

Available online at www.sciencedirect.com

JOURNAL OF Algebra

Journal of Algebra 310 (2007) 57–69

www.elsevier.com/locate/jalgebra

Free product decompositions in images of certain free products of groups

N.S. Romanovskii ^a*,*¹ , John S. Wilson ^b*,*[∗]

^a *Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia* ^b *University College, Oxford OX1 4BH, United Kingdom*

> Received 25 June 2006 Available online 18 September 2006 Communicated by Evgenii Khukhro

Abstract

Let *F* be the free product of *n* groups and let *R* be a normal subgroup generated (as a normal subgroup) by *m* elements of *F*, where $m < n$. The Main Theorem gives sufficient conditions for families of fewer than *n*−*m* subgroups in certain quotients of *F/R* to generate their free product. This leads to a more direct proof of a result of the first author, that if *G* is a group having a presentation with *n* generators and *m* relators, where $m < n$, then any generating set for *G* contains $n - m$ elements that freely generate a free subgroup of *G*. Another consequence is that an *n*-generator one-relator group cannot be generated by fewer than *n*−1 subgroups each having a non-trivial abelian normal subgroup. © 2006 Elsevier Inc. All rights reserved.

Keywords: Free products; Relations; Magnus Freiheitssatz

1. Introduction

In [8], the second author proved the following result:

Theorem 1. Let G be a group which has a presentation with *n* generators x_1, \ldots, x_n and *m relators, where* $m < n$ *, and let S be any generating set for* G *. Then some subset of* $n - m$ *elements of S freely generates a free group.*

0021-8693/\$ – see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2006.08.008

Corresponding author.

E-mail addresses: rmnvski@math.nsc.ru (N.S. Romanovskii), wilsonjs@maths.ox.ac.uk (J.S. Wilson).

The author was partly supported by RFFR, grant 05-01-00292.

The history of this result dates back to 1930, when Magnus [4] published his Freiheitssatz, which is essentially the case of Theorem 1 in which $S = \{x_1, \ldots, x_n\}$ and $m = 1$. In 1978 the first author [5] generalized the result of Magnus by proving the case of Theorem 1 in which $S = \{x_1, \ldots, x_n\}$ and *m* is any integer less than *n*. The proof of Theorem 1 was indirect, relying on another result of the first author [6].

Here we shall give a direct proof of a considerably more general result. Roughly speaking, the improvement consists of the replacement of the elements x_i by subgroups, of the members of S by suitably small subgroups, and of the hypothesis that *S* generates *G* by a weaker hypothesis. Before stating our Main Theorem we illustrate its power by stating two further consequences.

Theorem 2. Let $G = F/R$, where F is a free product of groups A_1, \ldots, A_n and R is generated as a normal subgroup of F by m elements and where $m < n$. Suppose also that each group A_i *has a non-trivial torsion-free abelian image. Let B*1*,...,Bn*[−]*m*−¹ *be torsion-free subgroups that generate G. Then some subgroup Bi has a non-cyclic free subgroup.*

Theorem 3. Let G be a torsion-free group having a presentation with *n* generators x_1, \ldots, x_n and one relation, where $n \geqslant 2$.

- (a) *Suppose that H is a subgroup of G that can be generated by fewer than n* − 1 *subgroups each having a non-trivial abelian normal subgroup. Then, for some xi with non-trivial image* \bar{x}_i *in G, the subgroups* $\langle \bar{x}_i \rangle$ *and H of G generate their free product.*
- (b) *If G can be generated by subgroups B*1*,...,Bn*[−]1*, each having a non-trivial abelian normal subgroup, then G is the free product* $B_1 * \cdots * B_{n-1}$ *and all but one of the subgroups* B_i *are cyclic.*

All of the above results concern subgroups of groups of the form F/R where F is a free product of *n* groups and *R* is generated as a normal subgroup by fewer than *n* elements. Our Main Theorem makes strong assertions about families of subgroups not usually of *F/R* but of certain images of F/R . We begin by describing the condition that will be imposed on the subgroups.

We say that a finitely generated torsion-free group is *linked* if it lies in the smallest class \mathcal{X} of groups containing all infinite cyclic groups and having the property that $\langle A, B \rangle \in \mathcal{X}$ whenever *A, B* $\in \mathcal{X}$ and $\langle A, B \rangle$ is not the free product of *A, B.* Every such group *G* can be constructed by finitely many operations of taking joins of previously constructed subgroups *A*, *B* whose join is not the free product of *A*, *B*, starting from cyclic groups; the minimal number of operations required is called the *height* of *G*.

We call an arbitrary group linked if every finitely generated subgroup is contained in a linked finitely generated subgroup.

The class of linked groups is rather extensive. It contains all torsion-free 2-generator groups that are not free and all torsion-free groups having no free subgroups of rank 2. We shall show that it also contains every torsion-free group having a non-trivial subnormal subgroup with no free subgroups of rank 2. This, and other properties of linked groups, are discussed in Section 2 below.

Now we shall describe the images of free products with relations to which our results apply. The following notation will be used in the Main Theorem.

Hypothesis. Let *F* be the free product of a finite family *A* of groups. Write $n = |A|$, let $m < n$, and let *R* be a normal subgroup of *F* generated (as a normal subgroup) by *m* elements of *F*.

By a *filter* of normal subgroups of a group G we understand a family $\mathcal F$ of normal subgroups with the property that for any $K_1, K_2 \in \mathcal{F}$, there is a subgroup $K_3 \in \mathcal{F}$ with $K_3 \leqslant K_1 \cap K_2$. We call a family F of normal subgroups of F a *strong special filter* if it has the following three properties:

- (i) F is a filter consisting of normal subgroups of F containing R ;
- (ii) for each $K \in \mathcal{F}$ the group ring $\mathbb{Z}(F/K)$ can be embedded in a skew-field Q_K ;
- (iii) if $K \in \mathcal{F}$ and if *L* is a normal subgroup of *F* such that $R \le L \le K$ and K/L is a torsion-free abelian group then $L \in \mathcal{F}$.

By a theorem of Kropholler, Linnell and Moody [2], the group ring of a soluble (or even elementary amenable) torsion-free group over a right Ore domain is itself a right Ore domain, and so can be embedded in a skew-field. Therefore the family consisting of all normal subgroups $K \ge R$ with F/K soluble and torsion-free is a strong special filter (and similarly with 'soluble' replaced by 'elementary amenable').

In our Main Theorem we shall be concerned with filters of normal subgroups of *F*, but we do not require the full force of condition (iii): it will suffice that conditions (i), (ii) hold and that, for each $K \in \mathcal{F}$, we have $L \in \mathcal{F}$ for just one subgroup *L* associated with *K*. This subgroup, denoted by $s(K)$, will be defined in Section 3; it depends on the choice of the skew-field Q_K . We call a family F of normal subgroups of F a *special filter* (or an *s*-filter for short) if it satisfies (i), (ii) and the following condition:

(iii)' if $K \in \mathcal{F}$ then $s(K) \in \mathcal{F}$.

Main Theorem. Let \mathcal{F} be an *s*-filter and $G = F/R_{\mathcal{F}}$, where $R_{\mathcal{F}} = \bigcap_{K \in \mathcal{F}} K$. For $A \in \mathcal{A}$ write *A for the image of A in G. Suppose that for each* $A \in \mathcal{A}$ *with* $\overline{A} = 1$ *the abelianization of A is not a torsion group. Let B be a family of linked subgroups of G, set* $J = \langle B | B \in \mathcal{B} \rangle$ *, and suppose that for each A in A with* $A \neq 1$ *, the subgroups A and J do not generate their free product in G.* $\mathcal{B} \leq \mathcal{B} \leq \mathcal{B} \leq \mathcal{B} \leq \mathcal{B}$ *n* \mathcal{B} *m members of B that generate in G their free product.*

Among the noteworthy special cases are the case in which F/R is residually (soluble and torsion-free) and F consists of all subgroups K with $R \le K \le F$ and F/K soluble and torsionfree (so that $G = F/R$), and the case when B generates G (so that the condition that J and certain subgroups of *G* do not generate their free product becomes automatic). We conclude this Introduction by showing that Theorems 1–3 are immediate consequences of the Main Theorem.

Assume the hypotheses of Theorem 1; thus *F* is free on a set $\{x_1, \ldots, x_n\}$ and *R* is generated as a normal subgroup of *F* by *m* elements. Let $A = \{ \langle x_i \rangle | i = 1, ..., n \}$, and let *F* be the *s*-filter of all normal subgroups K of F containing R such that F/K is torsion-free and soluble. Let $h \mapsto h$ be the map $F/R \to F/R$. Let *S* be any generating set for F/R . By the Main Theorem, there is a subset $\mathcal X$ of $\{\langle \bar{s} \rangle \mid s \in S, \ \bar{s} \neq 1\}$ with $|\mathcal X| \geq n - m$ that generates its free product; it follows that the set $\{s \mid \langle \overline{s} \rangle \in \mathcal{X} \}$ freely generates a free group.

Next assume the hypotheses of Theorem 2. Define $\mathcal F$ exactly as above and let $\mathcal B$ be the family consisting of the images in F/R_F of the subgroups B_i . Since $|\mathcal{B}| < n - m$, the Main Theorem implies that not all groups in β are linked, so that (e.g., by Proposition 1 below) one of them has a free subgroup of rank 2, and Theorem 2 follows.

Finally we show that Theorem 3 holds, with the requirement that subgroups have non-trivial abelian normal subgroups replaced by the much weaker requirement that they are linked. Let *G* be isomorphic to F/R , where F is free of rank *n* and R is generated (as a normal subgroup) by one element of *F*. Since Z*G* can be embedded in a skew-field by a theorem of J. Lewin and T. Lewin [1], the family ${R}$ is an *s*-filter. Assertion (a) and the fact that $G = B_1 * \cdots * B_{n-1}$ in (b) now follow directly from the Main Theorem, and the rest of (b) follows since *G* can be generated by *n* elements.

2. Linked groups

Let *G* be a non-trivial torsion-free group. For *a*, $b \in G \setminus \{1\}$ write $a \sim b$ if and only if *a*, *b* are contained in some (finitely generated) linked subgroup. Clearly ∼ is an equivalence relation on $G \setminus \{1\}$. The union of $\{1\}$ and the equivalence class containing *a* is called the linked component of *G* containing *a*.

Lemma 1. *Let G be a non-trivial torsion-free group.*

- (a) *Each linked component is a subgroup of G.*
- (b) If G_1 , G_2 are distinct linked components of G then $\langle G_1, G_2 \rangle = G_1 * G_2$.
- (c) Let $\{G_i \mid i \in I\}$ be a family of linked subgroups of G such that $G = \bigcup_{i \in I} G_i$ and $\langle G_i, G_j \rangle =$ $G_i * G_j$ *if* $i \neq j$. Then the subgroups G_i are exactly the linked components of G.

Proof. (a) follows immediately from the definition of the equivalence relation ∼.

Suppose that G_1 , G_2 are linked components and that G_1 , G_2 do not generate their free product. Then there are finitely generated linked subgroups $H_1 \leq G_1$ and $H_2 \leq G_2$ such that $\langle H_1, H_2 \rangle \neq H_1 * H_2$. Thus $\langle H_1, H_2 \rangle$ is a linked subgroup and it is contained in one linked component. It follows that $G_1 = G_2$, and assertion (b) follows.

(c) It is sufficient to prove that each finitely generated linked subgroup *H* is contained in some G_i . If *H* is cyclic this is clear. Otherwise, we may write $H = \langle A, B \rangle \neq A * B$ where *A*, *B* are finitely generated linked subgroups with heights less then the height of *H.* By induction we can suppose that there are indices *i, j* such that $A \le G_i$, $B \le G_j$. If $G_i \ne G_j$ then $\langle G_i, G_j \rangle =$ $G_i * G_j$ so that $\langle A, B \rangle = A * B$, and the result follows from this contradiction. \Box

Lemma 2. Let G be a torsion-free group with a non-trivial linked subgroup H such that $\langle g, H \rangle \neq$ $\langle g \rangle * H$ *for all* $g \in G \setminus \{1\}$ *. Then G is linked.*

Proof. Fix $h_0 \in H \setminus \{1\}$, and let $g \in G \setminus \{1\}$. By hypothesis, *H* has a finitely generated linked subgroup *A* containing *h*₀ such that $\langle g, A \rangle \neq \langle g \rangle * A$. Clearly $\langle g, A \rangle$ is linked, so that $g \sim h_0$. Thus *G* has a single equivalence class and the result follows. \Box

Since *H* is not a subnormal subgroup of the free product $H * K$ unless $H = 1$ or $K = 1$, Lemma 2 has the following immediate consequence.

Proposition 1. *Let G be a torsion-free group.*

- (a) *If G has a non-trivial subnormal linked subgroup then G is linked.*
- (b) *If G has a non-trivial subnormal subgroup which contains no free subgroups of rank* 2*, then G is linked.*

Lemma 3. Let *G* be a group and K be a filter of normal subgroups of *G* such that $\bigcap_{K \in \mathcal{K}} K = 1$. *Let* $\mathcal{L} = \{L \triangleleft G \mid G/L \text{ is torsion-free}\}$ *. Let B be a finitely generated linked subgroup of G. Then* K contains a subgroup K_0 such that the image of *B* in G/L is linked whenever $L \in \mathcal{L}$ and $L \leqslant K_0$.

Proof. We argue by induction on the height of *B*. The result is clear if *B* is cyclic. Assume therefore that $B = \langle D_1, D_2 \rangle$, where each of D_1, D_2 is linked and *B* is not the free product of D_1 , D_2 . By induction there are subgroups $K_1, K_2 \in \mathcal{K}$ such that D_1L/L is linked for all *L* ∈ *L* with *L* ≤ *K*₁ and *D*₂*L*/*L* is linked for all *L* ≤ *K*₂. Since *B* is not the free product of *D*₁, D_2 , we can find a non-trivial element *w* of $D_1 * D_2$ that maps to 1 in *B*. Now *w* is a product of a sequence *Y* of elements coming alternately from $D_1 \setminus \{1\}$ and $D_2 \setminus \{1\}$. Let K_3 be a subgroup in K such that all distinct elements of Y are non-congruent modulo K_3 ; then for each $L \leq K_3$ the images of *w* in $D_1L/L * D_2L/L$ and BL/L are respectively non-trivial and trivial. We conclude that *BL/L* is linked for each $L \in \mathcal{L}$ with $L \leq K_1 \cap K_2 \cap K_3$, and the result follows.

3. Further preliminary results

Our notation for conjugates and commutators in a group *G* is as follows: we write $a^b = b^{-1}ab$ and $[a, b] = a^{-1}b^{-1}ab$. We write [*G*, *G*] for the derived subgroup of a group *G* and we set $G^{(0)} = G$, $G^{(n+1)} = [G^{(n)}, G^{(n)}]$ for $n \ge 0$. We write X^G for the normal subgroup of a group G generated by a subset *X*.

Let G be a group, let $K \triangleleft G$ and let V be a right $\mathbb{Z}(G/K)$ -module. It is convenient to regard the split extension of *V* by G/K as the group of matrices

$$
\begin{pmatrix} G/K & 0 \\ V & 1 \end{pmatrix} = \left\{ \begin{pmatrix} gK & 0 \\ v & 1 \end{pmatrix} \middle| g \in G, v \in V \right\},\
$$

with multiplication defined in the obvious manner. We may regard V as a $\mathbb{Z}G$ -module. If *δ* : *G* → *V* is a derivation (that is, if $\delta(g_1g_2) = \delta(g_1)g_2 + \delta(g_2)$ for all $g_1, g_2 \in G$) then the map

$$
g \mapsto \begin{pmatrix} gK & 0 \\ g\delta & 1 \end{pmatrix}
$$

is a group homomorphism with kernel containing $[K, K]$; if δ is an inner derivation (that is, *δ* is the map *g* \mapsto *v*₀(*g* − 1) for some element *v*₀ of *V*) then the kernel of this map is *K*. To examine the kernels of certain such maps in more detail we shall use the Magnus representation, as extended by Shmelkin and the first author; all we require can be deduced from the following result from [7]:

Lemma 4. Let $F = A_1 * \cdots * A_n$ be the free product of the groups A_1, \ldots, A_n and let $H = F/R$, *where* $A_i \cap R = 1$ *for* $i = 1, \ldots, n$ *. Let T be the free right* \mathbb{Z} *H-module with basis* $\{t_1, \ldots, t_n\}$ *. Let*

$$
\varphi\!: \!F \to \left(\!\!\begin{array}{cc} H & 0 \\ T & 1\end{array}\!\!\right)
$$

be the homomorphism defined on the free factors Ai of F by

$$
a \mapsto \begin{pmatrix} aR & 0 \\ t_i(a-1) & 1 \end{pmatrix} \quad \text{for } a \in A_i.
$$

Then ker φ = [*R*, *R*].

We may extend Lemma 4 as follows.

Lemma 5.

(a) If the requirement that $R \cap A_i = 1$ for each *i* is omitted in Lemma 4 then

$$
\ker \varphi = [R, R] \big((A_i \cap R)^F \mid 1 \leq i \leq n \big).
$$

(b) *The conclusion of Lemma* 4 *remains true if the hypothesis on T is replaced by the requirement that* $\{t_2, \ldots, t_n\}$ *is a basis of T and* $t_1 = 0$ *.*

Proof. Assertion (a) follows from standard arguments and assertion (b) from the formula

$$
\begin{pmatrix} 1 & 0 \ t_1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} aR & 0 \ t_i(a-1) & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \ t_1 & 1 \end{pmatrix} = \begin{pmatrix} aR & 0 \ (t_i - t_1)(a-1) & 1 \end{pmatrix}.
$$

Lemma 6. Let $F = D_1 * D_2$ and $G = F/R$, where $D_1 \cap R = D_2 \cap R = 1$. Suppose that $\mathbb{Z}G$ is *contained in a skew-field Q and let V be a vector space over Q and* $v_1, v_2 \in V$ *. Let*

$$
\varphi: F \to \begin{pmatrix} G & 0 \\ V & 1 \end{pmatrix}
$$

be the group homomorphism defined by

$$
\varphi(x_1) = \begin{pmatrix} x_1 R & 0 \\ v_1(x_1 - 1) & 1 \end{pmatrix}, \qquad \varphi(x_2) = \begin{pmatrix} x_2 R & 0 \\ v_2(x_2 - 1) & 1 \end{pmatrix}
$$

for all $x_1 \in D_1$, $x_2 \in D_2$. Then either ker $\varphi = [R, R]$ *or* ker $\varphi = R$ *, and in the latter case* $v_1 = v_2$ *.*

Proof. The conclusion holds if $v_1 = v_2 = 0$. Therefore, interchanging D_1 , D_2 if necessary, we may assume that $v_1 \neq 0$.

Let *W* be a vector space over *Q* with basis $\{w_1, w_2\}$ and define

$$
\sigma: F \to \begin{pmatrix} G & 0 \\ W & 1 \end{pmatrix}
$$

by

$$
x_1 \mapsto \begin{pmatrix} x_1R & 0 \\ w_1(x_1-1) & 1 \end{pmatrix}, \qquad x_2 \mapsto \begin{pmatrix} x_2R & 0 \\ w_2(x_2-1) & 1 \end{pmatrix}
$$

for all $x_1 \in D_1$, $x_2 \in D_2$. From Lemma 4 we have ker $\sigma = [R, R]$.

Let $\tau_1, \tau_2 : W \to V$ be the linear maps defined by

$$
\tau_1(w_1) = \tau_1(w_2) = \tau_2(w_1) = v_1, \qquad \tau_2(w_2) = v_2.
$$

Then dim ker $\tau_1 = 1$ and dim ker $\tau_2 \leq 1$. The maps τ_1 , τ_2 and the identity map $G \to G$ induce two group homomorphisms

$$
\lambda_1, \lambda_2: \begin{pmatrix} G & 0 \\ W & 1 \end{pmatrix} \to \begin{pmatrix} G & 0 \\ V & 1 \end{pmatrix}.
$$

Thus $\lambda_2 \sigma = \varphi$, and

$$
\lambda_1 \sigma(x) = \begin{pmatrix} xR & 0 \\ v_1(x-1) & 1 \end{pmatrix}
$$

for all $x \in D_1 \cup D_2$, and hence for all $x \in F$. Thus ker $\lambda_1 \sigma = R$.

Clearly $[R, R] \leq \ker \varphi \leq R$. Suppose that $\ker \varphi \neq [R, R]$ and choose $r \in \ker \varphi \setminus [R, R]$. Let

$$
\sigma(r) = \begin{pmatrix} 1 & 0 \\ w & 1 \end{pmatrix}.
$$

Since $λ_1σ(r) = 1$ and $λ_2σ(r) = φ(r) = 1$ we have $w ∈ \text{ker } τ_1 ∩ \text{ker } τ_2$. We conclude that ker $τ_1 =$ ker $\tau_2 = wQ$, and so $\lambda_1 = \lambda_2$ and $\varphi = \lambda_1 \sigma$, as required. \Box

Lemma 7. Let *G be a group and* \mathcal{L} *be a filter of normal subgroups such that* $\bigcap_{L \in \mathcal{L}} L = 1$ *. Let* B *be a finite set of subgroups of G. Suppose that for each L* ∈ L *there are n subgroups from* B *whose images in G/L generate their free product in G/L. Then there are n subgroups from* B *which generate their free product in G.*

Proof. Let B_1, \ldots, B_q be the subfamilies of B with *n* elements. For each *i* write F_i for the free product of the groups in \mathcal{B}_i and $F_{i,L}$ (for $L \in \mathcal{L}$) for the free product of the family { BL/L | $B \in \mathcal{B}_i$. If the conclusion of the lemma is false then for each *i* there is an element $w_i \in F_i \setminus \{1\}$ whose image in G is trivial. The word w_i is a product of a sequence of non-trivial elements of $\bigcup_{B \in \mathcal{B}_i} B$ with no two consecutive terms from the same member of \mathcal{B}_i ; choose $L_i \in \mathcal{L}$ such that the distinct elements in this sequence are non-trivial and non-congruent modulo L_i , and choose *M* ∈ \mathcal{L} with $M \leq \bigcap_{i=1}^{q} L_i$. Then for each *i* the image of w_i in $F_{i,M}$ is non-trivial, and since the image of w_i in G/M is trivial, the map from F_i _M to G/M is not injective. The result follows from this contradiction. \Box

Lemma 8. Let $R_1 \geq R_2 \geq \cdots$ be a series of normal subgroups of a free product $E = A * B$ and *suppose that*

$$
\bigcap_{i=1}^{\infty} (A \cap R_i) = \bigcap_{i=1}^{\infty} (B \cap R_i) = 1.
$$

Suppose that for infinitely many indices i we have

$$
R_{i+1} \leqslant [R_i, R_i](R_i \cap A)^E (R_i \cap B)^E.
$$

Then $\bigcap_{i=1}^{\infty} R_i = 1$.

Proof. Fix some index *k* and set $A_k = A/(A \cap R_k)$, $B_k = B/(B \cap R_k)$. Write $E_k = A_k * B_k$ and write \overline{R}_i for the image of R_i in E_k . We have $A_k \cap \overline{R}_k = B_k \cap \overline{R}_k = 1$ and so \overline{R}_k is free by the Kurosh subgroup theorem (see [3, IV.1.10]). It follows that $\bigcap_{k=1}^{\infty}$ (ker $E \to E_k$) = 1 (see [3, I.3.4]). By hypothesis we have $R_{i+1} \leqslant [R_i, R_i]$ for infinitely many indices $i \geqslant k$, and hence

$$
\bigcap_{i=1}^{\infty} \overline{R}_i \leqslant \bigcap_{n=1}^{\infty} \overline{R}_k^{(n)} = 1.
$$

Therefore

$$
\bigcap_{i=1}^{\infty} R_i \leqslant \bigcap_{k=1}^{\infty} (\ker E \to E_k) = 1. \qquad \Box
$$

Now we discuss the subgroup $s(K)$ which occurs in property (iii) of *s*-filters, and place it in the context in which we shall use it. Let F and R be as in the Hypothesis from the Introduction. Let *K* be a normal subgroup of *F* such that $R \le K$ and such that $\mathbb{Z}(F/K)$ can be embedded in a skew-field Q_K . Consider the right vector space *V* over Q_K with basis $\{t_A \mid A \in \mathcal{A}\}\$ and the homomorphism

$$
\varphi: F \to \begin{pmatrix} F/K & 0 \\ V & 1 \end{pmatrix},
$$

which is defined on the free factors *A* of *F* by

$$
a \mapsto \begin{pmatrix} aK & 0 \\ t_A(a-1) & 1 \end{pmatrix} \quad \text{for } a \in A.
$$

By Lemma 5(a) we have ker $\varphi = [K, K] \langle (A \cap K)^F | A \in \mathcal{A} \rangle$. For each $r \in R$ the element $\varphi(r)$ has the form

$$
\begin{pmatrix} 1 & 0 \\ u(r) & 1 \end{pmatrix}.
$$

Let *U* be the subspace of *V* spanned by $\{u(r) | r \in R\}$, let

$$
\psi: F \to \begin{pmatrix} F/K & 0 \\ V/U & 1 \end{pmatrix}
$$

be the map induced by φ , and define $s(K) = \ker \psi$. It is clear that $R \ker \varphi \leq s(K) \leq K$ and that $K/s(K)$ is a torsion-free abelian group. We note that $s(K)$ depends not only on K but also on the choice of Q_K .

 $\bigcap_{i=0}^{\infty} K_i$. The family $C_K = \{K_0, K_1, \ldots\}$ is an *s*-subfilter of \mathcal{F} ; we call it the *chain generated* Let F be an *s*-filter and $K \in \mathcal{F}$. We define $K_0 = K$, $K_{i+1} = s(K_i)$ for $i \ge 0$ and $L_K = \infty$ K_i . The family $C_{i+1} = K_{i} \times K_{i+1}$ is an *s* subfilter of \mathcal{F} ; we call it the *shain generated by K.* Note that by construction $K \cap A = K_i \cap A$ for all $A \in \mathcal{A}$ and for $i = 0, 1, \ldots$.

4. Proof of the Main Theorem

Assume the hypotheses of the Main Theorem. We begin with some reductions.

Lemma 9. *It suffices to prove the Main Theorem under the following additional hypotheses*:

- (a) *all groups in* B *are finitely generated linked groups*;
- (b) *if* $R \le L \le F$ *and* F/L *is torsion-free, and if* $L \le K$ *for some* $K \in \mathcal{F}$ *, then*
	- (i) *the image in* F/L *of each group* $B \in \mathcal{B}$ *is linked, and*
	- (ii) *for each group* $A \in \mathcal{A}$ *with non-trivial image in G, the image in* F/L *of* A *is non-trivial and moreover the images in F/L of A and J do not generate their free product in F/L*;
- (c) the *s*-filter \mathcal{F} is the chain $\{K = K_0, K_1, \ldots\}$ generated by some normal subgroup K .

Proof. For each $A \in \mathcal{A}$ write \overline{A} for the image of A in G .

Suppose that the hypotheses of the Main Theorem hold, and that the conclusion is false. For each group $A \in \mathcal{A}$ with $\overline{A} \neq 1$ and each $B \in \mathcal{B}$ we choose a finitely generated subgroup $M_{B,A}$ of *B* such that some non-trivial element of $\langle M_{B,A} | B \in B \rangle * A$ maps to 1 in *G*. If $|B| \ge n - m$ then for each subset X of B with $|\mathcal{X}| \ge n - m$ we also choose a non-trivial element $w\chi$ of the free product of the groups in X such that the image of w_X in G is trivial.

Now choose for each $B \in \mathcal{B}$ a finitely generated linked subgroup H_B that contains $\langle M_{B,A} |$ $A \in \mathcal{A}, \overline{A} \neq 1$ and such that the elements w_X (if any) lie in the free product of the groups *H_B* with $B \in \mathcal{X}$. The hypotheses but not the conclusion of the theorem hold with B replaced by ${H_B \mid B \in \mathcal{B}}.$

Therefore we may assume in proving the Main Theorem that (a) holds. By Lemma 3 we can choose a subgroup $K_0 \in \mathcal{F}$ such that the images in F/L of the groups of B are linked whenever $R \le L \le F$, F/L is torsion-free and $L \le K_0$. For each $A \in \mathcal{A}$ with $\overline{A} \neq 1$ choose an element $w_A \in \overline{A} * J$ whose image in *G* is non-trivial; then w_A is a product of a sequence Y_A of non-trivial elements of $\overline{A} \cup J$. Choose $K_1 \in \mathcal{F}$ such that all distinct elements in all of these sequences are non-trivial and non-congruent modulo K_1 . If we replace the *s*-system $\mathcal F$ by ${K \in \mathcal{F} \mid K \leqslant K_0 \cap K_1}$, then (a), (b) hold.

Now we assume that (a), (b) hold. For each $K \in \mathcal{F}$ let L_K be the intersection of the chain $\mathcal{C}_K =$ ${K = K_0, K_1, \ldots}$ generated by *K*. The set $\mathcal{L} = {L_K | K \in \mathcal{F}}$ is a filter of normal subgroups of *F* and $\bigcap_{K \in \mathcal{F}} L_K = R_{\mathcal{F}}$. Since conditions (a), (b) hold for \mathcal{F} , it follows that the hypotheses of the Main Theorem and conditions (a), (b) also hold for each chain \mathcal{C}_K . Thus if the theorem holds for *s*-filters that are chains, then we can conclude that for each $K \in \mathcal{F}$ there are $n - m$ subgroups of B whose images in F/L_K generate their free product in F/L_K . It follows by Lemma 7 that there are $n-m$ subgroups of B whose images in $F/F_{\mathcal{F}}$ generate their free product in $F/F_{\mathcal{F}}$. there are *n* − *m* subgroups of B whose images in $F/F_{\mathcal{F}}$ generate their free product in $F/F_{\mathcal{F}}$.

From now on *we assume that the additional hypotheses* (a)–(c) *of Lemma* 9 *hold*. Write $A =$ $A_1 \cup A_2$, where A_1 contains all subgroups A with non-trivial images in G and $A_2 = A \setminus A_1$ and write $G_i = G/K_i$, $Q_i = Q_{K_i}$ for each *i*. As $K \cap A = K_i \cap A$ for all $A \in \mathcal{A}$ and all $i \ge 0$, we can replace all groups A from A_1 by their images in G and also identify them with their images in G_i . By hypothesis, the abelianization of each group $A \in \mathcal{A}_2$ is not a torsion group and so for each $A \in \mathcal{A}_2$ there is a non-zero group homomorphism $v_A : A \to \mathbb{Q} \subset Q_i$. Let V_i be the right vector space over Q_i with basis $\{t_{A,i} \mid A \in \mathcal{A}\}\$ and define a group homomorphism

$$
\theta_{i+1}: F \mapsto \begin{pmatrix} G_i & 0 \\ V_i & 1 \end{pmatrix}
$$

by specifying its restrictions $\theta_{i+1}|_A$ to the free factors as follows:

$$
a \mapsto \begin{pmatrix} a & 0 \\ t_{A,i}(a-1) & 1 \end{pmatrix} \text{ for } a \in A \in \mathcal{A}_1,
$$

$$
a \mapsto \begin{pmatrix} 1 & 0 \\ t_{A,i}(v_A(a)) & 1 \end{pmatrix} \text{ for } a \in A \in \mathcal{A}_2.
$$

We note that the subspace of V_i spanned by the bottom left-hand entries of the images of the elements of *F* contains all elements $t_{A,i}$, and so is equal to V_i and has dimension *n*.

Let *R* be generated as a normal subgroup of *F* by the set $\{r_1, \ldots, r_m\}$. The elements $\theta_{i+1}(r_i)$ have the form

$$
\begin{pmatrix} 1 & 0 \\ u_j & 1 \end{pmatrix}
$$

and so they all lie in the subgroup

$$
\begin{pmatrix} 1 & 0 \\ U_i & 1 \end{pmatrix},
$$

where U_i is the subspace of V_i spanned by all elements u_j . Write $W_i = V_i/U_i$. Then the kernel of the map

$$
\psi_{i+1}: F \to \begin{pmatrix} G_i & 0 \\ W_i & 1 \end{pmatrix}
$$

induced by θ_{i+1} contains *R*, and (as $t_{A,i} \in U_i$ for $A \in \mathcal{A}_2$) it is equal to K_{i+1} . Therefore we may identify G_{i+1} with $\psi_{i+1}(F)$. The map ψ_{i+1} induces a map

$$
\sigma_{i+1}: G \to \begin{pmatrix} G_i & 0 \\ W_i & 1 \end{pmatrix}.
$$

Denote by σ_0 the canonical homomorphism $G \to G_0$. By construction we have

$$
\sigma_{i+1}(g) = \begin{pmatrix} \sigma_i(g) & 0 \\ \beta_i(g) & 1 \end{pmatrix},
$$

where β_i : $G \to V_i$ is a derivation.

Lemma 10. *For any finitely generated linked subgroup D of G there is an index i(D) such that* $\sigma_i|_D$ *is injective and* $\beta_i|_D$ *is an inner derivation for all* $i \geqslant i(D)$ *.*

Proof. We argue by induction on the height of *D*. If $D = \langle d_0 \rangle$ is cyclic then choose $i_0 = i(D)$ such that $\sigma_{i_0}(d_0) \neq 1$. For $i \geq i_0$ the map σ_i is injective on *D* and defining

$$
w_{D,i} = \beta_i(d_0) (\sigma_i(d_0) - 1)^{-1}
$$

we have $\beta_i(d) = w_{D,i}(\sigma_i(d) - 1)$ for all $d \in D$.

Suppose then that $D = \langle D_1, D_2 \rangle \neq D_1 * D_2$, where D_1, D_2 are finitely generated linked subgroups of smaller height, and that for $i \geq i_0 = \max(i(D_1), i(D_2))$ the maps $\sigma_i|_{D_1}$ and $\sigma_i|_{D_2}$ are injective and there are $y_1, y_2 \in V_i$ such that $\beta_i(d_1) = y_i(d_1 - 1)$, $\beta_i(d_2) = z_i(d_2 - 1)$ for all $d_1 \in D_1, d_2 \in D_2$. Let S_i be the kernel of the homomorphism $D_1 * D_2 \rightarrow \langle \sigma_1(D_1), \sigma_2(D_2) \rangle \leq G_i$ for each $i \geq i_0$. As $\sigma(D_1) \cap S_i = \sigma_2(D_2) \cap S_i = 1$, by Lemma 6 either we have $S_{i+1} = [S_i, S_i]$ or we have $S_{i+1} = S_i$ and $y_i = z_i$. If the former holds for infinitely many values of *i* then

$$
\ker(D_1 * D_2 \to G) \leqslant \bigcap_{j=1}^{\infty} S_{i_0}^{(j)};
$$

since S_{i_0} is free by the Kurosh subgroup theorem we conclude that the map from $D_1 * D_2$ to *G* is injective, and this is a contradiction. Therefore there is an index $i(D) \geq i_0$ such that $S_{i+1} = S_i$ and $y_i = z_i$ for all $i \geq i(D)$, as required. \Box

Using Lemma 10 and replacing K by some K_i if necessary, we may suppose the following additional property:

(d) $\sigma_i|_B$ is injective and $\beta_i|_B$ is an inner derivation for each $i \ge 0$ and each $B \in \mathcal{B}$.

We identify $B \in \mathcal{B}$ with its image in G_i and let $\beta_i(b) = w_{B,i}(b-1)$ for $b \in B$. Denote by Y_i the subspace of W_i spanned by $\{w_{B,i} \mid B \in \mathcal{B}\}.$

Lemma 11. $Y_i = W_i$ *for all sufficiently large indices i.*

Proof. It is enough to prove that for each $A \in A_1$ we have $t_{A,i} \in Y_i$ for all sufficiently large *i*. Fix $A \in \mathcal{A}_1$. Set $W_i = W_i/Y_i$ and consider the homomorphism

$$
\overline{\sigma}_{i+1}: G \to \begin{pmatrix} G_i & 0 \\ \overline{W}_i & 1 \end{pmatrix}
$$

induced by σ_{i+1} . Consider also the homomorphism τ : $C = A * J \rightarrow \langle A, J \rangle \leq G$. Set S_{i+1} $\ker \sigma_{i+1}\tau$, $R_{i+1} = \ker \overline{\sigma}_{i+1}\tau$. By construction $S_{i+1} \leq R_{i+1} \leq S_i$. If $t_{A,i} \in Y_i$ then $\sigma_i \tau = \overline{\sigma}_{i+1}\tau$ and $R_{i+1} = S_i$. If $t_{A,i} \notin Y_i$ and $t_{A,i}$ is the image of $t_{A,i}$ in \overline{W}_i then

$$
\overline{\sigma}_{i+1}(\tau(a)) = \begin{pmatrix} a & 0 \\ \overline{t}_{A,i}(a-1) & 1 \end{pmatrix} \quad \text{for all } a \in A,
$$

and

$$
\overline{\sigma}_{i+1}(\tau(b)) = \begin{pmatrix} \sigma_i(b) & 0 \\ 0 & 1 \end{pmatrix} \text{ for all } b \in J,
$$

so that by Lemma 6 we have

$$
R_{i+1} = [S_i, S_i](S_i \cap J)^{C} \leqslant [R_i, R_i](R_i \cap J)^{C}.
$$

If the latter holds for infinitely many indices, then by Lemma 9 we have $\bigcap_{i=1}^{\infty} R_i = 1$ and τ is injective, contradicting the hypothesis of the theorem. Therefore $t_{A,i} \in Y_i$ for all sufficiently large i , as required. \Box

Using Lemma 11 we may suppose in addition to (a)–(d) that we have

(e) $Y_i = W_i$ for all $i \ge 0$.

Now we resume the proof of the theorem. We recall that $W_i = V_i/U_i$, dim $V_i = |A| = n$ and dim $U_i \le m$. Therefore dim $Y_i = \dim W_i \ge n - m$ and, in particular, $|\mathcal{B}| \ge n - m$. So there is a subset B_0 of B such that $|B_0| = n - m$ and for an infinite set Ω of indices *i* the family $\{w_{B,i} \mid B \in \mathcal{B}_0\}$ is linearly independent over Q_i . We claim that the subgroups \mathcal{B}_0 generate their free product in *G*. Write *H* for the free product of the groups $B \in \mathcal{B}_0$ and consider the homomorphism $\tau : H \to \langle B | B \in \mathcal{B}_0 \rangle \leq G$. Let $S_{i+1} = \ker \sigma_{i+1} \tau$. Note that S_1 is a free group. We have $B \cap S_{i+1} = 1$ and

$$
\sigma_{i+1}(\tau(b)) = \begin{pmatrix} b & 0 \\ t_{B,i}(b-1) & 1 \end{pmatrix}, \quad b \in B, \ B \in \mathcal{B}_0.
$$

By Lemma 4 we have $S_{i+1} = [S_i, S_i]$ for all $i \in \Omega$. Therefore

$$
\bigcap_{i=1}^{\infty} S_i \leqslant \bigcap_{j=1}^{\infty} S_1^{(j)} = 1
$$

and τ is injective. This concludes the proof of the Main Theorem.

References

- [1] J. Lewin, T. Lewin, An embedding of the group algebra of a torsion-free one-relator group in a field, J. Algebra 52 (1978) 39–74.
- [2] P.H. Kropholler, P.A. Linnell, J.A. Moody, Applications of a new *K*-theoretic theorem to soluble group rings, Proc. Amer. Math. Soc. 104 (1988) 675–684.
- [3] R.C. Lyndon, P.E. Schupp, Combinatorial Group Theory, Springer, Berlin, 1977.
- [4] W. Magnus, Über diskontinuierliche Gruppen mit einer definierenden Relation. (Der Freiheitssatz), J. Reine Angew. Math. 163 (1930) 141–165.
- [5] N.S. Romanovskii, Free subgroups of finitely presented groups, Algebra Logic 16 (1978) 62–68.
- [6] N.S. Romanovskii, A generalized theorem on freedom for pro-*p*-groups, Siberian Math. J. (1986) 267–280.
- [7] N.S. Romanovskii, On Shmelkin embeddings for abstract and profinite groups, Algebra Logic 38 (1999) 598–612.
- [8] J.S. Wilson, On growth of groups with few relators, Bull. London Math. Soc. 36 (2004) 1–2.