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Abstract 

Arai, T., A slow growing analogue to Buchholz’ proof, Annals of Pure and Applied Logic 54 

(1991) 101-120. 

In this journal, W. Buchholz gave an elegant proof of a characterization theorem for provably 

total recursive functions in the theory iD, for the v-times iterated inductive definitions 

(0 < v < w). He characterizes the classes of functions by Hardy functions. In this note we will 

show that a slow growing analogue to the theorem can be obtained by a slight modification of 

Buchholz’ proof. 

In [3], W. Buchholz gave, among other things, an elegant proof of a 

boundedness theorem for provably total recursive functions in the theory ID,, for 

the v-times iterated inductive definitions (0 s Y c 0): 

Theorem (Buchholz [3], cf. also Buchholz and Wainer [5]). Every provably total 

recursive function in ID,, is dominated by a Hardy function AnH,(l) with 
a = D&O. 

In this note, we will show that a slow growing version of the theorem can be 

obtained by a slight modification of Buchholz’s proof: we regard the set o of 

natural numbers (or formally the corresponding predicate constant N) as 

inductively generated. Then for a finite Y, ID,, is interpretable into ID,,+, minus 

the scheme of complete induction. Also ID, is interpretable into ID,, minus 

complete induction, where ID,, denotes a theory in which inductive definitions 

are permissible along the accessible part N of the arithmetic ‘less than’ relation <. 

For these theories proof theory is well developed in [l] and (31 by Buchholz. 

*This paper was presented at the International Symposium on Mathematical Logic and its 
Applications, Nagoya, Japan, November 7- 11, 1988. 
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Hence it is easy to show our theorem. Let GID, denote the theory ID,_, if Y is a 
positive integer p and the theory ID, if Y = 52. Then our theorem runs as follows: 

Theorem A. GID, t Vn 3m (a[nlm = 0) for each a E T”(Y). 
(a[nlm : = a[n][n] - . . [n] with m [n]‘s.) 

Theorem B. Assume a ZI’$sentence Vx 3y @(x, y) ($ E 11:) is provubfe in GID,. 

Then 
(a) 3n0 Vn 2 no 3m < G,(D,,D”,O) $(n, m), 
(b) 3n0 Vn > 0 3m < G,(D,D”,‘O) $(n, m), 
(c) 3n0 Vn 2 no 3m < G,(D&,+,O) @(n, m). 

Thus every provably total recursive function in GID, is dominated by a 
function ;InG,(D,,D?O) for some m E o and by the function ~nG,(&D,,+,O). 
Also every provably total recursive function in ID,, is dominated by the function 
nnG,(D,D,O). Theorems A and B yield a precise characterization of the 
provably total recursive functions of GID, in terms of the slow growing hierarchy. 

Corollary 1. A recursive function f is provably total recursive in GID, if, and only 
if, it is primitive recursive in kG,(D,DTO) for some m E w. 

Corollary 2. (a) &Qv+l = min{ (Y E OT(Q): GID, YVn 3m a[nlm = 0}, 

(b) r+$,s2, = min{cu E OT(Q): ID,,XVn 3m a[mlm = 0}, 

where OT( Q) denotes the set of ordinal terms defined in [3], [4] and q&?,+l, 

&Q, are ordinals also defined in [3], [4]. (The definition of the fundamental 

sequence {4nl>,t,, for a countable ordinal ac in [4] differs from ours for 
(Y > r&Q,. Cf. Remark in Section 3.) 

Part I. Finite cases 

Throughout this part, p will denote an arbitrary but fixed positive integer. 

1. The term structure (T(p), -[-I) 

In this section we will define a term structure (T(p), .[.I). T(p) denotes a set 
of finite sequences of the symbols 0 and D. 

Inductive definition of the sets PT(p) and T(p) 

(TO) PT(P) G T(P). 
(Tl) 0 E T(P). 
(T2) If a E T(p) and u E (0,. . . , p}, then D,u E PT(p). 
(T3) If uo, . . . , & E PT(p) (k > 0), then (UC,, . . , , Uk) E T(p). 
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The letters a, b, c, z now always denote elements of T(p) and u, U, w denote 

elements of (0, . . . , p}. a = b means that a is identical with b. 
For a,,, . . . , ak E PT(p) and k E (-1, 0}, we set 

Definition of a + b and a * n E T(p) for a, b E T(p) and n E o 
u+0:=O+u:=u, 

(a,,, . . . , a$-) + (b,, . . . , b,) : = (a,, . . . , a,‘, b,, . . . , b,) (k, m 2 0), 

a .o:=o, u*(n+l):=a.n+u. 

Convention. We identify w with the subset (0, 1, 1 + 1, . . .} of T(p). (1:= D,,O.) 

Definition of T,(p) for u G p 

T,(p):= {(DUOuO,. . . , &$Zk): k 2 -1, U,,, . . . , ak E T(p), uO,. . . , uk =S u}. 

Now we define, for every a E T(p), a subset dam(u) of 

z HU[Z] from dam(u) into T(p). 

Definition of dam(u) and a[~] for a E T(p) and z E dom (a) 

T(p) and a function 

([ 1.0) 

;; ;.:; 
([ I:31 

([ 1.4) 

dom(0) : = 0. 

dam(l):= (0); l[O]:=O. 

dom(D,+,O):= T,(p); (D,+,O)[z]:=z. 
Let a = D,b with b #O. 
3.1. Ifb=bo+l, thendom(a):=wandu[n]:=(D,b,).(n+l). 

3.2. If dam(b) E {w} U {T,(p): u < v}, then dam(u) := dam(b), 

u[z] := D,b[z]. 
3.3. If dam(b) = T,(p) with v s u <p, then dam(u) := w, 

u[n]:= D,b[b,], where b,:= 1 and b,+, := D,b[b,]. 
Let a = (uo, . . . , ak) with k 3> 0. dam(u) : = dom(u,); 

u[z] := (uo, . . . , a&,) + &[Z]. 

Remark. The definition of u[z] is the same as that given in [3] except 3.3. Also it 

is a variant of the fundamental sequences in [4, §5] when we restrict u[z] to the 

ordinal terms a, z E OT(p) in [2]. Hence, as in [3], [4], we have the following 

proposition: 

Proposition. (a) c, a E OT(p) & c <a + 3z E dam(a) fl OT(p) 

(b) c, a E OT(p) fl T,(p) &c < a =$ the function AnG,(c) 
AnG,(u). 

(c =z u[z]). 

is mujorized by 
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Propositionl. (a) a~T,(p)+dom(a)e{#, {0}, w}U{T,(p): u<v}, anda[z]~ 
T,(p) for all z E dam(a). 

(b) dom(a + b) = dam(b) & (a + b)[z] = a + b[z] g 6 #O. 

As in the Introduction, GID, will denote the theory ID,_,. (ID0 is another 

name of PA, the first-order arithmetic.) The theory ID,_, is defined in Section 2. 

Convention. O[n] : = 0 and (a + l)[n] : = a for each n E o and any a E T(p). 

Definition. For a E T,(p) and n, m E o, we set 

a[n]“:=a; +I m+’ := (a[nlm)[n] (cf. Proposition l(a)). 

We will prove Theorem A. In what follows, we will work in GID,. Let n be a 
fixed natural number. 

Iterated inductive definition of sets W,, c T,(p) (u < p) 

(Wl) 0 E w,,. 

(W2) a E T,(p), dam(a) E {{O), w>, a[el E K, +a E W,,. 
(W3) a E T,(p), dam(a) = T,(p) with v < u, Vz E Wvn(a[z] E W,,) +a E W,,. 

Proposition 2. (a) a E W,, e3rn (a[nlm = 0) for a E I&;,(p). 

(b) v<u<p+w,,cw,,. 

Abbreviations. Let X range over subsets of T(p) which are definable in the 

language of GID,. 

1. By A&X, a) (u CP) we denote the following statement: 

a E T,(p) & [a = 0 v (dam(a) E { {0}, w} & a[n] E X) 

v 3v <u (dam(a) = T,(p) & Vz E N&(a[z] E X))]. 

2. A,,(X):= {x E T(p): A&X, x)}. 
3. X?={~ET(~):U+~EX}. 
4. x:= {y E T(p): Vx E X(x + D,,y E X)}. 
5. W,* := {x E T(p): Vu <p (Dux E W,,)}. 

By the definition of W,,, for all u <p we have: 

(Al) AmPL) = Km 
(A2) A,,(X) G X 3 w,, E X. 
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The following lemma can be proved exactly as in [3]. 

1.1. Lemma. (a) A,,(X) c X 8~ a E X II T,(P) + A,,(X’“‘) E X’“’ (U SP). 

(b) a, b E W,, + a + b E ML,, (u <P>. 

1.2. Lemma. (a) Apn(X) c X + U {Wun: ~4 <P> E X. 
(b) 0 E W;. 

(c) A,,,(W,*) E W:. 

Proof. (a) This follows from (A2) and the fact: 

A,JX) s X + Vu <P (A,,(X) G X). 

(b) We have to show Vu <p (DUO E W,,). Clearly (1) Do0 E I&,. If u = r_~ + 1 < 

p, then W,,,, c_ W,,, dom(D,O) = 7;,(p) and (DuO)[z] = z for z E 7;,(p). Therefore 

(2) 3~ <p (u = u + 1) 3 D,O E W,,. We are done. 

(c) Assume b l A,,,,(W,*) and u<p. We show a:=D,b E W,,,. 

1. b = 0: This follows from (b). 

2. b = b,, + 1 and b,, E W,*: Then dam(a) = o and u[n] = (Dub,,). (n + 1). By 

u <p and b,, E W,* we have D,bo E W,,,. Using 1.1(b) we obtain Vm ((Dub,,) . m E 

W,,) by induction on m and hence a E W,,. 

3. dam(b) = 7;,(p), u <p, and b[z] E W,* for all z E W,,,: 

3.1. v<u: Then we have dam(u) = 7;,(p) .and ~[z] = D,b[z] E W,, for all 

2 E w,,,, i.e., a E W,,. 

3.2. u < II: Then we have dim(u) = o and u[n] = D,,b[b,], where b,, = 1 and 

b mtl = D,b[b,]. By induction on m we have Vm (b, E WltH). Therefore b, E W,,, 

and D,b[b,] E W,,. Hence a E W,,,. 

4. dam(b) = w: Then dam(u) = w and u[n] = D,b[n]. By b[n] E W,* we have 

u[n] E W,,, i.e., a E W,,. 0 

1.3. Lemma. Ap,,(X) CX =$ Apn(X) LX. 

Proof. Assume Apa E X, A,,,(X, b) and a E X. We have to show a + D,b E 

X i e D b E X’“‘. 

‘1.’ h’= 0”: by 1.1(a) and 1.2(a) we have U {W,: u <p} sX’“‘. dom(D,O) = 

T,-,(P), w9[4 = f z or z E T,_,(p) and Wp_,.n~X@‘). Hence Apa( DpO) 

and thus DpO E X’“‘, since Apn(X@‘)) c X’“‘, by 1.1(a). 

2. b = b,, + 1 and b,, E x: Then dom(u + D,,b) = o and (a + D,,b)[n] = a + 

(D,b,) . (n + 1). By induction we get (a + D,b)[n] E X from b,, E X and hence 

u+D,b~x. 

3. dam(b) = T,(p), 21 <p, and b[z] E x for all z E WV,: Then dom(u + D,b) = 

T,(p) and (a + D,b)[z] = a + D,b[z] E X for all z E W,,. Hence a + D,b E X. 

4. dam(b) = o and b[n] EX: Similar to 3. 0 
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1.4. Lemma. For each a E T(p), 

(a) a E G(P) 3 u E WOE, 
(b) &z(X) G X 3 a E X. 

Proof. By simultaneous metainduction on the length of a. 

1. a = 0: Clear. 

2. a = (U”, . . . , uk) (k > 0): By using 1.1 and IH (Induction Hypothesis) we get 

(a) and (b). 

3. a = D,b: By 1.2(c) and IH we have b E W,*. 

(a) Assume a E T,(p), i.e., u =O. By b E W,* and O<p we get a E w,,,. 

(b) Assume Apn(X) s X. 

Case 1. 1.4 #p: By 1.2(a), a E W,, GX. 

Case 2. u=p: Then by 1.3 and IH we have bez. By OEX we get 

u=O+D,bEX. 0 

Lemma 1.4(a) yields Theorem A for Y = p. 

Using 1.2(c) and 1.4(b), we get a E W,* for each a E T(p). Now we work 

outside GID,. Then since GID, is sound, we have: 

1.5. Lemma. Vu <p (T,(p) = W,,). 

For each n E w, let <,, denote the following relation over T(p): 

b xn a :e a # 0 & (dam(a) E {{0}, w} + b = a[n]) 

& (dam(u) E {T,(p): 1.4 <p} + 3z E dam(u) (b = a[~])). 

Let X, denote the accessible part of <,: 

X,=n{XsT(p):Vu(Vb<,u(bEX) j UEX)}. 

Then by 1.5 we have AP,(X,) G X, and hence X, = T(p). Therefore 

1.6. Lemma. The relation <,, is well founded for all n E o. 

In what follows transfinite induction over T(p) or on a E T(p) means a 

transfinite induction with respect to <,, for an IZ. 

Definition of c <ck a by tramfinite induction on a E T(p) 

~<<~a :G u#O&Vz~d~(u)(c((,u[z]) 

where 

and 

d’(u)‘= (ikke: 0 Z e E T(p)}, 

if dam(u) E {{0}, o}, 

if dam(u) = T,(p), 

C((kU :e c<<~u or c =a. 
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Definition of the function G, : T,(p) + o by transjinite induction over 7;,(p) 

(Gl) G,(O) = 0. 

(G2) Gk(a + 1) = G,(a) + 1. 

(G3) G,(a) = Gk(a[k]) if dam(a) = o. 

Definition of Dia for u up, n E o and a E T(p) 

Dia :=a, Di+‘a : = D, Dia. 

The following lemma is proved by transfinite induction over T(p) (cf. 3.1, 3.2, 

3.5 and 3.7 in [3]): 

1.7. Lemma. (a) a f 0 * 1 Sk a. 
(b) c <<k a &a <<k b + c <<k b. 

(c) c <<k b + a + c <& a + b. 
(d) b # 0 + a <<k a + b. 
(e) a <<k b + D,a <Q Dub. 

(f) c <% a + Gk(c) s G,(a) for c, a E 7;,(p). 

(g) dam(a) = UP) & u c II & 1 d k + (Dua)[l] <<k D,a. 
(h) DUa + 1 <<k D,(a + 1) for k 2 1. 

(i) (DFa) - (k + 1) <<k DF(a + 1) for m > 0. 
(j) (DfO) . (k + 1) <<k Dr”O. 

Definition of a+: b for a, b E T(p) and k, n E w 

a--+f:b :e 3a0, . . . , a,[a=a,,&b=a,&Vi<n(a,+l~~a,+,)]. 

Clearly G,(a) = max{n E CL): 0+-E a}. 

1.8. Lemma. (a) a +,” b + D,a+,” Dub. 
(b) O+&kj DPO with g,(k) = (k + 1)p. 

(c) O-+f:a + O+rk+,)p+m D,a. 

(4 0%~~ ; D 0 with f,(k, 0) = 0, f,(k, 1 + 1) = (k + l)“+f,ck.‘). 

Proof. (b) O-+: D,O and (DUO) * (k + 1) <$ D,l <<k D,+,O for u <p. Hence by 

induction on u sp we get the assertion. 

(c) By induction on n. The case n = 0 follows from (b). The induction step is 

seen easily. 

(d) By induction on 1 using (b) and (c). 0 
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2. The infinitary system GID,” 

Let L denote the first order language consisting of the following symbols: 

(i) logical constants 1, h, v, V 3. 

(ii) number variables (indicated by x, y). 

(iii) a constant 0 (zero) and a unary function symbol ’ (successor). 

(iv) constants for primitive recursive predicates (among them the symbol < for 

the arithmetic ‘less than’ relation). 

By s, t, . . . we denote arbitrary L-terms. The constant terms 0, 0’, 0”, . . . are 

called numerals; we identify numerals and natural numbers and denote them by 

k, m, n. A formula of the shape Rt, . . . t,, or TRt, . . . t, with an n-ary predicate 

symbol R of L, is called an arithmetic prime formula (abbreviated by a.p.f.). 

Let X be a unary and Y a binary predicate variable. A positive operator form is 

a formula 3(X, Y, y, x) of L(X, Y) in which only X, Y, y, x occur free and all 

occurrences of X are positive. The language LID is obtained from L by adding a 

binary predicate constant P?” and a 3-ary predicate constant P’: for each positive 

operator form ?I. 

Abbreviations 

t E pp’ : E p;‘t : s p”‘st, t $ Py’ :=1(t E Pj’), P%,stot, :-P&t,, 

&(X, x) := S(X, Pz!,, s, x), P; c F:-Vx (x E Py+ F(x)), 

S,(F) G F:=Vx (a,(F, x)-+ F(x)) for each formula F(x). 

The formal theory GID, is an extension of Peano Arithmetic, formulated in the 

language LID, by the following axioms; 

(P”. 1) Vy <p - 1 (!?I,(P;) c P:‘). 

(P”.2) Vy <p - 1 (a,,(F) c F* P: E F) for every L,,-formula F(x). 
(PZ) vy <p - 1 VX~,VX, (P$,,x, c)X{,<Y AX, E p;;,>. 

PA formulated in LID means that GID, has the following scheme of complete 

induction; 

(CI) F(0) A Vx (F(x)+ F(x’))+ Vx F(x), for every L,,-formula F(x). 

The infinitary system GID,” will be formulated in the language L,,(N) which 

arises from LID by adding a new unary predicate constant N. We assume all 

formulas to be in negation normal form, i.e., the formulas are built up from 

atomic and negated atomic formulas by means of A, v , V, 3. If A is a complex 

formula we consider 1A as a notation for the corresponding negation normal 

form. 
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Definition of the length IAl of an L,,(N)-formula A 

1. IAl := IiA( := 0, if A is an a.p.f. or a formula of the form Nt, P”‘st. 

2. IP:stotll := IlP;st&( := 1. 

3. IA$BI:=~~~{IAI,IBI}+~~~~$E{A, v}. 

4. IQxAl:=IAl+lforQ~{V,3}. 

Clearly IlAI = IAl, for each L,,(N)-formula A. 

Inductive definition of formula sets Pos, (u <p) 

1. All a.p.f.‘s belong to Pos,. 

2. Nt E Pos,. 

3. 1Nt E Pos, e 0 < u, i.e., u # 0. 

4. P:t, (l)PY&t, E Pos, e n + 1 S u. 

5. lP:t E Pos, e n + 1 <u. 

6. A$BEPos, #AA,BEPos,, $E{A, v}. 

7. QxA E Pos, e A E Pas,, Q E {V, 3). 

Remark. If a term s contains a variable, then formulas (l)Pz’t, (l)P!&,t, do not 

belong to Pos,. 

Notations. (1) In the following A, B, C always denote closed L,,(N)-formulas. 

(2) rand A denote finite sets of closed Lib(N)-formulas, we write r, A, A for 

rlJAU{A}. 

(3) AN denotes the results of restricting all quantifiers in A to N. 

(4) t e N:=Nt, t 4 N:=lNt. 

Basic inference rules 

(A) Ao, Al FAo A A,. 

ii’) 

Ai !-A(, v A, (i = 0, 1). 

(A(n)),,, 1 Vx A(x). 

(3) A(n) 1% A(x). 
(P:) Pyt 1 P:,jt, if j <n. 

(iPY!) iP:t t- iP!$t, if j < n. 

(N) n=Ov(n=m’r\Nm)bNn. 
(P”) t E N A %;(P:‘, t) t p;t. 

Every instance (A;);,, t A of these rules is called a basic inference. If (Ai)i,, t A 

is a basic inference with A E Pos, (u <p), then Ai E Pos, for all i E I. We divide 

the basic inferences into three kinds: Every instance of rules (A), (V), (P:) is 

said to be of kind 1. Every instance of rules (v ), (I), (lP$) is said to be of kind 

2. Every instance of rules (N), (P”‘) 1s said to be of kind 3. Next we define a 

derivability relation k t”, r for GID,Z by an iterated inductive definition. 
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Inductive definition of k tk I- (a E T(p) and k, m E w) 

(Axl) k 1: c A if A is a true a.p.f. or A -lP!& jt with n “j. 

(Ax2) k k”, r, 1A, A if A E Nn or A = PFt. 
(Basl) If (AI)IEIIA is a basic inference of kind 1 with A E r and Vi E I 

(k t-“, I’, AJ, then k t”, lY 

(Bas2,3) If (Ai),,, FA is a basic inference of kind 2 or of kind 3 with A E r and 

Vi E I (k tz r, Ai), then k I-$” lY 

(Cut) kl”,I’, lCandkt”,r, Cand /Cl<m 3 kl;+‘+‘f. 

(QU+,) If Rt is an atomic formula of the shape Nt or PFt, and the following four 

conditions hold, then k k”, f. 

(1) dam(a) = T,(P). 
(2) kF$‘] I-, Rt. 

(3) Vz E rL(p) VA c Pas, (k 1; A, Rt j k + A, I-). 
(4) Rt E Pas,. 

(6c) ktkrand b<cka 3 kt”,f. 

2.1. Lemma (Inversion). Let (Ai)i,, t A be a basic inference of kind 1. Then 
k tf r, A implies Vi E I (k t$ r, Ai). 

Proof. By transfinite induction on k FL r, A. Precisely speaking, if k t; r, A 

holds in a stage of inductive definition of the derivability relation, then k t; r, Ai 
holds in the same or a previous stage for all i. cl 

2.2. Lemma (Reduction). Suppose k tz &,, 1C and ICI 6 m, where C is a 
formula of the shape A v B or 3xA or TP’$,,jt or lP:t or Nn or a false a.p.f. 
Then k Fk r, C implies k I-;+:” i;,, K 

Proof. By transfinite induction on k t-i r, C using 2.1, Proposition 1 and 1.7 in 

Section 1. If k t-i r, C holds by (Axl) and C=lP$,jt with n <j, then use the 

following proposition. Cf. Lemma 4.4 in [3] for other cases. 0 

Proposition. k t: G,, P;,jt & n 5 j + k tz G. 

2.3. Theorem (Cut elimination). k t-“,+] r + k l-2 ffor k z 1. 

Proof. By transfinite induction on k FL+! r using 1.7 and 2.2. Cf. Theorem 4.5 

in [3]. c3 

2.4. Lemma. kF;jn$N, randO+~band2n+2Gm j klh’“JY 

Proof. This follows from the fact; 

k/-finEN ifO*~band2n+2~m. Cl 
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2.5. Theorem (Collapsing). (a) k tg r & r E Pos, j k I? r for k B 1. 

(b) k t-t I- & a E T,(p) 3 k IF’“’ I- for k a 1. 

Proof. By transfinite induction on k 1: I-. Cf. Theorem 4.6 in [3] and 1.7(g). •i 

Definition. For r = {A,, . . . , A,} E Pas,, we define: kr(j) :=A, v . . . v A,z is 

true in the standard model when N is interpreted as {i E w: i <j}. 

2.6. Lemma (Truth). k t& r & r 2 Pas, & j E o j kr(j). 

Proof. This follows from the fact: 

kn=Ov(n=m’r\Nm)(j) j kNn(j+l). 0 

In the remainder of this section we show that GID, can be embedded into 

GID;. 

2.7. Lemma. (a) 0 +;a&kk;fT+ kktr. 

(b) kIf;I-, A v B 3 kt; I’, A, B. 
(c) k t; r, A & A is a false a.p.f. + k t; I’. 
(d) k k:: I-, A v B =+ k b: r. 
Furthermore, in each case except (a), if k kt A holds under the condition, then 

k Ef; A’ holds in the same or a previous stage of the inductive definition of the 
derivability relation. 

Definition. ti : = DFO. 

2.8. Lemma. For any k 3 1, k bC{ lA, A where 1 := IAl. 

Proof. By induction on the length of A we see that k I:,lA, A if 1= IAl. By 

1.8(d), 0-F 7. Hence the assertion follows from 2.7(a). 0 

Definition. In the following proposition and lemma we will use the following 

notations: R denotes a ‘predicate constant’ of the form N or Pz. F(x) denotes a 

formula with a variable x. For A E Pos, (U <p) let A* denote the result of 

replacing all occurrences of R in A by F(.). {A,, . . . , A,}* := {AT, . . . , AZ}. 
Further let 0 denote the following set: 

{-lF(O), +x EN (F(x)- F(x’))}, if R = N, 

{+x E N (BI,N(F, x)-F(x))}, if R E pzl’ 

Proposition. A U A,, 5 Poq,, TRt $ Pos,, z E T,(p), ktt,A, A,, and I = IFI j 
k l-C{+’ A, 0, AZ for k 2 1. 
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Proof. By transfmite induction on k kh A, do. 

1. If k t-6 A, A, holds by (AXE), then also k $+’ A, 0, A,* by (AXE), since 
1Z?tqAUA,. 

2. Suppose z = w + 1, Nm E do, R = N and k t-t A, do, m = 0 v (m = j’ A Nj). 
Then F(m) E A,*. By 2.8 

(1) k t-iiF( F(m). 

2.1. m = 0: Then by (1) and F(0) E 0 we get the assertion. 
2.2. m # 0 &m Zj + 1: Then by 2.7(b),(c) and 2.1, we have k !-;A, do. By IH 

we get the assertion. 
2.3. m = j + 1; Then again by 2.7(b),(c) and 2.1, we have k kg A, do, Nj. By 

IH we have 

(2) k $‘” A, 0, A,*, Nj and (3) k @’ A, 0, AR, F(j). 

BY (l), (2), (3) using (A) and (3) we get the assertion. 
3. Other cases can be treated as in [3]. 0 

From this proposition and (52,+,) we get: 

2.9. Lemma. IfI=]F]andu=OifR=N, u=n+ltfR=P,,, then 

kk’+D*+‘OO,lRt,F(t) foranykSl,andn<p-1. 0 

2.10. Lemma. For each universal closure A of an axiom of the theory GID, there 
exists an n E w such that k t-If AN for any k 2 1. 

Proof. This follows from 1.7 and 2.9. 0 

2.11. Theorem. If a sentence A is provable in GID,, then there exists an n E o 
such that k !-zAN for any k 2 1. 

Proof. This follows from 1.7 and 2.10. (Cf. Theorem 4.14 in [3].) 0 

Proof of Theorem B. Assume GID, ~V_X 3y $(x, y) ($ E 1:‘). By 2.11 and 2.3 
(also by 2.1 and 2.7(b)), there exists an n, such that 

k tgl n $ N, 3y EN qN(n, y) for all n and all k 2 1. 

W.l.0.g. we can assume n, 2 2. 
(a) Put no:=n, + 1 and k:=l. If 3 CnoSn, then 2n +2~f,(l, n - 1). Hence 

by 1.8(d) and 2.4 we have 

1t23yEN@N(n,y) witha,=&‘O+D;‘O. 
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By 1.7, we have Doa, <<, DOD;0 and hence by 2.5 and 2.6 we conclude 

LAY e N @‘(n, y)(G(&D;O)), 

and by persistency of 2: formulas we get the assertion. 

(b) Put 110 :=n, + 1 and k:=n >O. If n #O, then 2n +2<fp(n, 2)<f,(n, n,). 

Therefore by 1.8(d) and 2.4 we have 

n t-: 3y E N QN(n, y) with a = Di’O. 2. 

By 1.7, D,,a <<,, DOD;‘0 and hence by 2.5 and 2.6 we conclude that 

b3y E N GN(n, y)(G(D&‘Q)). 

(c) By definition (D,,D,,+, O)[n]:= D,,Dzl. Thus this follows from (b) and 

1.7. cl 

Remark. As in [3; 3.3, 3.4 and 3.61, we can show that, for any a E T;,(p), the 

function AnG,(a) is weakly monotonic, i.e.. G,(a)< G,+,(a). From this and 

Theorem B(a), Theorem B(c) follows. 

Part II. The case v = Q 

In this part we prove Theorems A and B for the case v = Q. The proof is 

obtained by a slight modification and extension of that for the case Y = p < w, 

p # 0. We will give only necessary changes. 

3. The term structures (T(G), -[-I,),,, 

Inductive definition of the sets T,,(Q), PT(Q) and T(Q) 

(TO) G(Q)UPT(Q)s T(Q). 
(Tl) 1. If a E T(Q) and u E 7;,(Q) U {Q}, then D,a E PT(Q) (a:= D,O). 

2. If a E T(Q), then D,,a E T,,(Q) fl PT(Q). 
(T2) 1. If a,,, . . . , ak E PT(Q) (k > 0), then (a,,, . . . , ak) E T(Q). 

2. If a,,, . . . , ak E 7;,(Q) rl PT(Q) (k > 0), then (a,,, . . , ak) E 7;,(Q). 

The letters a, b, c, z now always denote elements of T(Q), and u, V, w denote 

elements of T;,(Q) U { 52). 
Now we define, for each n E w, four partial recursive functions; 

1. G,:T,(sz)u{Q}-+w+l, 2. Tn : (T,(Q) u {sz)) x T(Q)+ (0, 11, 

3. dom, : T(Q)+ (0, {n}} U I;,(Q), 4. j-In: T(Q) x T(Q)+ T(Q). 
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Convention. These functions except .[.ln turn out to be total. So 

1. a E T,(Q) :e Tn(u, a) = 0. (Even if u = 0, this is consistent. See Proposition 

3(a) below.) 

2. If dam,(a) = u for some u E 7;,(Q), then we write 

b E dam,(a) :e b E T,(Q) and dam,(a) = T,(Q) :e dam,(a) = U. 

Strictly speaking, the ‘set’ TU(Q) depends on the subscript II. 

Definition of G,,, T,(Q), dom, and *[*I,, 

(Gl) G,(O) = 0. 

(G2) G,(u + 1) = G,(u) + 1. 

(G3) G,,(u) L- G,(u[n],) if u $ (0, Q} U {I-J + 1: v E T,(Q)}. 

(G4) Gn(Q) = o. 

(T,) Let a = (D,,,u,,, . . . , Dukuk) (k 2 -1). 

1. a E T,(Q) :a Fn((u, a) = 0 :e G,,(u,,) c G,(U) &. . . & Gn(u,J s G,(U). 

2. a $ T,(Q) :G T,Ju, a) = 1 :e G,(u,,) > G,(u) v . . . v Gn(u,J > G,(u). 

3. Fn((u, a) is undefined :G one of G,(u), G,,(uo), . . . , G,,(u,) is 

undefined. 

([ 11) dam,(O) -0; O[z], is always undefined. 

([ 12) dam,(l) = {n}; l[zln = c @ z = n & c = 0. 

([ 13) dom,(D,+,O) -L T,(Q); (DU+lO)[z], =c e z E T,(Q) &z = c. 

([ 14) domAD,O) = d am,(u) if u 4 (0) U {V + 1: u E T’(Q)}; (D,O)[z], = D,,,,“O. 

([ 15) Let a = D,,b with b f 0. 
5.1. If b = bo+ 1, then dam,(u) = {n} and 

u[z],=~~z=n&(D,b~J~(n+1)=~. 

5.2. If dam,(b) = {n} and b 4 {bO + 1: b,, E T(Q)}, then dam,(u) = {n} 

and a[~], = D,,b[z],. 
5.3. If dam,(b)= T,(Q) with G,(u)<G,(v), then dam,(u) = T,(Q) and 

4~1, = W[zln. 
5.4. If dam,(b)- T,(Q) with G,(v) s G,(u), then dam,(u)= {n} and 

a[~],, = c e z = n & 3b,,, . . . , b, Vm <n (b,, = 1 & b,+l = D,b[b,], & 

Q,b[b,ln = c). 
5.5. If dam,(b) is undefined or dam,(b) = T,(Q) but either G,(U) or 

G,(V) is undefined, then dam,(u) and a[~],, are undefined. 

([ 16) Let a = (a,,, . . . , uk) with k > 0. dam,(u) = dom,(u,); 

u[z], = (a,,, . . . , G-l) + +Jzln. 

Convention. O[n], : = 0. 

Remark. The definition of a[~],, is similar to that in Part I and the fundamental 

sequences given in [4]. The only essential difference lies in ([ ]5), 5.3 and 5.4, 

i.e., in which case we apply 5.3 or 5.4. In [4], the decision is made by comparing 

u and v with respect to the relation < given in [2]. Here we consider u to be 
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smaller than u with respect to II when G,(u) <G,(V). It seems that this view is 

consistent with the idea of the slow growing functions. The price to pay is that we 

lose the proposition in the corresponding Remark in Part I and also the weak 

monotonicity of the function AnG,(a). The author does not know whether these 

hold for this case. 

Dejinition. Let t be an expression of the form G,(u), dam,(a) or a[~],,. Then we 

set: tl : G t is defined. 

Proposition 3. (a) G,(u) = 0 3 u = 0. Hence a E T,,(Q) e Y,,,(O, a) = 0. 

(b) G,(u)J & u f D 3 G,(U) < 0. 

(c) u E T,(Q) 8~ dom,(u)~ 3 dom,(u) E (0, in>>. 

(d) dom,(a)J + vz E dom,(u)(u[zl,i). 
(e) u[z],,J GJ dom,(u)J & 2 E dam,(u). 
(f) u E T,(Q) 82 21 f St & dom,,(u)~ 3 tfz E dom,(u)(u[~1, E T,(Q)). 

(g) u E ?;,(a) & dom,(a) = T,(Q) + G,(u) < G,(n). 

(h) dom,(u + b) = d omn(b) and (a + b)[z], = a + b[zln if b f 0. 

Definition. For a E 7;,(Q) and n, m E w, we set: 

u[n]“:=u; u[n]“+’ := (u[n]m)[n], (cf. Proposition 3(c)). 

As in the Introduction GIDn will denote the theory ID,. In what follows we 

will work in GIDQ. Let n be a fixed natural number. 

Let U, denote the following set: 

il, := {u E 7;,(Q): 3m (u[n]” -0)). 

Clearly we have: u E U,, + Gn(u)]. 

Iterated inductive definition of sets W,, c Tu( 52) (u E U,,) 

(Wl) 0 E w,,. 

(W2) a E T,(Q), dam,(u) = {n}, a[n], E K,, 3 a E K,. 

(W3) u E T,(Q), 3v E U,(G,(v) < G,(u) & dam,(a) = IT;,(Q) & V.Z E W,, (a[~], E 

w,,)) + a E w,,. 

Remark. It seems that this does not fit with an w-times iterated inductive 

definition at first sight. Formally W,, is defined by 

W,,:= {a E T(Q): ( a, u, n) E ‘B,} where k:= G,,(u), 

‘ru,:=~{Y~T(Q)xT,(Q) X 0: Vu, u, n (%,(Y, a, u, n)+ (a, u, n) E Y)}, 

‘$?l,(Y, a, u, n):=u E U,, &G,(u) = k & Fn(u, a) =O& (a =0 

or {dam,(u) = {n} & (u[n],, u, n) E Y} 

or 3v E U, 3m -C k {G,(v) = m &dom,(u) = T,(Q) 

& V.2 ((2, v, n) E $BLu, + (a[z],, 4 n> E ?&)>). 

(The remark follows the reviewer’s suggestion.) 
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Proposition 4. (a) a e Won e 3m (u[nlm -0) for a E 17;,(Q), i.e., Won = U,. 

(b) v, u E U,, C% G,(v) < G,(u) + %, E K,. 

Abbreviations. Let X range over subsets of T(Q) which are definable in the 

language of GIDQ. 

I. BY &4X, a) (u E un U {Q>) we denote the following statement: 

a E T,(Q) & {a = 0 v (d am,(u) = {n} & u[n], E X) v 3x1 E U, (G,(V) < G,(u) 

&dom,(u) = T,(Q) & Vz E W,, (a[~],, e X))}. 

2. A,,(X) := {x E T(Q): A&X, x)}. 

3. Jr’“‘:= {y E T(Q): a +y EX}. 

4. x:={yET(Q):v.xrXnTn(Q)(x+D,yEX)}. 

5. w,*:={XET(Q):VuEU,(D,xEW,,)}. 

Note that, in 4, we can not assume T’(Q) = T(Q) until Theorem A is proved. 

By the definition of W,,, for all u E Un we have: 

(Al) AmOKJ = w,n, 
(A9 A,,(X) c X +’ w,, G .Y. 

As in Part I we have the folowing lemma. 

3.1. Lemma. (a) A,,(X) c X Lk a E X n T,(Q) + A,,(X’“‘) G X’“’ (u E u, u 

{Q)). 
(b) a, b E W,, j u + b E Wu,,(u E U,). 

3.2. Lemma. (a) A,(X) G X 4~ U {W,, : u E U,,> E X. 
(b) 0 E W;. 

(c) A,(W,*) z Wit. 

Proof. (a) and (c) are proved exactly as in 1.2. 

(b) We have to show Vu t U,, (D,,O E W,,). As in 1.2, we have 

(1) 1 E W” and (2) 3v E U,, (u = TV + 1) + D,O E W,,. 

If u E U,, and u I$ (0) U {v + 1: u E U,,}, then dom,(D,O) = {n}; (DUO)[n], = 

D ,++O and W+]..,, c W,,- Hence 

(3) u E U,, u $ (0) u {v + I: u e K>, D,,,,nO l W,l,l,., 3 DUO e K,. 

By induction on u E U,, we get the assertion. 0 
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3.3. Lemma. A,(X) c X j A,(X) c T?. 

Proof. Assume A&X) s X, A&J?, b) and a E X fl TQ(Q). We have to show 
a + DQb E X. Except the case b = 0, the same proof as in 1.3 works. 

So it suffices to show a + DQO E X. By 3.1(a) and 3.2(a) we have IJ { WU,: u E 
U,} c XC”) . dom,(D,O) = T,(Q) and (DnO)[z], = D,O for z E T,(Q). By 3.2(b) we 
have Vz E W, (DzO E W,, E XC”‘). Hence A,(X’“‘, DaO) and thus Da0 E X’“‘, 

since A,(X’“‘) G X’“’ by 3 l(a) . . 

3.4. Lemma. For each a E T(Q), 

(a) a E G(Q) 3 a E W,,. 
(b) A,(X)sX 3 aeX. 

Proof. Again by simultaneus metainduction on the length of a. Assume a = Dub. 
By 3.2(c) and IH we have b E W,*. Assume A,(X) G X and u # Q. Then 
u E T,(B) and by IH, u E W,, = U,,. Hence by 3.2(a), a E W,, E X. Other cases 
are seen as in 1.4. 0 

Lemma 3.4(a) yields Theorem A. 
Now we work outside GIDo. By the soundness of the theory GIDn we have 

the following lemma. 

3.5. Lemma. (a) 1;,(Q) = W0,. 

(b) vu E G(Q) (T,(Q) = w,n)- 
(c) Vn E w {VU E T,(Q) (G”(u)J) 8~ Vu E T(Q) (dow(a)A 

Let <,, denote the following relation over T(Q): 

b -=c~ a : e 3z e dam,(a) (b = a[~],). 

Then we see that the relation -c” is well founded for all n E w. 

Definition of c <ck a by transjinite induction on a E T(Q) 

~<<~a :e a#O&Vz~d~(a)(c(<,a[z],) 
where 

{k], 
dk(u):={ (DUe:Of 

if dam,(a) = {k}, 

e E T(Q)}, if dam,(a) = T,(Q). 

and 
cCC,a :a c<Cka or c=a. 

For u E 17;,(Q) U {a}, a E T(S), b E T(Q) and n, k E w, D”,a E T(Q) and a+f: b 
are defined as in Part I. Then 1.7 holds also in this case. 
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3.6. Lemma. (a) domk(a) = T,(Q) & Gk(u) c Gk(v) & 1 c k + (&a)[11 << k&a. 
(b) n + 1 < G,(z) (z E T,(Q)) + 3~ (n + 1 = G,(U) & u + 1 Sk z). 

(c) a, z E T,(G) & a <<k z + D,O <<k D,O. 

(d) O%k) Da0 with g(k) = (k + l)k+‘. 

(e) 0-f: a j O+=&+i)k+~+~ Dna. 

(f) 0 +h,l) D’&O with f,(k, 0) = 0, f&k, I + 1) = (k + l)k+l+fa(k,‘). 

(is) 0-4&4 DUO with h(k, u) = (k + l)Gk’“‘. 

Proof. Cf. 1.8. 0 

4. The infinitary system CID”, 

The theory GIDn is an extension of PA by the following axioms; 

(P? 1) Vy (‘u,(P;) L PZ). 

(P’l.2) Vy @l,(F) E F+ PT E F) for every Lib-formula F(x). 

(P?) vyvxovxl(P~_x”xpxo<y AX*E PX). 

Again GID”, is formulated in the language L,,(N). The length of a formula, 

basic inference rules, the set Pas,/, of formulas and the derivability relation k I-“, I’ 

for CID”, are defined mutatis mutandis. 

Inductive definition of formula set PosUk (U E T,(G)) 

1. All a.p.f.3 belong to PosUk. 

2. Nt E PosUk. 

3. Nt E PosUk e O< Gk(u), i.e., u #O. 

4. P:t, (l)P:nt,t, E PosUk @ n + 1~ G/(U). 

5. lP;t E PosUk e n + 1 < G,(U). 

6. A$BEPos,~ eAA,BePosUk, $E{A, v}. 

7. QxA E Pas,/, @ A E PosUkr Q E {V, 3). 

The rule (L&+,) is defined as follows: 

(L$+,) If Rt is an atomic formula of the form Nt or Pz’t, and the following four 

conditions hold, then k I”, lY 

(1) dam,(a) = T,(G). 

(2) k km O”‘* r, Rt. 

(3) Vz E T,(Q) VA G PosUk (k bf, A, Rt + k ti=‘” A, I-). 

(4) Rt E Pas,,. 

Then 2.1-2.8 hold with ii := D”&. 2.9 now runs as follows. 
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4.1. Lemma. Zf I = IFI and Gk(u) = 0, if R = N and Gk(u) = n + 1, if R = Pi’, 

then k l-cDU+lo 0, TRt, F(t) for any k 2 1. (0 denotes the set defined in the 

definition after 2.8.) 

4.2. Lemma. Zf z E T,(Q), A E Posok, k kt A, Nn and G,(z) <n + 1, then k tt, A. 

Proof. By transfinite induction on k 16 A, Nn. 
1. Supposez=w+landkFrA, Nn, n=Ov(n=m’r\Nm). ByIHwehave 

kE,“A, n=Ov(n=m’~Nm). 
1.1. n = 0: Then Gk(w) + 1 = Gk(z) < 1 and hence w = 0. By 2.7(d) we have 

k 1; A. 
1.2. n#Oandn#m+l: By2.7(b),(c)and2.1,wehavekt,“A. 

1.3. n =m + 1: Again by 2.7(b),(c) and 2.1, we have k 1; A, Nm and 

Gk(w) 6 m + 1. Hence IH (since k 1: A, Nm holds in a previous stage of the 

derivability relation) we get k 1; A. 

2. Other cases are easy. 0 

4.3. Lemma. Put r:= {l@,(F) c F)N, n C$ N, t $ PE, F(t)} and I:= IFI. Then, 

foruny ksl, 

k,kDnoI’. 

Proof. Put u : = i + DnO. Then 

(1) dam,(a) = T,(Q), (2) k Il;“lk r, Nn and (4) Nn E Pas,,. 

Also a[~]~ = I+ D,O for z E T,(Q). By (Q,) it remains to show 

(3) Vz E T,,(Q) VA c Posok (k ‘1-6 A, Nn j k t$‘]* A, r). 

Assume that z E F;,(Q), A E Posok and k 16 A, Nn. 
1. G,(z) dn + 1: Then by 4.2, k Ef, A. By 2.5(b), 2.7(a) and 3.6(g) we have 

k tDzo A and hence k tuLZ1* A r 
29 n + l< Gk(z): Tien by 3:6(b), n + 1 = Gk(u) and u + 1 C& z for some CL By 

4.1 we have k I$U+llk I7 By 3.6(c), D,, ,O gk D,O and hence k t$‘lk K 0 

We have D,Osk Dk+,O <ck D,O <<k D,O. Thus by 4.1 and 4.3 we get: 

4.4. Lemma. For each universal closure A of an axiom of the theory GIDn there 
exists an n E o such that k kx AN for any k 2 1. 

4.5. Lemma. If a sentence A is provable in GIDQ, then there exists an n E w such 
thutkt,:‘ANforunyk>l. 

Proof of Theorem B. Assume GIDn t Vx 3y $(x, y) (@ E 2:‘). By 4.5 there exists 

an n1 such that k 1:’ n $ N, 3y E N $N(~, y) for all n and all k a 1. Assume n, 2 2. 
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(a) Put n,,:=ni+l and k:=l. If 3<n0 s n, then 2n + 2 <fn(l, n - 1). From 
this and 3.6(f), we see that the theorem is true. 

(b) Put no.- .-n, + 1 and k:=n >O. If n #O, then 2n +2~f,(n, 2)~f,(n, ni). 
From this and 3.6(f) we see that the theorem is true. 

(c) By definition (DODR+l O)[n], := Do&l. (c) follows from (b). 0 
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