A slow growing analogue to Buchholz' proof*

Toshiyasu Arai
Department of Mathematics, Nagoya University, Nagoya, 464-01 Japan
Communicated by D. van Dalen
Received 19 November 1989
Revised 30 October 1990

Abstract
Arai, T., A slow growing analogue to Buchholz' proof, Annals of Pure and Applied Logic 54 (1991) 101-120.

In this journal, W. Buchholz gave an elegant proof of a characterization theorem for provably total recursive functions in the theory ID_{v} for the ν-times iterated inductive definitions $(0 \leqslant v \leqslant \omega)$. He characterizes the classes of functions by Hardy functions. In this note we will show that a slow growing analogue to the theorem can be obtained by a slight modification of Buchholz' proof.

In [3], W. Buchholz gave, among other things, an elegant proof of a boundedness theorem for provably total recursive functions in the theory ID_{v} for the v-times iterated inductive definitions $(0 \leqslant v \leqslant \omega)$:

Theorem (Buchholz [3], cf. also Buchholz and Wainer [5]). Every provably total recursive function in ID_{v} is dominated by a Hardy function $\lambda n H_{a}(1)$ with $a=D_{0} D_{v}^{n} 0$.

In this note, we will show that a slow growing version of the theorem can be obtained by a slight modification of Buchholz's proof: we regard the set ω of natural numbers (or formally the corresponding predicate constant N) as inductively generated. Then for a finite v, ID_{v} is interpretable into ID_{v+1} minus the scheme of complete induction. Also ID_{ω} is interpretable into $\mathrm{ID}_{<+}$minus complete induction, where $\mathrm{ID}_{<*}$ denotes a theory in which inductive definitions are permissible along the accessible part \mathbb{N} of the arithmetic 'less than' relation $<$. For these theories proof theory is well developed in [1] and [3] by Buchholz.

[^0]0168-0072/91/\$03.50 (C) 1991 — Elsevier Science Publishers B.V. (North-Holland)

Hence it is easy to show our theorem. Let GID_{v} denote the theory ID_{p-1} if v is a positive integer p and the theory ID_{ω} if $v=\Omega$. Then our theorem runs as follows:

Theorem A. $\operatorname{GID}_{v} \vdash \forall n \exists m\left(a[n]^{m}=0\right)$ for each $a \in T_{0}(v)$.
$\left(a[n]^{m}:=a[n][n] \cdots[n]\right.$ with $m[n]$'s.)
Theorem B. Assume a Π_{2}^{0}-sentence $\forall x \exists y \phi(x, y)\left(\phi \in \Sigma_{1}^{0}\right)$ is provable in GID_{v}. Then
(a) $\exists n_{0} \forall n \geqslant n_{0} \exists m<G_{1}\left(D_{0} D_{r}^{n} 0\right) \phi(n, m)$,
(b) $\exists n_{0} \forall n>0 \exists m<G_{n}\left(D_{0} D_{v}^{n_{0}} 0\right) \phi(n, m)$,
(c) $\exists n_{0} \forall n \geqslant n_{0} \exists m<G_{n}\left(D_{0} D_{v+1} 0\right) \phi(n, m)$.

Thus every provably total recursive function in GID $_{v}$ is dominated by a function $\lambda n G_{n}\left(D_{0} D_{v}^{m} 0\right)$ for some $m \in \omega$ and by the function $\lambda n G_{n}\left(D_{0} D_{v+1} 0\right)$. Also every provably total recursive function in $\mathrm{ID}_{<\omega}$ is dominated by the function $\lambda n G_{n}\left(D_{0} D_{\omega} 0\right)$. Theorems A and B yield a precise characterization of the provably total recursive functions of GID_{v} in terms of the slow growing hierarchy.

Corollary 1. A recursive function f is provably total recursive in GID_{ν} if, and only if, it is primitive recursive in $\lambda n G_{n}\left(D_{0} D_{v}^{m} 0\right)$ for some $m \in \omega$.

Corollary 2. (a) $\psi_{0} \Omega_{v+1}=\min \left\{\alpha \in \mathrm{OT}(\Omega)\right.$: $\left.\mathrm{GID}_{v} \nVdash \forall n \exists m \alpha[n]^{m}=0\right\}$,
(b) $\psi_{0} \Omega_{\omega}=\min \left\{\alpha \in \mathrm{OT}(\Omega)\right.$: $\left.\mathrm{ID}_{<\omega} \nVdash \forall n \exists m \alpha[m]^{m}=0\right\}$,
where $\mathrm{OT}(\Omega)$ denotes the set of ordinal terms defined in [3], [4] and $\psi_{0} \Omega_{v+1}$, $\psi_{0} \Omega_{\omega}$ are ordinals also defined in [3], [4]. (The definition of the fundamental sequence $\{\alpha[n]\}_{n \in \omega}$ for a countable ordinal α in [4] differs from ours for $\alpha>\psi_{0} \Omega_{(1)}$. Cf. Remark in Section 3.)

Part I. Finite cases

Throughout this part, p will denote an arbitrary but fixed positive integer.

1. The term structure ($T(p), \cdot[\cdot])$

In this section we will define a term structure $(T(p), \cdot[\cdot]) . T(p)$ denotes a set of finite sequences of the symbols 0 and D.

Inductive definition of the sets $P T(p)$ and $T(p)$
(T0) $P T(p) \subseteq T(p)$.
(T1) $0 \in T(p)$.
(T2) If $a \in T(p)$ and $u \in\{0, \ldots, p\}$, then $D_{u} a \in P T(p)$.
(T3) If $a_{0}, \ldots, a_{k} \in \operatorname{PT}(p)(k>0)$, then $\left(a_{0}, \ldots, a_{k}\right) \in T(p)$.

The letters a, b, c, z now always denote elements of $T(p)$ and u, v, w denote elements of $\{0, \ldots, p\} . a=b$ means that a is identical with b.

For $a_{0}, \ldots, a_{k} \in P T(p)$ and $k \in\{-1,0\}$, we set

$$
\left(a_{0}, \ldots, a_{k}\right):= \begin{cases}0, & \text { if } k=-1 \\ a_{0}, & \text { if } k=0\end{cases}
$$

Definition of $a+b$ and $a \cdot n \in T(p)$ for $a, b \in T(p)$ and $n \in \omega$

$$
\begin{aligned}
& a+0:=0+a:=a \\
& \left(a_{0}, \ldots, a_{k}\right)+\left(b_{0}, \ldots, b_{m}\right):=\left(a_{0}, \ldots, a_{k}, b_{0}, \ldots, b_{m}\right) \quad(k, m \geqslant 0) \\
& a \cdot 0:=0, \quad a \cdot(n+1):=a \cdot n+a
\end{aligned}
$$

Convention. We identify ω with the subset $\{0,1,1+1, \ldots\}$ of $T(p) .\left(1:=D_{0} 0.\right)$
Definition of $T_{u}(p)$ for $u \leqslant p$

$$
T_{u}(p):=\left\{\left(D_{u_{0}} a_{0}, \ldots, D_{u_{k}} a_{k}\right): k \geqslant-1, a_{0}, \ldots, a_{k} \in T(p), u_{0}, \ldots, u_{k} \leqslant u\right\}
$$

Now we define, for every $a \in T(p)$, a subset $\operatorname{dom}(a)$ of $T(p)$ and a function $z \mapsto a[z]$ from $\operatorname{dom}(a)$ into $T(p)$.

Definition of $\operatorname{dom}(a)$ and $a[z]$ for $a \in T(p)$ and $z \in \operatorname{dom}(a)$
([].0) $\operatorname{dom}(0):=\emptyset$.
([].1) $\operatorname{dom}(1):=\{0\} ; 1[0]:=0$.
([].2) $\operatorname{dom}\left(D_{u+1} 0\right):=T_{u}(p) ;\left(D_{u+1} 0\right)[z]:=z$.
([].3) Let $a=D_{v} b$ with $b \neq 0$.
3.1. If $b=b_{0}+1$, then $\operatorname{dom}(a):=\omega$ and $a[n]:=\left(D_{v} b_{0}\right) \cdot(n+1)$.
3.2. If $\operatorname{dom}(b) \in\{\omega\} \cup\left\{T_{u}(p): u<v\right\}$, then $\operatorname{dom}(a):=\operatorname{dom}(b)$, $a[z]:=D_{v} b[z]$.
3.3. If $\operatorname{dom}(b)=T_{u}(p)$ with $v \leqslant u<p$, then $\operatorname{dom}(a):=\omega$, $a[n]:=D_{v} b\left[b_{n}\right]$, where $b_{0}:=1$ and $b_{m+1}:=D_{u} b\left[b_{m}\right]$.
([].4) Let $a=\left(a_{0}, \ldots, a_{k}\right)$ with $k>0 . \operatorname{dom}(a):=\operatorname{dom}\left(a_{k}\right)$;
$a[z]:=\left(a_{0}, \ldots, a_{k-1}\right)+a_{k}[z]$.
Remark. The definition of $a[z]$ is the same as that given in [3] except 3.3. Also it is a variant of the fundamental sequences in $[4, \S 5]$ when we restrict $a[z]$ to the ordinal terms $a, z \in \mathrm{OT}(p)$ in [2]. Hence, as in [3], [4], we have the following proposition:

Proposition. (a) $c, a \in \mathrm{OT}(p) \& c<a \Rightarrow \exists z \in \operatorname{dom}(a) \cap \mathrm{OT}(p)(c \leqslant a[z])$.
(b) $c, a \in \mathrm{OT}(p) \cap T_{0}(p) \& c<a \Rightarrow$ the function $\lambda n G_{n}(c)$ is majorized by $\lambda n G_{n}(a)$.

Proposition 1. (a) $a \in T_{v}(p) \Rightarrow \operatorname{dom}(a) \in\{\phi,\{0\}, \omega\} \cup\left\{T_{u}(p): u<v\right\}$, and $a[z] \in$ $T_{v}(p)$ for all $z \in \operatorname{dom}(a)$.
(b) $\operatorname{dom}(a+b)=\operatorname{dom}(b) \&(a+b)[z]=a+b[z]$ if $b \neq 0$.

As in the Introduction, GID_{p} will denote the theory ID_{p-1}. ${\text { (} \mathrm{ID}_{0} \text { is another }}^{2}$ name of PA, the first-order arithmetic.) The theory ID_{p-1} is defined in Section 2.

Convention. $0[n]:=0$ and $(a+1)[n]:=a$ for each $n \in \omega$ and any $a \in T(p)$.

Definition. For $a \in T_{0}(p)$ and $n, m \in \omega$, we set

$$
\left.a[n]^{0}:=a ; \quad a[n]^{m+1}:=\left(a[n]^{m}\right)[n] \quad \text { (cf. Proposition } 1(\mathrm{a})\right) .
$$

We will prove Theorem A. In what follows, we will work in GID ${ }_{p}$. Let n be a fixed natural number.

Iterated inductive definition of sets $W_{u n} \subseteq T_{u}(p)(u<p)$
(W1) $0 \in W_{u n}$.
(W2) $a \in T_{u}(p), \operatorname{dom}(a) \in\{\{0\}, \omega\}, a[n] \in W_{u n} \Rightarrow a \in W_{u n}$.
(W3) $a \subset T_{u}(p), \operatorname{dom}(a)=T_{v}(p)$ with $v<u, \forall z \in W_{v n}\left(a[z] \in W_{u n}\right) \Rightarrow a \in W_{u n}$.

Proposition 2. (a) $a \in W_{o n} \Leftrightarrow \exists m\left(a[n]^{m}=0\right)$ for $a \in T_{0}(p)$.
(b) $v<u<p \Rightarrow W_{v n} \subseteq W_{u n}$.

Abbreviations. Let X range over subsets of $T(p)$ which are definable in the language of GID_{p}.

1. By $A_{u n}(X, a)(u \leqslant p)$ we denote the following statement:

$$
\begin{aligned}
a \in T_{u}(p) \&[a=0 & \vee(\operatorname{dom}(a) \in\{\{0\}, \omega\} \& a[n] \in X) \\
& \left.\vee \exists v<u\left(\operatorname{dom}(u)=T_{v}(p) \& \forall z \in W_{v n}(a[z] \in X)\right)\right] .
\end{aligned}
$$

2. $A_{\mu n}(X):=\left\{x \in T(p): A_{u n}(X, x)\right\}$.
3. $X^{(a)}:=\{y \in T(p): a+y \in X\}$.
4. $\vec{X}:=\left\{y \in T(p): \forall x \in X\left(x+D_{p} y \in X\right)\right\}$.
5. $W_{n}^{*}:=\left\{x \in T(p): \forall u<p\left(D_{u} x \in W_{u n}\right)\right\}$.

By the definition of $W_{u n}$, for all $u<p$ we have:
(A1) $A_{u n}\left(W_{u n}\right)=W_{u n}$,
(A2) $A_{u n}(X) \subseteq X \Rightarrow W_{u n} \subseteq X$.

The following lemma can be proved exactly as in [3].
1.1. Lemma. (a) $A_{u n}(X) \subseteq X \& a \in X \cap T_{u}(p) \Rightarrow A_{u n}\left(X^{(a)}\right) \subseteq X^{(a)}(u \leqslant p)$.
(b) $a, b \in W_{u n} \Rightarrow a+b \in W_{u n}(u<p)$.
1.2. Lemma. (a) $A_{p n}(X) \subseteq X \Rightarrow \bigcup\left\{W_{u n}: u<p\right\} \subseteq X$.
(b) $0 \in W_{n}^{*}$.
(c) $A_{p n}\left(W_{n}^{*}\right) \subseteq W_{n}^{*}$.

Proof. (a) This follows from (A2) and the fact:

$$
A_{p n}(X) \subseteq X \Rightarrow \forall u<p\left(A_{u n}(X) \subseteq X\right)
$$

(b) We have to show $\forall u<p\left(D_{u} 0 \in W_{u n}\right)$. Clearly (1) $D_{0} 0 \in W_{0 n}$. If $u=v+1<$ p, then $W_{v n} \subseteq W_{u n}, \operatorname{dom}\left(D_{u} 0\right)=T_{v}(p)$ and $\left(D_{u} 0\right)[z]=z$ for $z \in T_{v}(p)$. Therefore (2) $\exists v<p(u=v+1) \Rightarrow D_{u} 0 \in W_{u n}$. We are done.
(c) Assume $b \in A_{p n}\left(W_{n}^{*}\right)$ and $u<p$. We show $a:=D_{u} b \in W_{u n}$.

1. $b=0$: This follows from (b).
2. $b=b_{0}+1$ and $b_{0} \in W_{n}^{*}$: Then $\operatorname{dom}(a)=\omega$ and $a[n]=\left(D_{u} b_{0}\right) \cdot(n+1)$. By $u<p$ and $b_{0} \in W_{n}^{*}$ we have $D_{u} b_{0} \in W_{u n}$. Using 1.1(b) we obtain $\forall m\left(\left(D_{u} b_{0}\right) \cdot m \in\right.$ $W_{u n}$) by induction on m and hence $a \in W_{u n}$.
3. $\operatorname{dom}(b)=T_{v}(p), v<p$, and $b[z] \in W_{n}^{*}$ for all $z \in W_{v n}$:
3.1. $v<u$: Then we have $\operatorname{dom}(a)=T_{v}(p)$, and $a_{[}[z]=D_{u} b[z] \in W_{u n}$ for all $z \in W_{v n}$, i.e., $a \in W_{u n}$.
3.2. $u \leqslant v$: Then we have $\operatorname{dom}(a)=\omega$ and $a[n]=D_{u} b\left[b_{n}\right]$, where $b_{0}=1$ and $b_{m+1}=D_{v} b\left[b_{m}\right]$. By induction on m we have $\forall m\left(b_{m} \in W_{v n}\right)$. Therefore $b_{n} \in W_{v n}$ and $D_{u} b\left[b_{n}\right] \in W_{u n}$. Hence $a \in W_{u n}$.
4. $\operatorname{dom}(b)=\omega$: Then $\operatorname{dom}(a)=\omega$ and $a[n]=D_{u} b[n]$. By $b[n] \in W_{n}^{*}$ we have $a[n] \in W_{u n}$, i.e., $a \in W_{u n}$.
1.3. Lemma. $A_{p n}(X) \subseteq X \Rightarrow A_{p n}(\bar{X}) \subseteq \bar{X}$.

Proof. Assume $A_{p n}(X) \subseteq X, A_{p n}(\bar{X}, b)$ and $a \in X$. We have to show $a+D_{p} b \in$ X, i.e., $D_{p} b \in X^{(a)}$.

1. $b=0$: by $1.1(\mathrm{a})$ and $1.2(\mathrm{a})$ we have $\cup\left\{W_{u}: u<p\right\} \subseteq X^{(a)} . \operatorname{dom}\left(D_{p} 0\right)=$ $T_{p-1}(p),\left(D_{p} 0\right)[z]=z$ for $z \in T_{p-1}(p)$ and $W_{p-1, n} \subseteq X^{(a)}$. Hence $A_{p n}\left(X^{(a)}, D_{p} 0\right)$ and thus $D_{p} 0 \in X^{(a)}$, since $A_{p n}\left(X^{(a)}\right) \subseteq X^{(a)}$, by 1.1(a).
2. $b=b_{0}+1$ and $b_{0} \in \bar{X}$: Then $\operatorname{dom}\left(a+D_{p} b\right)=\omega$ and $\left(a+D_{p} b\right)[n]=a+$ $\left(D_{p} b_{0}\right) \cdot(n+1)$. By induction we get $\left(a+D_{p} b\right)[n] \in X$ from $b_{0} \in X$ and hence $a+D_{p} b \in X$.
3. $\operatorname{dom}(b)=T_{v}(p), v<p$, and $b[z] \in \bar{X}$ for all $z \in W_{v n}$: Then $\operatorname{dom}\left(a+D_{p} b\right)=$ $T_{v}(p)$ and $\left(a+D_{p} b\right)[z]=a+D_{p} b[z] \in X$ for all $z \in W_{v n}$. Hence $a+D_{p} b \in X$.
4. $\operatorname{dom}(b)=\omega$ and $b[n] \in \bar{X}$: Similar to 3 .
1.4. Lemma. For each $a \in T(p)$,
(a) $a \in T_{0}(p) \Rightarrow a \in W_{O n}$,
(b) $A_{p n}(X) \subseteq X \Rightarrow a \in X$.

Proof. By simultaneous metainduction on the length of a.

1. $a=0$: Clear.
2. $a=\left(a_{0}, \ldots, a_{k}\right)(k>0)$: By using 1.1 and IH (Induction Hypothesis) we get (a) and (b).
3. $a-D_{u} b:$ By $1.2(\mathrm{c})$ and IH we have $b \in W_{n}^{*}$.
(a) Assume $a \in T_{0}(p)$, i.e., $u=0$. By $b \in W_{n}^{*}$ and $0<p$ we get $a \in W_{0 n}$.
(b) Assume $A_{p n}(X) \subseteq X$.

Case 1. $u \neq p$: By 1.2(a), $a \in W_{u n} \subseteq X$.
Case 2. $u=p$: Then by 1.3 and IH we have $b \in \bar{X}$. By $0 \in X$ we get $a=0+D_{p} b \in X$.

Lemma 1.4(a) yields Theorem A for $v=p$.
Using 1.2(c) and 1.4(b), we get $a \in W_{n}^{*}$ for each $a \in T(p)$. Now we work outside GID $_{p}$. Then since GID $_{p}$ is sound, we have:
1.5. Lemma. $\forall u<p\left(T_{u}(p)=W_{u n}\right)$.

For each $n \in \omega$, let $<_{n}$ denote the following relation over $T(p)$:

$$
\begin{aligned}
b<_{n} a: & a \neq 0 \&(\operatorname{dom}(a) \in\{\{0\}, \omega\} \Rightarrow b=a[n]) \\
& \&\left(\operatorname{dom}(a) \in\left\{T_{u}(p): u<p\right\} \Rightarrow \exists z \in \operatorname{dom}(a)(b=a[z])\right) .
\end{aligned}
$$

Let X_{n} denote the accessible part of $<_{n}$:

$$
X_{n}=\cap\left\{X \subseteq T(p): \forall a\left(\forall b<_{n} a(b \in X) \Rightarrow a \in X\right)\right\}
$$

Then by 1.5 we have $A_{p n}\left(X_{n}\right) \subseteq X_{n}$ and hence $X_{n}=T(p)$. Therefore
1.6. Lemma. The relation $<_{n}$ is well founded for all $n \in \omega$.

In what follows transfinite induction over $T(p)$ or on $a \in T(p)$ means a transfinite induction with respect to $<_{n}$ for an n.

Definition of $c \lll k$ a by transfinite induction on $a \in T(p)$

$$
c \ll k_{k} a \quad: \Leftrightarrow a \neq 0 \& \forall z \in d_{k}(a)\left(c<_{k} a[z]\right)
$$

where

$$
d_{k}(a):= \begin{cases}\{k\}, & \text { if } \operatorname{dom}(a) \in\{\{0\}, \omega\}, \\ \left\{D_{u} e: 0 \neq e \in T(p)\right\}, & \text { if } \operatorname{dom}(a)=T_{u}(p),\end{cases}
$$

and

$$
c<_{k} a: \Leftrightarrow c<_{k} a \quad \text { or } \quad c=a .
$$

Definition of the function $G_{k}: T_{0}(p) \rightarrow \omega$ by transfinite induction over $T_{0}(p)$
(G1) $G_{k}(0)=0$.
(G2) $G_{k}(a+1)=G_{k}(a)+1$.
(G3) $G_{k}(a)=G_{k}(a[k])$ if $\operatorname{dom}(a)=\omega$.

Definition of D_{u}^{n} a for $u \leqslant p, n \in \omega$ and $a \in T(p)$

$$
D_{u}^{0} a:=a, \quad D_{u}^{n+1} a:=D_{u} D_{u}^{n} a .
$$

The following lemma is proved by transfinite induction over $T(p)$ (cf. 3.1, 3.2, 3.5 and 3.7 in [3]):
1.7. Lemma. (a) $a \neq 0 \Rightarrow 1<_{k} a$.
(b) $c \ll_{k} a \& a \ll_{k} b \Rightarrow c<_{k} b$.
(c) $c \ll_{k} b \Rightarrow a+c \ll_{k} a+b$.
(d) $b \neq 0 \Rightarrow a \ll_{k} a+b$.
(e) $a \lll{ }_{k} b \Rightarrow D_{u} a \ll_{k} D_{u} b$.
(f) $c \lll_{k} a \Rightarrow G_{k}(c) \leqslant G_{k}(a)$ for $c, a \in T_{0}(p)$.
(g) $\operatorname{dom}(a)=T_{v}(p) \& u \leqslant v \& 1 \leqslant k \Rightarrow\left(D_{u} a\right)[1] \lll{ }_{k} D_{u} a$.
(h) $D_{u} a+1 \ll_{k} D_{u}(a+1)$ for $k \geqslant 1$.
(i) $\left(D_{u}^{m} a\right) \cdot(k+1) \ll_{k} D_{u}^{m}(a+1)$ for $m>0$.
(j) $\left(D_{u}^{m} 0\right) \cdot(k+1) \ll_{k} D_{u}^{m+1} 0$.

Definition of $a \rightarrow_{n}^{k} b$ for $a, b \in T(p)$ and $k, n \in \omega$

$$
a \rightarrow{ }_{n}^{k} b \quad \Leftrightarrow \quad \exists a_{0}, \ldots, a_{n}\left[a=a_{0} \& b=a_{n} \& \forall i<n\left(a_{i}+1<_{k} a_{i+1}\right)\right] .
$$

Clearly $G_{k}(a)=\max \left\{n \in \omega: 0 \rightarrow_{n}^{k} a\right\}$.
1.8. Lemma. (a) $a \rightarrow{ }_{n}^{k} b \Rightarrow D_{u} a \rightarrow{ }_{n}^{k} D_{u} b$.
(b) $0 \rightarrow_{g_{p}(k)}^{k} D_{p} 0$ with $g_{p}(k)=(k+1)^{p}$.
(c) $0 \rightarrow_{n}^{k} a \Rightarrow 0 \rightarrow_{(k+1)^{p+n}}^{k} D_{p} a$.
(d) $0 \rightarrow_{f_{p}(k, l)}^{k} D_{\rho}^{l} 0$ with $f_{p}(k, 0)=0, f_{p}(k, l+1)=(k+1)^{p+f_{p}(k, l)}$.

Proof. (b) $0 \rightarrow{ }_{1}^{k} D_{0} 0$ and $\left(D_{u} 0\right) \cdot(k+1) \ll_{k} D_{u} 1 \ll_{k} D_{u+1} 0$ for $u<p$. Hence by induction on $u \leqslant p$ we get the assertion.
(c) By induction on n. The case $n=0$ follows from (b). The induction step is seen easily.
(d) By induction on l using (b) and (c).

2. The infinitary system GID ${ }_{p}^{\infty}$

Let L denote the first order language consisting of the following symbols:
(i) logical constants $\neg, \wedge, \vee, \forall \exists$.
(ii) number variables (indicated by x, y).
(iii) a constant 0 (zero) and a unary function symbol ' (successor).
(iv) constants for primitive recursive predicates (among them the symbol $<$ for the arithmetic 'less than' relation).

By s, t, \ldots we denote arbitrary L-terms. The constant terms $0,0^{\prime}, 0^{\prime \prime}, \ldots$ are called numerals; we identify numerals and natural numbers and denote them by k, m, n. A formula of the shape $R t_{1} \cdots t_{n}$ or $\neg R t_{1} \cdots t_{n}$ with an n-ary predicate symbol R of L, is called an arithmetic prime formula (abbreviated by a.p.f.).

Let X be a unary and Y a binary predicate variable. A positive operator form is a formula $\mathfrak{Q}(X, Y, y, x)$ of $L(X, Y)$ in which only X, Y, y, x occur free and all occurrences of X are positive. The language $L_{1 \mathrm{D}}$ is obtained from L by adding a binary predicate constant $P^{9 / 1}$ and a 3-ary predicate constant $P_{<}^{m / 1}$ for each positive operator form \mathfrak{A}.

Abbreviations

$$
\begin{aligned}
& t \in P_{s}^{\mathrm{Nl}}: \equiv P_{s}^{\mathrm{M} \mid} t: \equiv P^{\mathrm{ml}} s t, \quad t \notin P_{s}^{\mathrm{Nl}}: \equiv \neg\left(t \in P_{s}^{\mathrm{vl}}\right), \quad P_{<s}^{\geqslant!} t_{0} t_{1}: \equiv P_{<}^{\mathrm{N}} s t_{0} t_{1}, \\
& \mathfrak{H}_{s}(X, x): \equiv \mathfrak{H}_{(X,}\left(X P_{<s}^{3}, s, x\right), \quad P_{y}^{\sharp y} \subseteq F: \equiv \forall x\left(x \in P_{y} \rightarrow F(x)\right), \\
& \mathfrak{A}_{y}(F) \subseteq F: \equiv \forall x\left(\mathfrak{A}_{y}(F, x) \rightarrow F(x)\right) \text { for each formula } F(x) .
\end{aligned}
$$

The formal theory GID_{p} is an extension of Peano Arithmetic, formulated in the language L_{ID}, by the following axioms;
($\left.P^{\geqslant l} .1\right) \forall y<p-1\left(\mathfrak{A}_{y}\left(P_{y}^{* y}\right) \subseteq P_{y}^{\geqslant l}\right)$.
($P^{\mathrm{NI}} .2$) $\forall y<p-1\left(\mathfrak{H}_{y}(F) \subseteq F \rightarrow P_{y}^{\mathrm{Nl}} \subseteq F\right)$ for every $L_{1 \mathrm{~N}}$-formula $F(x)$.

PA formulated in L_{ID} means that GID_{p} has the following scheme of complete induction;

$$
\begin{equation*}
F(0) \wedge \forall x\left(F(x) \rightarrow F\left(x^{\prime}\right)\right) \rightarrow \forall x F(x), \quad \text { for every } L_{\mathrm{ID}} \text {-formula } F(x) . \tag{CI}
\end{equation*}
$$

The infinitary system $\mathrm{GID}_{p}^{\infty}$ will be formulated in the language $L_{\mathrm{ID}}(N)$ which arises from $L_{\text {ID }}$ by adding a new unary predicate constant N. We assume all formulas to be in negation normal form, i.e., the formulas are built up from atomic and negated atomic formulas by means of $\wedge, \vee, \forall, \exists$. If A is a complex formula we consider $\neg A$ as a notation for the corresponding negation normal form.

Definition of the length $|A|$ of an $L_{\mathrm{ID}}(N)$-formula A

1. $|A|:=|\neg A|:=0$, if A is an a.p.f. or a formula of the form $N t, P^{v} s t$.
2. $\left|P^{\mathrm{M}} s t_{0} t_{1}\right|:=\left|\neg P^{\mathrm{U}} s t_{0} t_{1}\right|:=1$.
3. $|A \$ B|:=\max \{|A|,|B|\}+1$ for $\$ \in\{\wedge, \vee\}$.
4. $|\mathrm{Q} x A|:=|A|+1$ for $\mathrm{Q} \in\{\forall, \exists\}$.

Clearly $|\neg A|=|A|$, for each $L_{\mathrm{ID}}(N)$-formula A.

Inductive definition of formula sets $\operatorname{Pos}_{u}(u<p)$

1. All a.p.f.'s belong to Pos_{u}.
2. $N t \in \operatorname{Pos}_{u}$.
3. $\neg N t \in \operatorname{Pos}_{u} \Leftrightarrow 0<u$, i.e., $u \neq 0$.
4. $P_{n}^{⿲ \prime} t,(\neg) P_{<n}^{\omega \prime \prime} t_{0} t_{1} \in \operatorname{Pos}_{u} \Leftrightarrow n+1 \leqslant u$.
5. $\neg P_{n}^{\mathfrak{U}} t \in \operatorname{Pos}_{u} \Leftrightarrow n+1<u$.
6. $A \$ B \in \operatorname{Pos}_{u} \Leftrightarrow A, B \in \operatorname{Pos}_{u}, \$ \in\{\wedge, \vee\}$.
7. $\mathrm{Q} x A \in \operatorname{Pos}_{u} \Leftrightarrow A \in \operatorname{Pos}_{u}, \mathrm{Q} \in\{\forall, \exists\}$.

Remark. If a term s contains a variable, then formulas $(\neg) P_{s}^{\mu_{l}} t,(\neg) P_{<s}^{v} t_{0} t_{1}$ do not belong to Pos_{u}.

Notations. (1) In the following A, B, C always denote closed $L_{\mathrm{ID}}(N)$-formulas.
(2) Γ and Δ denote finite sets of closed $L_{\text {ID }}(N)$-formulas, we write Γ, Δ, A for $\Gamma \cup \Delta \cup\{A\}$.
(3) A^{N} denotes the results of restricting all quantifiers in A to N.
(4) $t \in N: \equiv N t, t \notin N: \equiv \neg N t$.

Basic inference rules

$(\wedge) \quad A_{0}, A_{1} \vdash A_{0} \wedge A_{1}$.
$(\vee) \quad A_{i} \vdash A_{0} \vee A_{1}(i=0,1)$.
$\left(\forall^{\infty}\right) \quad(A(n))_{n \in \omega} \vdash \forall x A(x)$.
(ヨ) $\quad A(n) \vdash \exists x A(x)$.
($\left.P_{<}^{9 / 2}\right) \quad P_{j}^{, n} t \vdash P_{<n}^{9 \prime} j t$, if $j<n$.
$\left(\neg P_{<}^{*}\right) ~ \neg P_{j}^{* \prime} t \vdash \neg P_{<n j}^{\geqslant \prime \prime}$, if $j<n$.
(N) $\quad n=0 \vee\left(n=m^{\prime} \wedge N m\right) \vdash N n$.
$\left(P^{\because \prime \prime}\right) \quad t \in N \wedge \mathfrak{U}_{n}^{N}\left(P_{n}^{\because \prime}, t\right) \vdash P_{n}^{\because \prime \prime} t$.
Every instance $\left(A_{i}\right)_{i \in I} \vdash A$ of these rules is called a basic inference. If $\left(A_{i}\right)_{i \in I} \vdash A$ is a basic inference with $A \in \operatorname{Pos}_{u}(u<p)$, then $A_{i} \in \operatorname{Pos}_{u}$ for all $i \in l$. We divide the basic inferences into three kinds: Every instance of rules $(\wedge),\left(\forall^{\infty}\right),\left(P_{<}^{\geqslant r}\right)$ is said to be of kind 1 . Every instance of rules $(\vee),(\exists),\left(\neg P_{<}^{: y}\right)$ is said to be of kind 2. Every instance of rules $(N),\left(P^{* 1}\right)$ is said to be of kind 3 . Next we define a derivability relation $k \vdash_{m}^{a} \Gamma$ for GID $_{p}^{\infty}$ by an iterated inductive definition.

Inductive definition of $k \vdash_{m}^{a} \Gamma(a \in T(p)$ and $k, m \in \omega)$
(Ax1) $k r_{m}^{n} \Gamma, A$ if A is a true a.p.f. or $A={ }_{-1} P_{<n}^{v i} j$ with $n \leqslant j$.
(Ax2) $\quad k \vdash_{m}^{a} \Gamma, \neg A, A$ if $A \in N n$ or $A \equiv P_{n}^{\mathrm{er}} t$.
(Bas1) If $\left(A_{i}\right)_{i \in I} \vdash A$ is a basic inference of kind 1 with $A \in \Gamma$ and $\forall i \in I$ $\left(k \vdash_{m}^{a} \Gamma, A_{i}\right)$, then $k \vdash_{m}^{a} \Gamma$.
(Bas2,3) If $\left(A_{i}\right)_{i \in I}+A$ is a basic inference of kind 2 or of kind 3 with $A \in \Gamma$ and $\forall i \in I\left(k \vdash_{m}^{a} \Gamma, A_{i}\right)$, then $k \vdash_{m}^{a+1} \Gamma$.
(Cut) $\quad k \vdash_{m}^{a} \Gamma, \neg C$ and $k \vdash_{m}^{a} \Gamma, C$ and $|C|<m \Rightarrow k \vdash_{m}^{a+1} \Gamma$.
$\left(\Omega_{u+1}\right) \quad$ If $R t$ is an atomic formula of the shape $N t$ or $P_{n}^{\mathrm{gt}} t$, and the following four conditions hold, then $k \vdash_{m}^{a} \Gamma$.
(1) $\operatorname{dom}(a)=T_{u}(p)$.
(2) $k \vdash_{m}^{[1]} \Gamma$, Rt.
(3) $\forall z \in T_{u}(p) \forall \Delta \subseteq \operatorname{Pos}_{u}\left(k \vdash_{0}^{z} \Delta, R t \Rightarrow k \vdash_{m}^{a \mid z i} \Delta, \Gamma\right)$.
(4) $R t \in \operatorname{Pos}_{u}$.
$\left(\lll_{k}\right) \quad k \vdash_{m}^{b} \Gamma$ and $b \ll_{k} a \Rightarrow k \vdash_{m}^{a} \Gamma$.
2.1. Lemma (Inversion). Let $\left(A_{i}\right)_{i \in t} \vdash A$ be a basic inference of kind 1. Then $k \vdash_{m}^{a} \Gamma, A$ implies $\forall i \in I\left(k \vdash_{m}^{a} \Gamma, A_{i}\right)$.

Proof. By transfinite induction on $k \vdash_{m}^{a} \Gamma, A$. Precisely speaking, if $k \vdash_{m}^{a} \Gamma, A$ holds in a stage of inductive definition of the derivability relation, then $k \vdash_{m}^{a} \Gamma, A_{i}$ holds in the same or a previous stage for all i.
2.2. Lemma (Reduction). Suppose $k \vdash_{m}^{a} \Gamma_{0}, \neg C$ and $|C| \leqslant m$, where C is a
 Then $k \vdash_{m}^{b} \Gamma, C$ implies $k \vdash_{m}^{a+b} \Gamma_{0}, \Gamma$.

Proof. By transfinite induction on $k \vdash_{m}^{b} \Gamma, C$ using 2.1, Proposition 1 and 1.7 in Section 1. If $k \vdash_{m}^{b} \Gamma, C$ holds by (Ax 1) and $C \equiv \neg P_{<n}^{M!\prime} j t$ with $n \leqslant j$, then use the following proposition. Cf. Lemma 4.4 in [3] for other cases.

Proposition. $k \vdash_{m}^{a} \Gamma_{0}, P_{<n}^{*} j t \& n \leqslant j \Rightarrow k \vdash_{m}^{a} \Gamma_{0}$.
2.3. Theorem (Cut elimination). $k \vdash_{m+1}^{a} \Gamma \Rightarrow k \vdash_{m}^{D_{p u}} \Gamma$ for $k \geqslant 1$.

Proof. By transfinite induction on $k \vdash_{m+1}^{a} \Gamma$ using 1.7 and 2.2. Cf. Theorem 4.5 in [3].
2.4. Lemma. $k \vdash_{0}^{a} n \notin N, \Gamma$ and $0 \rightarrow{ }_{m}^{k} b$ and $2 n+2 \leqslant m \Rightarrow k \vdash_{0}^{b+a} \Gamma$.

Proof. This follows from the fact;

$$
k \vdash_{0}^{h} n \in N \text { if } 0 \rightarrow_{m}^{k} b \text { and } 2 n+2 \leqslant m \text {. }
$$

2.5. Theorem (Collapsing). (a) $k \vdash_{0}^{a} \Gamma \& \Gamma \subseteq \operatorname{Pos}_{u} \Rightarrow k \vdash_{0}^{D_{u} a} \Gamma$ for $k \geqslant 1$.
(b) $k \vdash_{0}^{a} \Gamma \& a \in T_{0}(p) \Rightarrow k \vdash_{0}^{G_{k}(a)} \Gamma$ for $k \geqslant 1$.

Proof. By transfinite induction on $k \vdash_{0}^{a} \Gamma$. Cf. Theorem 4.6 in [3] and $1.7(\mathrm{~g})$.
Definition. For $\Gamma=\left\{A_{1}, \ldots, A_{n}\right\} \subseteq \operatorname{Pos}_{0}$ we define: $F \Gamma(j): \Leftrightarrow A_{1} \vee \cdots \vee A_{n}$ is true in the standard model when N is interpreted as $\{i \in \omega: i<j\}$.
2.6. Lemma (Truth). $k \vdash_{0}^{j} \Gamma \& \Gamma \subseteq \operatorname{Pos}_{0} \& j \in \omega \Rightarrow \vDash \Gamma(j)$.

Proof. This follows from the fact:

$$
\vDash n=0 \vee\left(n=m^{\prime} \wedge N m\right)(j) \Rightarrow \vDash N n(j+1)
$$

In the remainder of this section we show that GID_{p} can be embedded into GID ${ }_{p}^{\infty}$.
2.7. Lemma. (a) $0 \rightarrow_{n}^{k} a \& k \vdash_{0}^{n} \Gamma \Rightarrow k \vdash_{0}^{a} \Gamma$.
(b) $k \vdash_{0}^{a} \Gamma, A \vee B \Rightarrow k \vdash_{0}^{a} \Gamma, A, B$.
(c) $k \vdash_{0}^{a} \Gamma, A \& A$ is a false a.p.f. $\Rightarrow k \vdash_{0}^{a} \Gamma$.
(d) $k \vdash_{0}^{0} \Gamma, A \vee B \Rightarrow k \vdash_{0}^{0} \Gamma$.

Furthermore, in each case except (a), if $k \vdash_{0}^{a} \Delta$ holds under the condition, then $k \vdash_{0}^{b} \Delta^{\prime}$ holds in the same or a previous stage of the inductive definition of the derivability relation.

Definition. $\bar{n}:=D_{p}^{n} 0$.
2.8. Lemma. For any $k \geqslant 1, k \vdash_{0}^{\bar{j}} \neg A, A$ where $l:=|A|$.

Proof. By induction on the length of A we see that $k \vdash_{0}^{l} \neg A$, A if $l=|A|$. By $1.8(\mathrm{~d}), 0 \rightarrow{ }_{l}^{k} \tilde{l}$. Hence the assertion follows from 2.7(a).

Definition. In the following proposition and lemma we will use the following notations: R denotes a 'predicate constant' of the form N or $P_{n}^{2 /} . F(x)$ denotes a formula with a variable x. For $A \in \operatorname{Pos}_{u}(u<p)$ let A^{*} denote the result of replacing all occurrences of R in A by $F(\cdot)$. $\left\{A_{1}, \ldots, A_{m}\right\}^{*}:=\left\{A_{1}^{*}, \ldots, A_{m}^{*}\right\}$. Further let Θ denote the following set:

$$
\Theta:= \begin{cases}\left\{\neg F(0), \neg \forall x \in N\left(F(x) \rightarrow F\left(x^{\prime}\right)\right)\right\}, & \text { if } R \equiv N, \\ \left\{\neg \forall x \in N\left(\mathfrak{U}_{n}^{N}(F, x) \rightarrow F(x)\right)\right\}, & \text { if } R \equiv P_{n}^{\geqslant \cdots}\end{cases}
$$

Proposition. $\Delta \cup \Delta_{0} \subseteq \operatorname{Pos}_{u}, \neg R t \notin \operatorname{Pos}_{u}, \quad z \in T_{u}(p), \quad k \vdash_{0}^{z} \Delta, \Delta_{0}$ and $l=|F| \Rightarrow$ $k \vdash_{0}^{i+z} \Delta, \Theta, \Delta_{0}^{*}$ for $k \geqslant 1$.

Proof. By transfinite induction on $k \vdash_{0}^{2} \Delta, \Delta_{0}$.

1. If $k \vdash_{0}^{z} \Delta, \Delta_{0}$ holds by (Ax 2), then also $k \vdash_{0}^{\bar{l}+z} \Delta, \Theta, \Delta_{0}^{*}$ by (Ax 2), since $\neg R t \notin \Delta \cup \Delta_{0}$.
2. Suppose $z=w+1, N m \in \Delta_{0}, R \equiv N$ and $k \vdash_{0}^{w} \Delta, \Delta_{0}, m=0 \vee\left(m=j^{\prime} \wedge N j\right)$. Then $F(m) \in \Delta_{0}^{*}$. By 2.8
(1) $k \vdash_{0}^{\tilde{I}} \neg F(m), F(m)$.
2.1. $m=0$: Then by (1) and $F(0) \in \Theta$ we get the assertion.
2.2. $m \neq 0 \& m \neq j+1$: Then by 2.7 (b),(c) and 2.1 , we have $k \vdash_{0}^{w} \Delta, \Delta_{0}$. By IH we get the assertion.
2.3. $m=j+1$; Then again by $2.7(\mathrm{~b})$,(c) and 2.1, we have $k r_{0}^{\omega} \Delta, \Delta_{0}, N j$. By IH we have
(2) $k \vdash_{0}^{i+w} \Delta, \Theta, \Delta_{0}^{*}, N j$ and (3) $k r_{0}^{i+w} \Delta, \Theta, \Delta_{0}^{*}, f(j)$.

By (1), (2), (3) using (\wedge) and (\exists) we get the assertion.
3. Other cases can be treated as in [3].

From this proposition and $\left(\Omega_{u+1}\right)$ we get:
2.9. Lemma. If $l=|F|$ and $u=0$ if $R \equiv N, u=n+1$ if $R \equiv P_{n}$, then

$$
k \vdash_{0}^{j+D_{u+1}} \Theta, \neg R t, F(t) \text { for any } k \geqslant 1, \text { and } n<p-1 .
$$

2.10. Lemma. For each universal closure A of an axiom of the theory GID_{p} there exists an $n \in \omega$ such that $k \vdash_{0}^{\bar{n}} A^{N}$ for any $k \geqslant 1$.

Proof. This follows from 1.7 and 2.9.
2.11. Theorem. If a sentence A is provable in GID_{p}, then there exists an $n \in \omega$ such that $k \vdash_{n}^{\tilde{n}} A^{N}$ for any $k \geqslant 1$.

Proof. This follows from 1.7 and 2.10. (Cf. Theorem 4.14 in [3].)

Proof of Theorem B. Assume $\mathrm{GID}_{p} \vdash \forall x \exists y \phi(x, y)\left(\phi \in \Sigma_{1}^{\prime \prime}\right)$. By 2.11 and 2.3 (also by 2.1 and 2.7(b)), there exists an n_{1} such that

$$
k \vdash_{0}^{\bar{n}_{1}} n \notin N, \exists y \in N \phi^{N}(n, y) \quad \text { for all } n \text { and all } k \geqslant 1 .
$$

W.l.o.g. we can assume $n_{1} \geqslant 2$.
(a) Put $n_{0}:=n_{1}+1$ and $k:=1$. If $3 \leqslant n_{0} \leqslant n$, then $2 n+2 \leqslant f_{p}(1, n-1)$. Hence by $1.8(\mathrm{~d})$ and 2.4 we have

$$
1 \vdash_{0}^{a_{n}} \exists y \in N \phi^{N}(n, y) \quad \text { with } a_{n}=D_{p}^{n-1} 0+D_{p}^{n_{1}} 0 .
$$

By 1.7, we have $D_{0} a_{n} \ll_{1} D_{0} D_{p}^{n} 0$ and hence by 2.5 and 2.6 we conclude

$$
\vDash \exists y \in N \phi^{N}(n, y)\left(G_{1}\left(D_{0} D_{p}^{n} 0\right)\right),
$$

and by persistency of Σ_{1}^{01} formulas we get the assertion.
(b) Put $n_{0}:=n_{1}+1$ and $k:=n>0$. If $n \neq 0$, then $2 n+2 \leqslant f_{p}(n, 2) \leqslant f_{p}\left(n, n_{1}\right)$. Therefore by $1.8(\mathrm{~d})$ and 2.4 we have

$$
n \vdash_{0}^{a} \exists y \in N \phi^{N}(n, y) \quad \text { with } a=D_{p}^{n_{1}} 0 \cdot 2 .
$$

By 1.7, $D_{0} a \ll{ }_{n} D_{0} D_{p}^{n_{10} 0}$ and hence by 2.5 and 2.6 we conclude that

$$
\vDash \exists y \in N \phi^{N}(n, y)\left(G_{n}\left(D_{0} D_{p}^{n_{0}} 0\right)\right) .
$$

(c) By definition $\left(D_{0} D_{p+1} 0\right)[n]:=D_{0} D_{p}^{n}$. Thus this follows from (b) and 1.7.

Remark. As in $\left[3 ; 3.3,3.4\right.$ and 3.6], we can show that, for any $a \in T_{0}(p)$, the function $\lambda n G_{n}(a)$ is weakly monotonic, i.e., $G_{n}(a) \leqslant G_{n+1}(a)$. From this and Theorem B(a), Theorem B(c) follows.

Part II. The case $\boldsymbol{v}=\boldsymbol{\Omega}$

In this part we prove Theorems A and B for the case $v=\Omega$. The proof is obtained by a slight modification and extension of that for the case $v=p<\omega$, $p \neq 0$. We will give only necessary changes.

3. The term structures $\left(T(\Omega), \cdot[\cdot]_{n}\right)_{n \in \omega}$

Inductive definition of the sets $T_{0}(\Omega), \operatorname{PT}(\Omega)$ and $T(\Omega)$
(T0) $T_{0}(\Omega) \cup P T(\Omega) \subseteq T(\Omega)$.
(T1) 1. If $a \in T(\Omega)$ and $u \in T_{0}(\Omega) \cup\{\Omega\}$, then $D_{u} a \in P T(\Omega)\left(\Omega:=D_{1} 0\right)$.
2. If $a \in T(\Omega)$, then $D_{0} a \in T_{0}(\Omega) \cap P T(\Omega)$.
(T2) 1. If $a_{0}, \ldots, a_{k} \in P T(\Omega)(k>0)$, then $\left(a_{0}, \ldots, a_{k}\right) \in T(\Omega)$.
2. If $a_{0}, \ldots, a_{k} \in T_{0}(\Omega) \cap P T(\Omega)(k>0)$, then $\left(a_{0}, \ldots, a_{k}\right) \in T_{0}(\Omega)$.

The letters a, b, c, z now always denote elements of $T(\Omega)$, and u, v, w denote elements of $T_{0}(\Omega) \cup\{\Omega\}$.

Now we define, for each $n \in \omega$, four partial recursive functions;

$$
\begin{array}{ll}
\text { 1. } & G_{n}: T_{0}(\Omega) \cup\{\Omega\} \rightarrow \omega+1, \quad \text { 2. } \\
\text { 3. } & \mathscr{T}_{n}:\left(T_{0}(\Omega) \cup\{\Omega\}\right) \times T(\Omega) \rightarrow\{0,1\}, \\
\operatorname{dom}_{n}: T(\Omega) \rightarrow\{\emptyset,\{n\}\} \cup T_{0}(\Omega), & \text { 4. } \cdot[\cdot]_{n}: T(\Omega) \times T(\Omega) \rightarrow T(\Omega) .
\end{array}
$$

Convention. These functions except $\cdot[\cdot]_{n}$ turn out to be total. So

1. $a \in T_{u}(\Omega): \Leftrightarrow \mathscr{T}_{n}(u, a) \simeq 0$. (Even if $u=0$, this is consistent. See Proposition 3(a) below.)
2. If $\operatorname{dom}_{n}(a) \simeq u$ for some $u \in T_{0}(\Omega)$, then we write

$$
b \in \operatorname{dom}_{n}(a): \Leftrightarrow b \in T_{u}(\Omega) \quad \text { and } \quad \operatorname{dom}_{n}(a) \simeq T_{u}(\Omega): \Leftrightarrow \operatorname{dom}_{n}(a) \simeq u .
$$

Strictly speaking, the 'set' $T_{u}(\Omega)$ depends on the subscript n.

Definition of $G_{n}, T_{u}(\Omega), \operatorname{dom}_{n}$ and $\cdot[\cdot]_{n}$
(G1) $\quad G_{n}(0) \simeq 0$.
(G2) $\quad G_{n}(u+1) \simeq G_{n}(u)+1$.
(G3) $G_{n}(u) \simeq G_{n}\left(u[n]_{n}\right)$ if $u \notin\{0, \Omega\} \cup\left\{v+1: v \in T_{0}(\Omega)\right\}$.
(G4) $\quad G_{n}(\Omega) \simeq \omega$.
(T_{u}) Let $a=\left(D_{u_{0}} a_{0}, \ldots, D_{u_{k}} a_{k}\right)(k \geqslant-1)$.

1. $a \in T_{u}(\Omega): \Leftrightarrow \mathscr{T}_{n}(u, a) \simeq 0: \Leftrightarrow G_{n}\left(u_{0}\right) \leqslant G_{n}(u) \& \cdots \& G_{n}\left(u_{k}\right) \leqslant G_{n}(u)$.
2. $a \notin T_{u}(\Omega): \Leftrightarrow \mathscr{T}_{n}(u, a) \simeq 1: \Leftrightarrow G_{n}\left(u_{0}\right)>G_{n}(u) \vee \cdots \vee G_{n}\left(u_{k}\right)>G_{n}(u)$.
3. $\mathscr{T}_{n}(u, a)$ is undefined $: \Leftrightarrow$ one of $G_{n}(u), G_{n}\left(u_{0}\right), \ldots, G_{n}\left(u_{k}\right)$ is undefined.
([]1) $\operatorname{dom}_{n}(0)=\emptyset ; 0[z]_{n}$ is always undefined.
([12) $\operatorname{dom}_{n}(1) \simeq\{n\} ; 1[z]_{n} \simeq c \Leftrightarrow z=n \& c=0$.
([]3) $\operatorname{dom}_{n}\left(D_{u+1} 0\right) \simeq T_{u}(\Omega) ;\left(D_{u+1} 0\right)[z]_{n} \simeq c \Leftrightarrow z \in T_{u}(\Omega) \& z=c$.
([]4) $\operatorname{dom}_{n}\left(D_{u} 0\right) \simeq \operatorname{dom}_{n}(u)$ if $u \notin\{0\} \cup\left\{v+1: v \in T_{0}(\Omega)\right\} ;\left(D_{u} 0\right)[z]_{n} \simeq D_{u[z]_{n}} 0$.
([]5) Let $a=D_{v} b$ with $b \neq 0$.
5.1. If $b=b_{0}+1$, then $\operatorname{dom}_{n}(a) \simeq\{n\}$ and $a[z]_{n} \simeq c \Leftrightarrow z=n \&\left(D_{v} b_{0}\right) \cdot(n+1)=c$.
5.2. If $\operatorname{dom}_{n}(b) \simeq\{n\}$ and $b \notin\left\{b_{0}+1: b_{0} \in T(\Omega)\right\}$, then $\operatorname{dom}_{n}(a) \simeq\{n\}$ and $a[z]_{n} \simeq D_{v} b[z]_{n}$.
5.3. If $\operatorname{dom}_{n}(b) \simeq T_{u}(\Omega)$ with $G_{n}(u)<G_{n}(v)$, then $\operatorname{dom}_{n}(a) \simeq T_{u}(\Omega)$ and $a[z]_{n} \simeq D_{v} b[z]_{n}$.
5.4. If $\operatorname{dom}_{n}(b) \simeq T_{u}(\Omega)$ with $G_{n}(v) \leqslant G_{n}(u)$, then $\operatorname{dom}_{n}(a) \simeq\{n\}$ and $a[z]_{n} \simeq c \Leftrightarrow z=n \& \exists b_{0}, \ldots, b_{n} \forall m<n\left(b_{0}=1 \& b_{m+1} \simeq D_{v} b\left[b_{m}\right]_{n} \&\right.$ $\left.D_{v} b\left[b_{n}\right]_{n}=c\right)$.
5.5. If $\operatorname{dom}_{n}(b)$ is undefined or $\operatorname{dom}_{n}(b) \approx T_{u}(\Omega)$ but cither $G_{n}(u)$ or $G_{n}(v)$ is undefined, then $\operatorname{dom}_{n}(a)$ and $a[z]_{n}$ are undefined.
([]6) Let $a=\left(a_{0}, \ldots, a_{k}\right)$ with $k>0 . \operatorname{dom}_{n}(a) \simeq \operatorname{dom}_{n}\left(a_{k}\right)$;
$a[z]_{n} \simeq\left(a_{0}, \ldots, a_{k-1}\right)+a_{k}[z]_{n}$.
Convention. $0[n]_{n}:=0$.
Remark. The definition of $a[z]_{n}$ is similar to that in Part I and the fundamental sequences given in [4]. The only essential difference lies in ([]5), 5.3 and 5.4, i.e., in which case we apply 5.3 or 5.4 . In [4], the decision is made by comparing u and v with respect to the relation < given in [2]. Here we consider u to be
smaller than v with respect to n when $G_{n}(u)<G_{n}(v)$. It seems that this view is consistent with the idea of the slow growing functions. The price to pay is that we lose the proposition in the corresponding Remark in Part I and also the weak monotonicity of the function $\lambda n G_{n}(a)$. The author does not know whether these hold for this case.

Definition. Let t be an expression of the form $G_{n}(u), \operatorname{dom}_{n}(a)$ or $a[z]_{n}$. Then we set: $t \downarrow: \Leftrightarrow t$ is defined.

Proposition 3. (a) $G_{n}(u) \simeq 0 \Rightarrow u=0$. Hence $a \in T_{0}(\Omega) \Leftrightarrow \mathscr{T}_{n}(0, a) \simeq 0$.
(b) $G_{n}(u) \downarrow \& u \neq \Omega \Rightarrow G_{n}(u)<\omega$.
(c) $a \in T_{0}(\Omega) \& \operatorname{dom}_{n}(a) \downarrow \Rightarrow \operatorname{dom}_{n}(a) \in\{\emptyset,\{n\}\}$.
(d) $\operatorname{dom}_{n}(a) \downarrow \Rightarrow \forall z \in \operatorname{dom}_{n}(a)\left(a[z]_{n} \downarrow\right)$.
(e) $a[z]_{n} \downarrow \Rightarrow \operatorname{dom}_{n}(a) \downarrow \& z \in \operatorname{dom}_{n}(a)$.
(f) $a \in T_{v}(\Omega) \& v \neq \Omega \& \operatorname{dom}_{n}(a) \downarrow \Rightarrow \forall z \in \operatorname{dom}_{n}(a)\left(a[z]_{n} \in T_{v}(\Omega)\right)$.
(g) $a \in T_{v}(\Omega) \& \operatorname{dom}_{n}(a)=T_{u}(\Omega) \Rightarrow G_{n}(u)<G_{n}(v)$.
(h) $\operatorname{dom}_{n}(a+b) \simeq \operatorname{dom}_{n}(b)$ and $(a+b)[z]_{n} \simeq a+b[z]_{n}$ if $b \neq 0$.

Definition. For $a \in T_{0}(\Omega)$ and $n, m \in \omega$, we set:

$$
a[n]^{0}:=a ; \quad a[n]^{m+1}:=\left(a[n]^{m}\right)[n]_{n} \quad \text { (cf. Proposition 3(c)). }
$$

As in the Introduction GID_{Ω} will denote the theory ID_{ω}. In what follows we will work in GID $_{\Omega}$. Let n be a fixed natural number.

Let U_{n} denote the following set:

$$
U_{n}:=\left\{u \in T_{0}(\Omega): \exists m\left(u[n]^{m} \sim 0\right)\right\} .
$$

Clearly we have: $u \in U_{n} \Rightarrow G_{n}(u) \downarrow$.
Iterated inductive definition of sets $W_{u n} \subseteq T_{u}(\Omega)\left(u \in U_{n}\right)$
(W1) $0 \in W_{u n}$.
(W2) $a \in T_{u}(\Omega), \operatorname{dom}_{n}(a) \simeq\{n\}, a[n]_{n} \in W_{u n} \Rightarrow a \in W_{u n}$.
(W3) $a \in T_{u}(\Omega), \quad \exists v \in U_{n}\left(G_{n}(v)<G_{n}(u) \& \operatorname{dom}_{n}(a) \simeq T_{v}(\Omega) \& \forall z \in W_{v n}\left(a[z]_{n} \in\right.\right.$ $\left.\left.W_{u n}\right)\right) \Rightarrow a \in W_{u n}$.

Remark. It seems that this does not fit with an ω-times iterated inductive definition at first sight. Formally $W_{u n}$ is defined by
$W_{u n}:=\left\{a \in T(\Omega):\langle a, u, n\rangle \in \mathfrak{W}_{k}\right\} \quad$ where $k:=G_{n}(u)$,
$\mathfrak{B}_{k}:=\bigcap\left\{Y \subseteq T(\Omega) \times T_{0}(\Omega) \times \omega: \forall a, u, n\left(\mathcal{M}_{k}(Y, a, u, n) \rightarrow\langle a, u, n\rangle \in Y\right)\right\}$,
$\mathscr{\vartheta}_{k}(Y, a, u, n): \equiv u \in U_{n} \& G_{n}(u) \simeq k \& \mathscr{T}_{n}(u, a) \simeq 0 \&(a=0$ or $\left\{\operatorname{dom}_{n}(a) \simeq\{n\} \&\left\langle a[n]_{n}, u, n\right\rangle \in Y\right\}$ or $\exists v \in U_{n} \exists m<k\left\{G_{n}(v) \simeq m \& \operatorname{dom}_{n}(a) \simeq T_{v}(\Omega)\right.$ $\left.\left.\& \forall z\left(\langle z, v, n\rangle \in \mathfrak{W}_{m} \Rightarrow\left\langle a[z]_{n}, u, n\right\rangle \in \mathfrak{W}_{k}\right)\right\}\right)$.
(The remark follows the reviewer's suggestion.)

Proposition 4. (a) $a \in W_{0 n} \Leftrightarrow \exists m\left(a[n]^{m} \simeq 0\right)$ for $a \in T_{0}(\Omega)$, i.e., $W_{0 n}=U_{n}$.
(b) $v, u \in U_{n} \& G_{n}(v)<G_{n}(u) \Rightarrow W_{v n} \subseteq W_{u n}$.

Abbreviations. Let X range over subsets of $T(\Omega)$ which are definable in the language of GID_{Ω}.

1. By $A_{u n}(X, a)\left(u \in U_{n} \cup\{\Omega\}\right)$ we denote the following statement:

$$
\begin{aligned}
& a \in T_{u}(\Omega) \&\left\{a=0 \vee\left(\operatorname{dom}_{n}(a) \simeq\{n\} \& a[n]_{n} \in X\right) \vee \exists v \in U_{n}\left(G_{n}(v)<G_{n}(u)\right.\right. \\
&\left.\left.\& \operatorname{dom}_{n}(a) \simeq T_{v}(\Omega) \& \forall z \in W_{v n}\left(a[z]_{n} \in X\right)\right)\right\} .
\end{aligned}
$$

2. $A_{u n}(X):=\left\{x \in T(\Omega): A_{u n}(X, x)\right\}$.
3. $X^{(a)}:=\{y \in T(\Omega): a+y \in X\}$.
4. $\bar{X}:=\left\{y \in T(\Omega): \forall x \in X \cap T_{\Omega}(\Omega)\left(x+D_{\Omega} y \in X\right)\right\}$.
5. $W_{n}^{*}:=\left\{x \in T(\Omega): \forall u \in U_{n}\left(D_{u} x \in W_{u n}\right)\right\}$.

Note that, in 4, we can not assume $T_{\Omega}(\Omega)=T(\Omega)$ until Theorem A is proved. By the definition of $W_{u n}$, for all $u \in U_{n}$ we have:
(A1) $A_{u n}\left(W_{u n}\right)=W_{u n}$,
(A2) $A_{u n}(X) \subseteq X \Rightarrow W_{u n} \subseteq X$.

As in Part I we have the folowing lemma.
3.1. Lemma. (a) $A_{u n}(X) \subseteq X \& a \in X \cap T_{u}(\Omega) \Rightarrow A_{u n}\left(X^{(a)}\right) \subseteq X^{(a)} \quad\left(u \in U_{n} \cup\right.$ $\{\Omega\}$).
(b) $a, b \in W_{u n} \Rightarrow a+b \in W_{u n}\left(u \in U_{n}\right)$.
3.2. Lemma. (a) $A_{\Omega n}(X) \subseteq X \Rightarrow \bigcup\left\{W_{u n}: u \in U_{n}\right\} \subseteq X$.
(b) $0 \in W_{n}^{*}$.
(c) $A_{\Omega n n}\left(W_{n}^{*}\right) \subseteq W_{n}^{*}$.

Proof. (a) and (c) are proved exactly as in 1.2.
(b) We have to show $\forall u \in U_{n}\left(D_{u} 0 \in W_{u n}\right)$. As in 1.2 , we have
(1) $1 \in W_{0 n}$ and (2) $\exists v \in U_{n}(u=v+1) \Rightarrow D_{u} 0 \in W_{u n}$.

If $u \in U_{n}$ and $u \notin\{0\} \cup\left\{v+1: v \in U_{n}\right\}$, then $\operatorname{dom}_{n}\left(D_{u} 0\right) \simeq\{n\} ;\left(D_{u} 0\right)[n]_{n} \simeq$ $D_{u[n]_{n}} 0$ and $W_{u[n]_{n}, n} \subseteq W_{u n}$. Hence
(3) $u \in U_{n}, u \notin\{0\} \cup\left\{v+1: v \in U_{n}\right\}, D_{u \mid n l_{n}} 0 \in W_{u|n|_{n}, n} \Rightarrow D_{u} 0 \in W_{u n}$.

By induction on $u \in U_{n}$ we get the assertion.
3.3. Lemma. $A_{\Omega_{n}}(X) \subseteq X \Rightarrow A_{\Omega n}(\bar{X}) \subseteq \bar{X}$.

Proof. Assume $A_{s e n}(X) \subseteq X, A_{\Omega n}(\bar{X}, b)$ and $a \in X \cap T_{\Omega}(\Omega)$. We have to show $a+D_{\Omega} b \in X$. Except the case $b=0$, the same proof as in 1.3 works.

So it suffices to show $a+D_{\Omega} 0 \in X$. By 3.1(a) and 3.2(a) we have $\bigcup\left\{W_{u n}: u \in\right.$ $\left.U_{n}\right\} \subseteq X^{(a)} \cdot \operatorname{dom}_{n}\left(D_{\Omega} 0\right)=T_{0}(\Omega)$ and $\left(D_{\Omega} 0\right)[z]_{n}=D_{z} 0$ for $z \in T_{0}(\Omega)$. By 3.2(b) we have $\forall z \in W_{0 n}\left(D_{z} 0 \in W_{z n} \subseteq X^{(a)}\right)$. Hence $A_{\Omega n}\left(X^{(a)}, D_{\Omega} 0\right)$ and thus $D_{\Omega \Omega} 0 \in X^{(a)}$, since $A_{\Omega n}\left(X^{(a)}\right) \subseteq X^{(a)}$ by 3.1(a).
3.4. Lemma. For each $a \in T(\Omega)$,
(a) $a \in T_{0}(\Omega) \Rightarrow a \in W_{0 n}$.
(b) $A_{S n}(X) \subseteq X \Rightarrow a \in X$.

Proof. Again by simultaneus metainduction on the length of a. Assume $a=D_{u} b$. By 3.2(c) and IH we have $b \in W_{n}^{*}$. Assume $A_{\Omega n}(X) \subseteq X$ and $u \neq \Omega$. Then $u \in T_{0}(\Omega)$ and by $\mathrm{IH}, u \in W_{0 n}=U_{n}$. Hence by $3.2(\mathrm{a}), a \in W_{u n} \subseteq X$. Other cases are seen as in 1.4.

Lemma 3.4(a) yields Theorem A.
Now we work outside GID_{Ω}. By the soundness of the theory GID_{Ω} we have the following lemma.
3.5. Lemma. (a) $T_{0}(\Omega)=W_{0 n}$.
(b) $\forall u \in T_{0}(\Omega)\left(T_{u}(\Omega)=W_{u n}\right)$.
(c) $\forall n \in \omega\left\{\forall u \in T_{0}(\Omega)\left(G_{n}(u) \downarrow\right) \& \forall a \in T(\Omega)\left(\operatorname{dom}_{n}(a) \downarrow\right)\right\}$.

Let $<_{n}$ denote the following relation over $T(\Omega)$:

$$
b<_{n} a \quad: \Leftrightarrow \quad \exists z \in \operatorname{dom}_{n}(a)\left(b=a[z]_{n}\right)
$$

Then we see that the relation $<_{n}$ is well founded for all $n \in \omega$.

Definition of $c \ll_{k}$ a by transfinite induction on $a \in T(\Omega)$

$$
c \ll_{k} a \quad: \Leftrightarrow \quad a \neq 0 \& \forall z \in d_{k}(a)\left(c<_{k} a[z]_{k}\right)
$$

where

$$
d_{k}(a):= \begin{cases}\{k\}, & \text { if } \operatorname{dom}_{k}(a)=\{k\}, \\ \left\{D_{u} e: 0 \neq e \in T(\Omega)\right\}, & \text { if } \operatorname{dom}_{k}(a)=T_{u}(\Omega) .\end{cases}
$$

and

$$
c \leq_{k} a: \Leftrightarrow \quad c \ll_{k} a \quad \text { or } \quad c=a .
$$

For $u \in T_{0}(\Omega) \cup\{\Omega\}, a \in T(\Omega), b \in T(\Omega)$ and $n, k \in \omega, D_{u}^{n} a \in T(\Omega)$ and $a \rightarrow{ }_{n}^{k} b$ are defined as in Part I. Then 1.7 holds also in this case.
3.6. Lemma. (a) $\operatorname{dom}_{k}(a)=T_{v}(\Omega) \& G_{k}(u) \leqslant G_{k}(v) \& 1 \leqslant k \Rightarrow\left(D_{u} a\right)[1] \ll{ }_{k} D_{u} a$.
(b) $n+1<G_{k}(z)\left(z \in T_{0}(\Omega)\right) \Rightarrow \exists u\left(n+1=G_{k}(u) \& u+1<_{k} z\right)$.
(c) $a, z \in T_{0}(\Omega) \& a \ll_{k} z \Rightarrow D_{a} 0 \ll_{k} D_{z} 0$.
(d) $0 \rightarrow{ }_{g(k)}^{k} D_{\Omega} 0$ with $g(k)=(k+1)^{k+1}$.
(e) $0 \rightarrow_{n}^{k} a \Rightarrow 0 \rightarrow_{(k+1)^{k+1+n}}^{k} D_{\Omega} a$.
(f) $0 \rightarrow f_{f_{2}(k, l)}^{k} D_{\Omega \Omega}^{\prime} 0$ with $f_{\Omega}(k, 0)=0, f_{\Omega}(k, l+1)=(k+1)^{k+1+f_{\Omega}(k, l)}$.
(g) $0 \rightarrow h_{h(k, u)}^{k} D_{u} 0$ with $h(k, u)=(k+1)^{G_{k}(u)}$.

Proof. Cf. 1.8.

4. The infinitary system GID $_{\Omega}^{\infty}$

The theory GID_{Ω} is an extension of PA by the following axioms;
($\left.P^{\mathrm{y}} .1\right) \forall y\left(\mathfrak{A}_{y}\left(P_{y}^{2 y}\right) \subseteq P_{y}^{\mathrm{yy}}\right)$.
($P^{\mathrm{m}} .2$) $\forall y\left(\mathcal{A}_{y}(F) \subseteq F \rightarrow P_{y}^{\mathrm{yl}} \subseteq F\right)$ for every L_{ID}-formula $F(x)$.
($\left.P_{<}^{\mathrm{M}}\right) \quad \forall y \forall x_{0} \forall x_{1}\left(P_{<y}^{\mathrm{N}} x_{0} x_{0} x_{1} \leftrightarrow x_{0}<y \wedge x_{1} \in P_{x_{n}}^{\mathrm{Ml}}\right)$.
Again $\mathrm{GID}_{\Omega}^{\infty}$ is formulated in the language $L_{\mathrm{ID}}(N)$. The length of a formula, basic inference rules, the set $\operatorname{Pos}_{u k}$ of formulas and the derivability relation $k \vdash_{m}^{a} \Gamma$ for $\mathrm{GID}_{\Omega}^{\infty}$ are defined mutatis mutandis.

Inductive definition of formula set $\operatorname{Pos}_{u k}\left(u \in T_{0}(\Omega)\right)$

1. All a.p.f.'s belong to $\operatorname{Pos}_{u k}$.
2. Nt $\in \operatorname{Pos}_{u k}$.
3. $N t \in \operatorname{Pos}_{u k} \Leftrightarrow 0<G_{k}(u)$, i.e., $u \neq 0$.
4. $P_{n}^{\mu t} t,(\neg) P_{<n}^{v t} t_{0} t_{1} \in \operatorname{Pos}_{u k} \Leftrightarrow n+1 \leqslant G_{k}(u)$.
5. $\neg P_{n}^{* \prime} t \in \operatorname{Pos}_{u k} \Leftrightarrow n+1<G_{k}(u)$.
6. $A \$ B \in \operatorname{Pos}_{u k} \Leftrightarrow A, B \in \operatorname{Pos}_{u k}, \$ \in\{\wedge, \vee\}$.
7. $\mathrm{Q} x A \in \operatorname{Pos}_{u k} \Leftrightarrow A \in \operatorname{Pos}_{u k}, \mathrm{Q} \in\{\forall, \exists\}$.

The rule $\left(\Omega_{u+1}\right)$ is defined as follows:
$\left(\Omega_{u+1}\right)$ If $R t$ is an atomic formula of the form $N t$ or $P_{n}^{w l} t$, and the following four conditions hold, then $k \vdash_{m}^{a} \Gamma$.
(1) $\operatorname{dom}_{k}(a)=T_{u}(\Omega)$.
(2) $k \vdash_{m}^{a(1)_{k}} \Gamma, R t$.
(3) $\forall z \in T_{u}(\Omega) \forall \Delta \subseteq \operatorname{Pos}_{u k}\left(k \vdash_{0}^{z} \Delta, R t \Rightarrow k \vdash_{m}^{u[z] k} \Delta, I\right)$.
(4) $R t \in \operatorname{Pos}_{u k}$.

Then $2.1-2.8$ hold with $\tilde{n}:=D_{s_{2}}^{n} 0.2 .9$ now runs as follows.
4.1. Lemma. If $l=|F|$ and $G_{k}(u)=0$, if $R \equiv N$ and $G_{k}(u)=n+1$, if $R \equiv P_{n}^{e r}$, then $k \vdash_{0}^{-I^{I}+D_{u+1} 0} \Theta, \neg R t, F(t)$ for any $k \geqslant 1$. (Θ denotes the set defined in the definition after 2.8.)
4.2. Lemma. If $z \in T_{0}(\Omega), \Delta \subseteq \operatorname{Pos}_{0 k}, k \vdash_{0}^{z} \Delta, N n$ and $G_{k}(z)<n+1$, then $k \vdash_{0}^{z} \Delta$.

Proof. By transfinite induction on $k \vdash_{0}^{2} \Delta, N n$.

1. Suppose $z=w+1$ and $k \vdash_{0}^{w} \Delta, N n, n=0 \vee\left(n=m^{\prime} \wedge N m\right)$. By IH we have $k \vdash_{0}^{w} \Delta, n=0 \vee\left(n=m^{\prime} \wedge N m\right)$.
1.1. $n=0$: Then $G_{k}(w)+1=G_{k}(z) \leqslant 1$ and hence $w=0$. By 2.7(d) we have $k \vdash_{0}^{0} \Delta$.
1.2. $n \neq 0$ and $n \neq m+1$: By 2.7(b),(c) and 2.1, we have $k \vdash_{0}^{w} \Delta$.
1.3. $n=m+1$: Again by 2.7(b),(c) and 2.1, we have $k t_{0}^{w} \Delta, N m$ and $G_{k}(w) \leqslant m+1$. Hence IH (since $k \vdash_{0}^{w} \Delta, N m$ holds in a previous stage of the derivability relation) we get $k \vdash_{0}^{w} \Delta$.
2. Other cases arc casy.
4.3. Lemma. Put $\Gamma:=\left\{\neg\left(\mathscr{H}_{n}(F) \subseteq F\right)^{N}, n \notin N, t \notin P_{n}^{* l}, F(t)\right\}$ and $l:=|F|$. Then, for any $k \geqslant 1$,

$$
k \vdash_{0}^{\bar{i}+D_{\Omega} 0} \Gamma .
$$

Proof. Put $a:=\tilde{l}+D_{\Omega} 0$. Then
(1) $\operatorname{dom}_{k}(a)=T_{0}(\Omega)$,
(2) $k \vdash_{0}^{a(1]_{k}} \Gamma, N n$ and
(4) $N n \in \operatorname{Pos}_{0 k}$.

Also $a[z]_{k}=\tilde{l}+D_{z} 0$ for $z \in T_{0}(\Omega)$. By $\left(\Omega_{1}\right)$ it remains to show
(3) $\forall z \in \mathrm{~T}_{0}(\Omega) \forall \Delta \subseteq \operatorname{Pos}_{0 k}\left(k \vdash_{0}^{z} \Delta, N n \Rightarrow k \vdash_{0}^{a[z)_{k}} \Delta, \Gamma\right)$.

Assume that $z \in T_{0}(\Omega), \Delta \subseteq \operatorname{Pos}_{0 k}$ and $k \vdash_{0}^{z} \Delta, N n$.

1. $G_{k}(z) \leqslant n+1$: Then by $4.2, k \vdash_{0}^{z} \Delta$. By 2.5(b), 2.7(a) and $3.6(\mathrm{~g})$ we have $k \vdash_{0}^{D_{z} 0} \Delta$ and hence $k \vdash_{0}^{a[z]_{k}} \Delta, \Gamma$.
2. $n+1<G_{k}(z)$: Then by $3.6(\mathrm{~b}), n+1=G_{k}(u)$ and $u+1<_{k} z$ for some u. By 4.1 we have $k \vdash_{0}^{a[u+1]_{k}} \Gamma$. By 3.6(c), $D_{u+1} 0<_{k} D_{z} 0$ and hence $k \vdash_{0}^{a[z]_{k}} \Gamma$.

We have $D_{1} 0<_{k} D_{k+1} 0 \ll_{k} D_{\omega} 0 \ll_{k} D_{\Omega \Omega} 0$. Thus by 4.1 and 4.3 we get:
4.4. Lemma. For each universal closure A of an axiom of the theory GID_{Ω} there exists an $n \in \omega$ such that $k \vdash_{0}^{\bar{n}} A^{\mathcal{N}}$ for any $k \geqslant 1$.
4.5. Lemma. If a sentence A is provable in GID_{Ω}, then there exists an $n \in \omega$ such that $k \vdash_{0}^{\bar{n}} A^{N}$ for any $k \geqslant 1$.

Proof of Theorem B. Assume $\mathrm{GID}_{\Omega 2} \vdash \forall x \exists y \phi(x, y)\left(\phi \in \Sigma_{1}^{0}\right)$. By 4.5 there exists an n_{1} such that $k \vdash_{0}^{n_{1}} n \notin N, \exists y \in N \phi^{N}(x, y)$ for all n and all $k \geqslant 1$. Assume $n_{1} \geqslant 2$.
(a) Put $n_{0}:=n_{1}+1$ and $k:=1$. If $3 \leqslant n_{0} \leqslant n$, then $2 n+2 \leqslant f_{\Omega}(1, n-1)$. From this and $3.6(f)$, we see that the theorem is true.
(b) Put $n_{0}:=n_{1}+1$ and $k:=n>0$. If $n \neq 0$, then $2 n+2 \leqslant f_{\Omega}(n, 2) \leqslant f_{\Omega}\left(n, n_{1}\right)$. From this and 3.6 (f) we see that the theorem is true.
(c) By definition $\left(D_{0} D_{\Omega+1} 0\right)[n]_{n}:=D_{0} D_{\Omega}^{n} 1$. (c) follows from (b).

Acknowledgements

I wish to express my heart-felt thanks to Professor W. Buchholz and the referee for invaluable comments and suggestions.

References

[1] W. Buchholz, Eine Erweiterung der Schnitteliminationsmethode, Habilitationsschrift, Universität München, 1977.
[2] W. Buchholz, A new system of proof-theoretic ordinal functions, Ann. Pur Appl. Logic 32 (1986) 195-207.
[3] W. Buchholz, An independence result for ($\left.\Pi_{1}^{1}-\mathrm{CA}\right)+$ BI, Ann. Pure Appl. Logic 33 (1987), 131-155.
[4] W. Buchholz and K. Schütte, Proof theory of impredicative subsystems of analysis, Studies in Proof Theory (Bibliopolis, Napoli, 1988).
[5] W. Buchholz and S. Wainer, Provably computable functions and the fast growing hierarchy, in: S. Simpson, ed., Logic and Combinatorics, Contemp. Math. 65 (AMS, Providence, RI, 1987) 179-198.

[^0]: * This paper was presented at the International Symposium on Mathematical Logic and its Applications, Nagoya, Japan, November 7-11, 1988.

