 2.6 we conclude

 $\models \exists y \in N \phi^N(n, y)(G_1(D_0 D_p^n 0)),$

and by persistency of Σ_1^0 formulas we get the assertion.

(b) Put $n_0 := n_1 + 1$ and k := n > 0. If $n \neq 0$, then $2n + 2 \le f_p(n, 2) \le f_p(n, n_1)$. Therefore by 1.8(d) and 2.4 we have

$$n \vdash_0^a \exists y \in N \phi^N(n, y)$$
 with $a = D_p^{n_1} 0 \cdot 2$.

By 1.7, $D_0 a \ll_n D_0 D_p^{n_0} 0$ and hence by 2.5 and 2.6 we conclude that

 $\models \exists y \in N \phi^{N}(n, y)(G_{n}(D_{0}D_{p}^{n_{0}}0)).$

(c) By definition $(D_0D_{p+1}0)[n] := D_0D_p^n 1$. Thus this follows from (b) and 1.7. \Box

Remark. As in [3; 3.3, 3.4 and 3.6], we can show that, for any $a \in T_0(p)$, the function $\lambda n G_n(a)$ is weakly monotonic, i.e., $G_n(a) \leq G_{n+1}(a)$. From this and Theorem B(a), Theorem B(c) follows.

Part II. The case $v = \Omega$

In this part we prove Theorems A and B for the case $v = \Omega$. The proof is obtained by a slight modification and extension of that for the case $v = p < \omega$, $p \neq 0$. We will give only necessary changes.

3. The term structures $(T(\Omega), \cdot [\cdot]_n)_{n \in \omega}$

Inductive definition of the sets $T_0(\Omega)$, $PT(\Omega)$ and $T(\Omega)$

- (T0) $T_0(\Omega) \cup PT(\Omega) \subseteq T(\Omega)$.
- (T1) 1. If $a \in T(\Omega)$ and $u \in T_0(\Omega) \cup \{\Omega\}$, then $D_u a \in PT(\Omega)$ ($\Omega := D_1 0$). 2. If $a \in T(\Omega)$, then $D_0 a \in T_0(\Omega) \cap PT(\Omega)$.
- (T2) 1. If $a_0, \ldots, a_k \in PT(\Omega)$ (k > 0), then $(a_0, \ldots, a_k) \in T(\Omega)$. 2. If $a_0, \ldots, a_k \in T_0(\Omega) \cap PT(\Omega)$ (k > 0), then $(a_0, \ldots, a_k) \in T_0(\Omega)$.

The letters a, b, c, z now always denote elements of $T(\Omega)$, and u, v, w denote elements of $T_0(\Omega) \cup \{\Omega\}$.

Now we define, for each $n \in \omega$, four partial recursive functions;

- 1. $G_n: T_0(\Omega) \cup \{\Omega\} \to \omega + 1,$ 2. $\mathcal{T}_n: (T_0(\Omega) \cup \{\Omega\}) \times T(\Omega) \to \{0, 1\},$
- 3. dom_n: $T(\Omega) \rightarrow \{\emptyset, \{n\}\} \cup T_0(\Omega), \quad 4. \quad \cdot [\cdot]_n: T(\Omega) \times T(\Omega) \rightarrow T(\Omega).$

Convention. These functions except $\cdot [\cdot]_n$ turn out to be total. So

1. $a \in T_u(\Omega) :\Leftrightarrow \mathcal{T}_n(u, a) \simeq 0$. (Even if u = 0, this is consistent. See Proposition 3(a) below.)

2. If dom_n(a) $\simeq u$ for some $u \in T_0(\Omega)$, then we write

 $b \in \operatorname{dom}_n(a) :\Leftrightarrow b \in T_u(\Omega)$ and $\operatorname{dom}_n(a) \simeq T_u(\Omega) :\Leftrightarrow \operatorname{dom}_n(a) \simeq u$.

Strictly speaking, the 'set' $T_u(\Omega)$ depends on the subscript *n*.

Definition of G_n , $T_u(\Omega)$, dom_n and $\cdot [\cdot]_n$

- (G1) $G_n(0) \simeq 0.$
- (G2) $G_n(u+1) \simeq G_n(u) + 1.$
- (G3) $G_n(u) \simeq G_n(u[n]_n)$ if $u \notin \{0, \Omega\} \cup \{v+1: v \in T_0(\Omega)\}.$
- (G4) $G_n(\Omega) \simeq \omega$.
- (T_u) Let $a = (D_{u_0}a_0, \ldots, D_{u_k}a_k)$ $(k \ge -1)$. 1. $a \in T_u(\Omega) :\Leftrightarrow \mathcal{T}_n(u, a) \simeq 0 :\Leftrightarrow G_n(u_0) \le G_n(u) \& \cdots \& G_n(u_k) \le G_n(u)$. 2. $a \notin T_u(\Omega) :\Leftrightarrow \mathcal{T}_n(u, a) \simeq 1 :\Leftrightarrow G_n(u_0) > G_n(u) \lor \cdots \lor G_n(u_k) > G_n(u)$. 3. $\mathcal{T}_n(u, a)$ is undefined : \Leftrightarrow one of $G_n(u), G_n(u_0), \ldots, G_n(u_k)$ is undefined.
- ([]1) dom_n(0) $\simeq \emptyset$; 0[z]_n is always undefined.
- ([]2) $\operatorname{dom}_n(1) \simeq \{n\}; 1[z]_n \simeq c \Leftrightarrow z = n \& c = 0.$
- ([]3) $\operatorname{dom}_n(D_{u+1}0) \simeq T_u(\Omega); (D_{u+1}0)[z]_n \simeq c \Leftrightarrow z \in T_u(\Omega) \& z = c.$
- ([]4) $\operatorname{dom}_n(D_u 0) \simeq \operatorname{dom}_n(u)$ if $u \notin \{0\} \cup \{v + 1: v \in T_0(\Omega)\}; (D_u 0)[z]_n \simeq D_{u[z]_n} 0.$
- ([]5) Let $a = D_v b$ with $b \neq 0$.
 - 5.1. If $b = b_0 + 1$, then dom_n(a) $\approx \{n\}$ and $a[z]_n \approx c \Leftrightarrow z = n \& (D_v b_0) \cdot (n+1) = c.$
 - 5.2. If dom_n(b) \simeq {n} and $b \notin \{b_0 + 1: b_0 \in T(\Omega)\}$, then dom_n(a) \simeq {n} and $a[z]_n \simeq D_v b[z]_n$.
 - 5.3. If dom_n(b) $\simeq T_u(\Omega)$ with $G_n(u) < G_n(v)$, then dom_n(a) $\simeq T_u(\Omega)$ and $a[z]_n \simeq D_v b[z]_n$.
 - 5.4. If $\operatorname{dom}_n(b) \simeq T_u(\Omega)$ with $G_n(v) \leq G_n(u)$, then $\operatorname{dom}_n(a) \simeq \{n\}$ and $a[z]_n \simeq c \Leftrightarrow z = n \& \exists b_0, \ldots, b_n \forall m < n \ (b_0 = 1 \& b_{m+1} \simeq D_v b[b_m]_n \& D_v b[b_n]_n \simeq c)$.
 - 5.5. If dom_n(b) is undefined or dom_n(b) $\approx T_u(\Omega)$ but either $G_n(u)$ or $G_n(v)$ is undefined, then dom_n(a) and $a[z]_n$ are undefined.
- ([]6) Let $a = (a_0, \ldots, a_k)$ with k > 0. dom_n $(a) \simeq dom_n(a_k)$; $a[z]_n \simeq (a_0, \ldots, a_{k-1}) + a_k[z]_n$.

Convention. $0[n]_n := 0$.

Remark. The definition of $a[z]_n$ is similar to that in Part I and the fundamental sequences given in [4]. The only essential difference lies in ([]5), 5.3 and 5.4, i.e., in which case we apply 5.3 or 5.4. In [4], the decision is made by comparing u and v with respect to the relation < given in [2]. Here we consider u to be

smaller than v with respect to n when $G_n(u) < G_n(v)$. It seems that this view is consistent with the idea of the slow growing functions. The price to pay is that we lose the proposition in the corresponding Remark in Part I and also the weak monotonicity of the function $\lambda n G_n(a)$. The author does not know whether these hold for this case.

Definition. Let t be an expression of the form $G_n(u)$, dom_n(a) or $a[z]_n$. Then we set: $t \downarrow : \Leftrightarrow t$ is defined.

Proposition 3. (a) $G_n(u) \simeq 0 \Rightarrow u = 0$. Hence $a \in T_0(\Omega) \Leftrightarrow \mathcal{T}_n(0, a) \simeq 0$.

(b) $G_n(u) \downarrow \&u \neq \Omega \Rightarrow G_n(u) < \omega.$ (c) $a \in T_0(\Omega) \& \operatorname{dom}_n(a) \downarrow \Rightarrow \operatorname{dom}_n(a) \in \{\emptyset, \{n\}\}.$ (d) $\operatorname{dom}_n(a) \downarrow \Rightarrow \forall z \in \operatorname{dom}_n(a)(a[z]_n \downarrow).$ (e) $a[z]_n \downarrow \Rightarrow \operatorname{dom}_n(a) \downarrow \& z \in \operatorname{dom}_n(a).$ (f) $a \in T_v(\Omega) \& v \neq \Omega \& \operatorname{dom}_n(a) \downarrow \Rightarrow \forall z \in \operatorname{dom}_n(a)(a[z]_n \in T_v(\Omega)).$ (g) $a \in T_v(\Omega) \& \operatorname{dom}_n(a) \simeq T_u(\Omega) \Rightarrow G_n(u) < G_n(v).$ (h) $\operatorname{dom}_n(a+b) \simeq \operatorname{dom}_n(b)$ and $(a+b)[z]_n \simeq a+b[z]_n$ if $b \neq 0$.

Definition. For $a \in T_0(\Omega)$ and $n, m \in \omega$, we set:

$$a[n]^0 := a;$$
 $a[n]^{m+1} := (a[n]^m)[n]_n$ (cf. Proposition 3(c)).

As in the Introduction GID_{Ω} will denote the theory ID_{ω} . In what follows we will work in GID_{Ω} . Let *n* be a fixed natural number.

Let U_n denote the following set:

$$U_n := \{ u \in T_0(\Omega) \colon \exists m \ (u[n]^m \simeq 0) \}.$$

Clearly we have: $u \in U_n \Rightarrow G_n(u) \downarrow$.

Iterated inductive definition of sets $W_{un} \subseteq T_u(\Omega)$ $(u \in U_n)$

 $\begin{array}{l} (W1) \ 0 \in W_{un}. \\ (W2) \ a \in T_u(\Omega), \ \operatorname{dom}_n(a) \simeq \{n\}, \ a[n]_n \in W_{un} \Rightarrow a \in W_{un}. \\ (W3) \ a \in T_u(\Omega), \quad \exists v \in U_n(G_n(v) < G_n(u) \& \operatorname{dom}_n(a) \simeq T_v(\Omega) \& \forall z \in W_{vn} \ (a[z]_n \in W_{un})) \Rightarrow a \in W_{un}. \end{array}$

Remark. It seems that this does not fit with an ω -times iterated inductive definition at first sight. Formally W_{un} is defined by

$$\begin{split} W_{un} &:= \{ a \in T(\Omega) \colon \langle a, u, n \rangle \in \mathfrak{W}_k \} \quad \text{where } k := G_n(u), \\ \mathfrak{W}_k &:= \bigcap \{ Y \subseteq T(\Omega) \times T_0(\Omega) \times \omega \colon \forall a, u, n \ (\mathfrak{A}_k(Y, a, u, n) \rightarrow \langle a, u, n \rangle \in Y) \} \\ \mathfrak{A}_k(Y, a, u, n) &:= u \in U_n \& G_n(u) \simeq k \& \mathcal{T}_n(u, a) \simeq 0 \& (a = 0 \\ & \text{or } \{ \operatorname{dom}_n(a) \simeq \{n\} \& \langle a[n]_n, u, n \rangle \in Y \} \\ & \text{or } \exists v \in U_n \exists m < k \{ G_n(v) \simeq m \& \operatorname{dom}_n(a) \simeq T_v(\Omega) \\ & \& \forall z \ (\langle z, v, n \rangle \in \mathfrak{W}_m \Rightarrow \langle a[z]_n, u, n \rangle \in \mathfrak{W}_k \}) . \end{split}$$

(The remark follows the reviewer's suggestion.)

Proposition 4. (a) $a \in W_{0n} \Leftrightarrow \exists m \ (a[n]^m \simeq 0) \text{ for } a \in T_0(\Omega), \text{ i.e., } W_{0n} = U_n.$ (b) $v, u \in U_n \& G_n(v) < G_n(u) \Rightarrow W_{vn} \subseteq W_{un}.$

Abbreviations. Let X range over subsets of $T(\Omega)$ which are definable in the language of GID_{Ω} .

1. By $A_{un}(X, a)$ $(u \in U_n \cup \{\Omega\})$ we denote the following statement:

$$a \in T_u(\Omega) \& \{a = 0 \lor (\operatorname{dom}_n(a) \simeq \{n\} \& a[n]_n \in X) \lor \exists v \in U_n (G_n(v) < G_n(u) \\ \& \operatorname{dom}_n(a) \simeq T_v(\Omega) \& \forall z \in W_{vn} (a[z]_n \in X)) \}.$$

2. $A_{un}(X) := \{x \in T(\Omega) : A_{un}(X, x)\}.$ 3. $X^{(a)} := \{y \in T(\Omega) : a + y \in X\}.$ 4. $\bar{X} := \{y \in T(\Omega) : \forall x \in X \cap T_{\Omega}(\Omega) (x + D_{\Omega} y \in X)\}.$ 5. $W_n^* := \{x \in T(\Omega) : \forall u \in U_n (D_u x \in W_{un})\}.$

Note that, in 4, we can not assume $T_{\Omega}(\Omega) = T(\Omega)$ until Theorem A is proved. By the definition of W_{un} , for all $u \in U_n$ we have:

(A1) $A_{un}(W_{un}) = W_{un}$, (A2) $A_{un}(X) \subseteq X \Rightarrow W_{un} \subseteq X$.

As in Part I we have the following lemma.

3.1. Lemma. (a) $A_{un}(X) \subseteq X$ & $a \in X \cap T_u(\Omega) \Rightarrow A_{un}(X^{(a)}) \subseteq X^{(a)}$ $(u \in U_n \cup \{\Omega\}).$ (b) $a, b \in W_{un} \Rightarrow a + b \in W_{un}(u \in U_n).$

3.2. Lemma. (a) $A_{\Omega n}(X) \subseteq X \Rightarrow \bigcup \{W_{un} : u \in U_n\} \subseteq X.$ (b) $0 \in W_n^*$. (c) $A_{\Omega n}(W_n^*) \subseteq W_n^*$.

Proof. (a) and (c) are proved exactly as in 1.2.

(b) We have to show $\forall u \in U_n (D_u 0 \in W_{un})$. As in 1.2, we have

(1) $1 \in W_{0n}$ and (2) $\exists v \in U_n (u = v + 1) \Rightarrow D_u 0 \in W_{un}$.

If $u \in U_n$ and $u \notin \{0\} \cup \{v+1: v \in U_n\}$, then $\operatorname{dom}_n(D_u 0) \simeq \{n\}$; $(D_u 0)[n]_n \simeq D_{u[n]_n} 0$ and $W_{u[n]_n,n} \subseteq W_{un}$. Hence

(3) $u \in U_n$, $u \notin \{0\} \cup \{v+1: v \in U_n\}$, $D_{u[n]_n} 0 \in W_{u[n]_n,n} \Rightarrow D_u 0 \in W_{un}$.

By induction on $u \in U_n$ we get the assertion. \Box

3.3. Lemma. $A_{\Omega n}(X) \subseteq X \Rightarrow A_{\Omega n}(\tilde{X}) \subseteq \tilde{X}$.

Proof. Assume $A_{\Omega n}(X) \subseteq X$, $A_{\Omega n}(\bar{X}, b)$ and $a \in X \cap T_{\Omega}(\Omega)$. We have to show $a + D_{\Omega}b \in X$. Except the case b = 0, the same proof as in 1.3 works.

So it suffices to show $a + D_{\Omega}0 \in X$. By 3.1(a) and 3.2(a) we have $\bigcup \{W_{un} : u \in U_n\} \subseteq X^{(a)} \cdot \operatorname{dom}_n(D_{\Omega}0) = T_0(\Omega)$ and $(D_{\Omega}0)[z]_n = D_z 0$ for $z \in T_0(\Omega)$. By 3.2(b) we have $\forall z \in W_{0n} (D_z 0 \in W_{zn} \subseteq X^{(a)})$. Hence $A_{\Omega n}(X^{(a)}, D_{\Omega}0)$ and thus $D_{\Omega}0 \in X^{(a)}$, since $A_{\Omega n}(X^{(a)}) \subseteq X^{(a)}$ by 3.1(a).

3.4. Lemma. For each $a \in T(\Omega)$, (a) $a \in T_0(\Omega) \Rightarrow a \in W_{0n}$. (b) $A_{\Omega n}(X) \subseteq X \Rightarrow a \in X$.

Proof. Again by simultaneus metainduction on the length of *a*. Assume $a = D_u b$. By 3.2(c) and IH we have $b \in W_n^*$. Assume $A_{\Omega n}(X) \subseteq X$ and $u \neq \Omega$. Then $u \in T_0(\Omega)$ and by IH, $u \in W_{0n} = U_n$. Hence by 3.2(a), $a \in W_{un} \subseteq X$. Other cases are seen as in 1.4. \Box

Lemma 3.4(a) yields Theorem A.

Now we work outside GID_{Ω} . By the soundness of the theory GID_{Ω} we have the following lemma.

3.5. Lemma. (a) $T_0(\Omega) = W_{0n}$. (b) $\forall u \in T_0(\Omega) \ (T_u(\Omega) = W_{un})$. (c) $\forall n \in \omega \ \{ \forall u \in T_0(\Omega) \ (G_n(u) \downarrow) \& \forall a \in T(\Omega) \ (\operatorname{dom}_n(a) \downarrow) \}$.

Let \leq_n denote the following relation over $T(\Omega)$:

 $b \leq_n a : \Leftrightarrow \exists z \in \operatorname{dom}_n(a) \ (b = a[z]_n).$

Then we see that the relation \leq_n is well founded for all $n \in \omega$.

Definition of $c \ll_k a$ by transfinite induction on $a \in T(\Omega)$

$$c \ll_k a : \Leftrightarrow a \neq 0 \& \forall z \in d_k(a) (c \ll_k a[z]_k)$$

where

$$d_k(a) := \begin{cases} \{k\}, & \text{if } \operatorname{dom}_k(a) = \{k\}, \\ \{D_u e : 0 \neq e \in T(\Omega)\}, & \text{if } \operatorname{dom}_k(a) = T_u(\Omega). \end{cases}$$

and

 $c \leq k a$: \Leftrightarrow $c \ll k a$ or c = a.

For $u \in T_0(\Omega) \cup \{\Omega\}$, $a \in T(\Omega)$, $b \in T(\Omega)$ and $n, k \in \omega$, $D^n_u a \in T(\Omega)$ and $a \rightarrow_n^k b$ are defined as in Part I. Then 1.7 holds also in this case.

3.6. Lemma. (a) $\operatorname{dom}_{k}(a) = T_{v}(\Omega) \& G_{k}(u) \leq G_{k}(v) \& 1 \leq k \Rightarrow (D_{u}a)[1] \ll_{k} D_{u}a.$ (b) $n + 1 < G_{k}(z) (z \in T_{0}(\Omega)) \Rightarrow \exists u (n + 1 = G_{k}(u) \& u + 1 \leq_{k} z).$ (c) $a, z \in T_{0}(\Omega) \& a \ll_{k} z \Rightarrow D_{a} 0 \ll_{k} D_{z} 0.$ (d) $0 \rightarrow_{g(k)}^{k} D_{\Omega} 0$ with $g(k) = (k + 1)^{k+1}.$ (e) $0 \rightarrow_{h}^{k} a \Rightarrow 0 \rightarrow_{(k+1)^{k+1+n}}^{k} D_{\Omega} a.$ (f) $0 \rightarrow_{f_{\Omega}(k,l)}^{k} D_{\Omega}^{l} 0$ with $f_{\Omega}(k, 0) = 0, f_{\Omega}(k, l+1) = (k+1)^{k+1+f_{\Omega}(k,l)}.$ (g) $0 \rightarrow_{h(k,u)}^{k} D_{u} 0$ with $h(k, u) = (k+1)^{G_{k}(u)}.$

Proof. Cf. 1.8. □

4. The infinitary system $\text{GID}_{\Omega}^{\infty}$

The theory GID_{Ω} is an extension of PA by the following axioms;

 $\begin{array}{l} (P^{\mathfrak{A}}.1) \quad \forall y \, (\mathfrak{A}_{y}(P_{y}^{\mathfrak{A}}) \subseteq P_{y}^{\mathfrak{A}}). \\ (P^{\mathfrak{A}}.2) \quad \forall y \, (\mathfrak{A}_{y}(F) \subseteq F \rightarrow P_{y}^{\mathfrak{A}} \subseteq F) \quad \text{for every } L_{\mathrm{ID}}\text{-formula } F(x). \\ (P^{\mathfrak{A}}) \quad \forall y \, \forall x_{0} \, \forall x_{1} \, (P_{\leq y}^{\mathfrak{A}} x_{0} x_{1} \leftrightarrow x_{0} < y \wedge x_{1} \in P_{x_{0}}^{\mathfrak{A}}). \end{array}$

Again $\operatorname{GID}_{\Omega}^{\infty}$ is formulated in the language $L_{\mathrm{ID}}(N)$. The length of a formula, basic inference rules, the set Pos_{uk} of formulas and the derivability relation $k \models_m^a \Gamma$ for $\operatorname{GID}_{\Omega}^{\infty}$ are defined mutatis mutandis.

Inductive definition of formula set Pos_{uk} $(u \in T_0(\Omega))$

- 1. All a.p.f.'s belong to Pos_{uk} .
- 2. $Nt \in Pos_{uk}$.
- 3. $Nt \in \text{Pos}_{uk} \Leftrightarrow 0 < G_k(u)$, i.e., $u \neq 0$.
- 4. $P_n^{\mathfrak{A}}t, (\neg)P_{\leq n}^{\mathfrak{A}}t_0t_1 \in \operatorname{Pos}_{uk} \Leftrightarrow n+1 \leq G_k(u).$
- 5. $\neg P_n^{\mathfrak{A}} t \in \operatorname{Pos}_{uk} \Leftrightarrow n+1 < G_k(u).$
- 6. $A \ B \in \operatorname{Pos}_{uk} \Leftrightarrow A, B \in \operatorname{Pos}_{uk}, \ S \in \{\land, \lor\}.$
- 7. $Qx A \in Pos_{uk} \Leftrightarrow A \in Pos_{uk}, Q \in \{\forall, \exists\}.$

The rule (Ω_{u+1}) is defined as follows:

- (Ω_{u+1}) If Rt is an atomic formula of the form Nt or $P_n^{\mathfrak{A}}t$, and the following four conditions hold, then $k \vdash_m^a \Gamma$.
 - (1) $\operatorname{dom}_k(a) = T_u(\Omega).$
 - (2) $k \vdash_m^{a[1]_k} \Gamma, Rt.$
 - (3) $\forall z \in T_u(\Omega) \forall \Delta \subseteq \operatorname{Pos}_{uk}(k \vdash_0^z \Delta, Rt \Rightarrow k \vdash_m^{a[z]_k} \Delta, \Gamma).$
 - (4) $Rt \in Pos_{uk}$.

Then 2.1–2.8 hold with $\tilde{n} := D_{\Omega}^{n} 0.2.9$ now runs as follows.

4.1. Lemma. If l = |F| and $G_k(u) = 0$, if $R \equiv N$ and $G_k(u) = n + 1$, if $R \equiv P_n^{\mathfrak{A}}$, then $k \models_0^{\overline{l} + D_{u+1}0} \Theta$, $\neg Rt$, F(t) for any $k \ge 1$. (Θ denotes the set defined in the definition after 2.8.)

4.2. Lemma. If $z \in T_0(\Omega)$, $\Delta \subseteq \text{Pos}_{0k}$, $k \vdash_0^z \Delta$, Nn and $G_k(z) < n + 1$, then $k \vdash_0^z \Delta$.

Proof. By transfinite induction on $k \vdash_0^z \Delta$, Nn.

1. Suppose z = w + 1 and $k \vdash_0^w \Delta$, Nn, $n = 0 \lor (n = m' \land Nm)$. By IH we have $k \vdash_0^w \Delta$, $n = 0 \lor (n = m' \land Nm)$.

1.1. n = 0: Then $G_k(w) + 1 = G_k(z) \le 1$ and hence w = 0. By 2.7(d) we have $k \vdash_0^0 \Delta$.

1.2. $n \neq 0$ and $n \neq m + 1$: By 2.7(b),(c) and 2.1, we have $k \vdash_0^w \Delta$.

1.3. n = m + 1: Again by 2.7(b),(c) and 2.1, we have $k \vdash_0^w \Delta$, Nm and $G_k(w) \le m + 1$. Hence IH (since $k \vdash_0^w \Delta$, Nm holds in a previous stage of the derivability relation) we get $k \vdash_0^w \Delta$.

2. Other cases are easy. \Box

4.3. Lemma. Put $\Gamma := \{ \neg (\mathfrak{A}_n(F) \subseteq F)^N, n \notin N, t \notin P_n^{\mathfrak{A}}, F(t) \}$ and l := |F|. Then, for any $k \ge 1$,

$$k \vdash_0^{l+D_{\mathbf{R}}^0} \Gamma.$$

Proof. Put $a := \tilde{l} + D_{\Omega} 0$. Then

(1) $\operatorname{dom}_k(a) = T_0(\Omega)$, (2) $k \vdash_0^{a[1]_k} \Gamma$, Nn and (4) $Nn \in \operatorname{Pos}_{0k}$.

Also $a[z]_k = \tilde{l} + D_z 0$ for $z \in T_0(\Omega)$. By (Ω_1) it remains to show

(3) $\forall z \in T_0(\Omega) \forall \Delta \subseteq \operatorname{Pos}_{0k}(k \vdash_0^z \Delta, Nn \Rightarrow k \vdash_0^{a[z]_k} \Delta, \Gamma).$

Assume that $z \in T_0(\Omega)$, $\Delta \subseteq \operatorname{Pos}_{0k}$ and $k \vdash_0^z \Delta$, *Nn*.

1. $G_k(z) \leq n+1$: Then by 4.2, $k \vdash_0^z \Delta$. By 2.5(b), 2.7(a) and 3.6(g) we have $k \vdash_0^{D_2 0} \Delta$ and hence $k \vdash_0^{a[z]_k} \Delta$, Γ .

2. $n + 1 < G_k(z)$: Then by 3.6(b), $n + 1 = G_k(u)$ and $u + 1 \leq k z$ for some u. By 4.1 we have $k \vdash_0^{a[u+1]_k} \Gamma$. By 3.6(c), $D_{u+1} 0 \leq k D_z 0$ and hence $k \vdash_0^{a[z]_k} \Gamma$. \Box

We have $D_1 0 \leq_k D_{k+1} 0 \ll_k D_\omega 0 \ll_k D_\Omega 0$. Thus by 4.1 and 4.3 we get:

4.4. Lemma. For each universal closure A of an axiom of the theory GID_{Ω} there exists an $n \in \omega$ such that $k \vdash_0^{\bar{n}} A^N$ for any $k \ge 1$.

4.5. Lemma. If a sentence A is provable in GID_{Ω} , then there exists an $n \in \omega$ such that $k \vdash_{0}^{\bar{n}} A^{N}$ for any $k \ge 1$.

Proof of Theorem B. Assume $\text{GID}_{\Omega} \vdash \forall x \exists y \phi(x, y) \ (\phi \in \Sigma_1^0)$. By 4.5 there exists an n_1 such that $k \vdash_0^{n_1} n \notin N$, $\exists y \in N \phi^N(x, y)$ for all n and all $k \ge 1$. Assume $n_1 \ge 2$.

(a) Put $n_0:=n_1+1$ and k:=1. If $3 \le n_0 \le n$, then $2n+2 \le f_{\Omega}(1, n-1)$. From this and 3.6(f), we see that the theorem is true.

(b) Put $n_0:=n_1+1$ and k:=n>0. If $n \neq 0$, then $2n+2 \leq f_{\Omega}(n, 2) \leq f_{\Omega}(n, n_1)$. From this and 3.6(f) we see that the theorem is true.

(c) By definition $(D_0 D_{\Omega+1} 0)[n]_n := D_0 D_{\Omega}^n 1$. (c) follows from (b). \Box

Acknowledgements

I wish to express my heart-felt thanks to Professor W. Buchholz and the referee for invaluable comments and suggestions.

References

- [1] W. Buchholz, Eine Erweiterung der Schnitteliminationsmethode, Habilitationsschrift, Universität München, 1977.
- [2] W. Buchholz, A new system of proof-theoretic ordinal functions, Ann. Pur Appl. Logic 32 (1986) 195-207.
- [3] W. Buchholz, An independence result for $(\Pi_1^1-CA) + BI$, Ann. Pure Appl. Logic 33 (1987), 131-155.
- [4] W. Buchholz and K. Schütte, Proof theory of impredicative subsystems of analysis, Studies in Proof Theory (Bibliopolis, Napoli, 1988).
- [5] W. Buchholz and S. Wainer, Provably computable functions and the fast growing hierarchy, in: S. Simpson, ed., Logic and Combinatorics, Contemp. Math. 65 (AMS, Providence, RI, 1987) 179–198.