Some Regularity Theorems for Operators in an Enveloping Algebra*

Roe Goodman

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Received November 24, 1970

INTRODUCTION

The regularity properties of linear elliptic differential operators, acting on various function spaces, have been intensively studied in recent years (cf. [2]). In this paper, we consider the corresponding problem for an elliptic operator L in the enveloping algebra of a real Lie algebra \mathfrak{g}, acting in a Hilbert space $\mathcal{H}(\pi)$ via the differential $\partial\pi$ of a unitary representation π of the Lie group G.

This problem was first studied by Nelson and Stinespring [16]. Later Langlands [14] extended their results to include representations on Banach spaces. In both cases the operator $\partial\pi(L)$ and its adjoint were studied primarily via the action of the right invariant differential operator L on the representative functions on G, using the standard elliptic regularity theory. Although this method was sufficient, e.g., to show that $\partial\pi(L)$ is essentially self-adjoint provided L is elliptic and symmetric (in the case of unitary π), it did not give the precise domain of the adjoint of $\partial\pi(L)$.

This additional information is very useful in the application of elliptic operators, e.g., to constructing analytic vectors for a representation, and in establishing regularity properties for the eigenfunction expansion associated with $\partial\pi(L)^*$ (in case of symmetric L and unitary π).

In this paper we establish some domain results for a restricted class of elliptic operators in the enveloping algebra of \mathfrak{g}, relative to a unitary representation π. Namely, if L is of order $2m$ and is associated with a Hermitian elliptic form (see Section 2 for definition), then the Hilbert-space adjoint of $\partial\pi(L)$ has as domain the space $\mathcal{H}^{2m}(\pi)$ of $2m-$times differentiable vectors for π.

The proof of this result involves two developments. The first (Section 1) consists of establishing regularity properties for the action of \mathfrak{g} on the chain

* This research was supported in part by NSF Grant GP 14535.
\{ \mathcal{H}^k(\pi) \} \) of spaces of differentiable vectors. The second (Sections 2–3) involves proving the analogue of Garding’s inequality for the sesquilinear form \((\partial \pi(L)u, u)\), where \(u\) is a \(C^\infty\) vector for the representation. These two elements are then combined (Section 4) via the “Hilbert-space approach” to elliptic regularity, as developed in [2], to study the operator \(\partial \pi(L)^*\). Applications of these results and examples are given in Sections 5 and 6.

1. Spaces of Differentiable and Generalized Vectors

Let \(\pi\) be a strongly continuous unitary representation of a Lie group \(G\) on a complex Hilbert space \(\mathcal{H}(\pi)\). In this section we assemble some (mostly known) facts about the spaces \(\mathcal{H}^k(\pi)\) of \(k\)-times differentiable vectors and their duals (cf. [7], [9], and [20]).

If \(v \in \mathcal{H}(\pi)\), let \(\hat{v}\) be the \(\mathcal{H}(\pi)\)-valued function on \(G\) given by \(\hat{v}(g) = \pi(g)v\). If we denote by \(C^k(G; \mathcal{H}(\pi))\), \(k\) a nonnegative integer, the space of \(k\)-times continuously differentiable functions from \(G\) to \(\mathcal{H}(\pi)\) (in the strong topology on \(\mathcal{H}(\pi)\)), then by definition

\[
\mathcal{S}^k(n) = \{ Z \in \mathcal{S}(n) \mid \hat{Z} \in C^k(G; \mathcal{H}(\pi)) \}.
\]

The space \(\mathcal{H}^{\infty}(\pi)\) of infinitely differentiable vectors for \(\pi\) is thus the intersection of the spaces \(\mathcal{H}^k(\pi)\), \(k \geq 0\).

Let \(g\) be the Lie algebra of \(G\), and for \(X \in g\) denote by \(d\pi(X)\) the infinitesimal generator (in the sense of operator theory) of the one-parameter unitary group \(t \mapsto \pi(\exp tX)\). If \(\partial \pi(X)\) is the restriction of \(d\pi(X)\) to the invariant subspace \(\mathcal{H}^{\infty}(\pi)\), then the mapping \(X \mapsto \partial \pi(X)\) is a Lie algebra homomorphism from \(g\) to skew-symmetric operators on \(\mathcal{H}^{\infty}(\pi)\). It extends uniquely to an associative algebra homomorphism, which we also denote by \(\partial \pi\), from the complex universal enveloping algebra \(u(g)\) to linear operators on \(\mathcal{H}^{\infty}(\pi)\). We write \(\mathcal{H}^k(\pi) = \mathcal{H}^k\), \(u(g) = u\), and \(\partial \pi(T)u = Tu\) when \(G\) and \(\pi\) are understood from the context.

The spaces \(\mathcal{H}^k\) are Hilbertian. Two equivalent Hilbert norms are the following: Pick a basis \(X_1, \ldots, X_d\) for \(g\), and set \(A = X_1^2 + \cdots + X_d^2\). Let \(A\) be the closure of the operator \(\partial \pi(1 - A)\); the operator \(A\) is self-adjoint and positive, and we let \(B = A^{1/2}\) (positive square root). Then one has [9, Propositions 1.1 and 1.3]:

\[
\mathcal{H}^k(\pi) = \mathcal{D}(B^k) = \bigcap_{|\alpha| = k} \mathcal{D}(d\pi(X_1)^{\alpha_1} \cdots d\pi(X_d)^{\alpha_d}). \tag{1.1}
\]
(\mathcal{D}(T)\) denotes the domain of definition of an unbounded operator \(T\) on \(\mathcal{H}(\pi)\), and \(|\alpha| = \alpha_1 + \cdots + \alpha_d\) if \(\alpha = (\alpha_1, \ldots, \alpha_d)\). Thus,

\[
\sum_{|\alpha| \leq k} \| d\pi(X_1)^{\alpha_1} \cdots d\pi(X_d)^{\alpha_d} \|_2^2
\]

and

\[
\| B^t v \|_2^2
\]

are both squares of Hilbert norms on \(\mathcal{H}(\pi)\). The inclusion \(\mathcal{H}^k(\pi) \subseteq \mathcal{H}^{k-1}(\pi)\) is continuous, and \(\mathcal{H}^{\infty}(\pi)\) is dense in \(\mathcal{H}^k(\pi)\) in the topology defined by these norms [9, Corollary I.2]. Thus \(\{\mathcal{H}^k(\pi)\}\) is a discrete chain of Hilbertian spaces, in the terminology of [18].

For any \(t \in \mathbb{R}\), define \(B^t\) by the spectral theorem, and let \(\mathcal{H}^t(\pi)\) be the completion of \(\mathcal{D}(B^t)\) with respect to the norm \(\| B^t u \|\). Since \(B\) is unitarily equivalent to a multiplication operator on \(L^2(\Omega)\) for some measure space \(\Omega\), it follows from [18, Chap. VIII, Section 3, Theorem 2] that \(\{\mathcal{H}^t(\pi)\}\) is a continuous scale of Hilbertian spaces, and is obtainable from the discrete chain \(\{\mathcal{H}^k(\pi)\}\) by quadratic interpolation and duality. In particular, this scale of spaces is independent of the choice of basis used to define \(\mathcal{D}\). Taking a fixed \(\mathcal{D}\), we set

\[
\| v \|_t = \| B^t v \|, \quad t \in \mathbb{R}, \quad v \in \mathcal{H}^t(\pi).
\]

(Here, \(\| \cdot \|\) denotes the original Hilbert norm in \(\mathcal{H}\); when \(t \leq 0\) the operator \(B^t\) appearing in (1.2) is the extension of the operator defined by the spectral theorem to a continuous mapping from \(\mathcal{H}^t\) to \(\mathcal{H}\).) By realizing \(B\) as a multiplication operator on \(L^2(\Omega)\), one easily estimates that for any \(\varepsilon > 0\), and \(s < t\), there exists a constant \(C\) such that

\[
\| v \|_s \leq \varepsilon \| v \|_t + C \| v \|, \quad v \in \mathcal{H}^s(\pi).
\]

Let \(u_n\) denote the subspace of \(u\) spanned by \(1\) and products \(Y_1 \cdots Y_m\), with \(m \leq n\) and \(Y \in \mathfrak{g}\). If \(T \in u_n\) and \(k\) is a nonnegative integer, then by equation (1.1) there exists a constant \(C_k\) such that

\[
\| \partial \pi(T) u \|_k \leq C_k \| u \|_{k+n}, \quad u \in \mathcal{H}^k(\pi).
\]

Now since \(\mathcal{H}^\infty\) is dense in \(\mathcal{H}^t\) for any \(t\), it follows that

\[
\| v \|_t = \sup \{ (v, u) : u \in \mathcal{H}^\infty, \| u \|_{-t} = 1 \}.
\]

If \(T \rightarrow T^*\) is the involutive conjugate-linear antiautomorphism of \(u\) such that \(X^* = -X\) when \(X \in \mathfrak{g}\), then \(u_n^* = u_n\). The relation \(\partial \pi(T) u, v \rangle = (u, \partial \pi(T^*) v)\) also holds for \(u\) and \(v\) in \(\mathcal{H}^\infty\), since \(\partial \pi(X)\) is skew-Hermitian.
when \(X \in \mathfrak{g} \). It follows from this and (1.5) that estimate (1.4) holds when \(k \) is a negative integer also. By quadratic interpolation we obtain estimate (1.4) for all real \(k \). Thus, \(\partial \pi(T) \) extends by continuity to a continuous linear map from \(\mathcal{H}^{t+n} \) to \(\mathcal{H}^t \), whenever \(T \in \mathcal{D} \) and \(t \in \mathbb{R} \). Letting

\[
\mathcal{H}^{-\infty}(\pi) = \bigcup_t \mathcal{H}^t(\pi),
\]

with the inductive limit topology, we obtain a representation \(\delta \pi \) of \(\mathcal{H}^{-\infty} \) by continuously extending the representation \(\partial \pi \) from the dense subspace \(\mathcal{H}^\infty \). The representations \(\partial \pi \) and \(\delta \pi \) are related by

\[
(\partial \pi(T)u, v) = (u, \delta \pi(T^*v)), \quad u \in \mathcal{H}^\infty, \quad v \in \mathcal{H}^{-\infty},
\]

(1.6)

where \((\cdot, \cdot)\) denotes the continuous extension of the original scalar product in \(\mathcal{H} \) to a sesquilinear form on \(\mathcal{H}^\infty \times \mathcal{H}^{-\infty} \). Indeed, relation (1.6) holds when \(v \) is also in \(\mathcal{H}^\infty \), and both sides of (1.6) are continuous conjugate-linear functions of \(v \in \mathcal{H}^{-\infty} \).

We shall need the following version of the quadratic interpolation theorem for estimating certain sesquilinear forms on \(\mathcal{H}^\tau \):

Lemma 1.1. Suppose \(S \) and \(S^\tau \) are continuous linear maps of \(\mathcal{H}^\infty \) into \(\mathcal{H}^\infty \) which satisfy \((Su, v) = (u, S^\tau v)\) for \(u, v \in \mathcal{H}^\infty \). Suppose there exist real numbers \(\alpha, \beta, \) and \(\tau \) and a positive constant \(C \) such that for all \(u \in \mathcal{H}^\infty \)

\[
\| Su \|_\alpha \leq C \| u \|_{\alpha+\tau}, \quad (1.7)_\alpha
\]

\[
\| S^\tau u \|_{\beta-\tau} \leq C \| u \|_\beta. \quad (1.8)_\beta
\]

Then,

\[
\| (B^\lambda S B^{-\lambda} u, u) \| \leq C \| u \|_{\tau+\frac{\tau}{2}} \quad (1.9)
\]

for \(\lambda = \frac{1}{2} \tau + t \alpha + (1 - t) \beta, \ 0 \leq t \leq 1 \).

Remark. Estimate \((1.7)_\alpha \) always implies estimate \((1.8)_{\alpha+\tau} \), by virtue of equation (1.5). The lemma yields new estimates only in case \(\alpha \neq \beta \).

Proof of Lemma 1.1. Consider the operator \(T = SB^{-\tau} \). By \((1.7)_\alpha \) we have

\[
\| Tu \|_\alpha \leq C \| u \|_\alpha. \quad (1.10)
\]

Using equation (1.5) we have

\[
\| Tu \|_\beta = \sup \{ (Tu, v) : \| v \|_{-\beta} = 1 \}
\]

\[
= \sup \{ (B^\tau u, B^{\beta-\tau} S^\tau v) : \| v \|_{-\beta} = 1 \}
\]

\[
\leq C \| u \|_\beta,
\]

for \(\lambda = \frac{1}{2} \tau + t \alpha + (1 - t) \beta, \ 0 \leq t \leq 1 \).
by Schwarz' inequality and (1.8)+. Hence by the quadratic interpolation theorem,
\[\|T u\|_\gamma \leq C\| u\|_\gamma, \]
when \(\gamma = t\alpha + (1-t)\beta, \) \(0 \leq t \leq 1. \) Equivalently, \(B^\nu S B^{-\nu-r} \) is bounded in the 0-norm. Hence the corresponding sesquilinear form satisfies
\[\|(B^\nu S B^{-\nu-r} u, u)\| \leq C\| u\|^2. \] (1.10)
Replacing \(u \) by \(B^{t/2}u \) in (1.10) (this is possible since \(B^t \) maps \(\mathcal{H}^\infty \) onto \(\mathcal{H}^\infty \) for all real \(t \)), we obtain (1.9).

Q.E.D.

The next lemma is the basic technical tool for handling "lower order terms" in \textit{a-priori} estimates for operators in the enveloping algebra.

Lemma 1.2. Let \(T \in \mathfrak{u}_n, a, b \in \mathbb{R}. \) Then there exists a constant \(C \) such that
\[\| (B^a \partial \pi(T) B^b u, u) \| \leq C\| u\|^{(a+b+n)/2}. \] (1.11)

If \(|a - b| < n, \) then there exists a constant \(C \) such that
\[\| (B^a[\partial \pi(T), B] B^b u, u) \| \leq C\| u\|^{(a+b+n)/2}. \] (1.12)

Proof. By replacing \(a \) with \(a - b \) and \(u \) with \(B^{-b}u, \) we see that it suffices to treat the case \(b = 0. \) The operators \(\partial \pi(T) \) and \(\partial \pi(T^*) \) satisfy (1.7)\textsubscript{a} for all \(\alpha, \) with \(r = n, \) as remarked earlier. Hence, the same is true of the operators \(S = B^a \partial \pi(T) \) and \(S^+ = \partial \pi(T^*) B^a, \) with \(r = n + a. \) In particular, we may take \(\alpha = 0, \beta = -\alpha - r, \) and \(t = \frac{1}{2} \) in Lemma 1.1 to get estimate (1.9) with \(\gamma = 0. \)

To obtain the commutator estimate, we start with the estimate \((ad Y(T) \) denoting \(YT - TY)\)
\[\|ad Y_{i_1} \cdots ad Y_{i_k}(B)u\|_{1-\gamma} \leq C_{k,\gamma}\|u\|_{1-\gamma}, \] (1.13)
where \(Y_j = \partial \pi(X_j), \) \(\{X_j\} \) being a basis for \(\mathfrak{g}, \) and \(0 < \gamma < 1. \) (See [6, Lemma 6] and following remark. Note that the scale \(\mathcal{H}^2 \) in [6] is defined relative to the operator \(A = B^2. \) By the standard commutator formulas (cf. [15, Lemma 2.1]), \([\partial \pi(T), B] \) is a linear combination of terms
\[\{ad Y_{j_1} \cdots ad Y_{j_k}(B)\} Y_{j_{k+1}} \cdots Y_{j_n}, \]
with \(n \gg k \gg 1. \) Hence \(S = B^a[\partial \pi(T), B] \) satisfies estimate (1.7)\textsubscript{a-\gamma}, with \(r = a + n. \) Since \(S^+ = [\partial \pi(T^*), B] B^a, \) we have by the same argument applied to \(T^* \) the estimate (1.8)\textsubscript{a+}, where \(\beta = \gamma - a - n. \) Thus Lemma 1.1 gives estimate (1.9) for
\[\lambda = \frac{1}{2}(a + n) - t(a + \gamma) + (1-t)(\gamma - a - n), \]
with \(0 \leq t \leq 1 \). Writing

\[
\lambda = \frac{1}{2}(n - a) - \{ty + (1 - t)(n - y)\},
\]

we see that we can achieve \(\lambda = 0 \) by choosing \(y \) sufficiently small, provided \(0 < \frac{1}{2}(n - a) < n \), i.e., provided \(|a| < n \).

Q.E.D.

2. Sesquilinear Forms and Hermitian Symbols

If \(\pi \) is a unitary representation of \(G \) and \(S_j, T_k \in u(\mathfrak{g}) \), \(c_{j,k} \in \mathbb{C} \), then

\[
\left(\sum c_{j,k}(\partial \pi(S_j)u, \partial \pi(T_k)v) \right)
\]

(finite sum) is a sesquilinear form on \(\mathcal{H}^{\infty}(\pi) \), which may also be represented as \((\partial \pi(L)u, v) \), where

\[
L = \sum c_{j,k}T_k^*S_j.
\]

We can describe such forms in a somewhat more intrinsic manner as follows: Let \(*u \) be the complex vector space which as an additive group is simply \(u = u(\mathfrak{g}) \), but having scalar multiplication \(\lambda \cdot T = \lambda^*T \) (\(\lambda^* \) = complex conjugate of \(\lambda \in \mathbb{C} \)). Let \(u \otimes *u \) denote the tensor product of \(u \) with \(*u \) as complex vector spaces. Then \(u \otimes *u \) solves the universal mapping problem for sesquilinear maps of \(u \times u \) into complex vector spaces. In particular, for every unitary representation \(\pi \) of \(G \), there exists a unique linear map \(Q \rightarrow Q^\pi \) from \(u \otimes *u \) to the complex vector space of sesquilinear forms on \(\mathcal{H}^{\infty}(\pi) \), such that

\[
(S \otimes T)^\pi(u, v) = (\partial \pi(S)u, \partial \pi(T)v), \quad (2.1)
\]

for \(S, T \in u \), and \(u, v \in \mathcal{H}^{\infty}(\pi) \), \(\otimes \) denoting the tensor product in \(u \otimes *u \). There also exists a unique linear map \(\gamma : u \otimes *u \rightarrow u \) such that

\[
\gamma(S \otimes T) = T^*S. \quad (2.2)
\]

These two maps are related by

\[
Q^\pi(u, v) = (\partial \pi(\gamma(Q))u, v). \quad (2.3)
\]

Finally, there is a conjugate linear involution \(Q \rightarrow Q^* \) on \(u \otimes *u \) such that \((S \otimes T)^* = T \otimes *S \). Clearly one has

\[
\gamma(Q^*) = \gamma(Q)^*. \quad (2.4)
\]

Definition. An element \(Q \in u \otimes *u \) is **Hermitian** if \(Q = Q^* \).
If Q is Hermitian, then Q^\ast is a Hermitian form on $\mathcal{H}(\pi)$ for any unitary representation π, by formulas (2.4), (2.3), and (1.6).

Let $\{X_j\}$, $1 \leq j \leq d$, be a basis for \mathfrak{g}, and set $X(t) = t_1X_1 + \cdots + t_dX_d$ for $t \in \mathbb{R}^d$. If $\alpha = (\alpha_1, \ldots, \alpha_d)$ is a d-tuple of nonnegative integers with $|\alpha| = n$, define the element $X(\alpha)$ of \mathfrak{g}_n by the identity

$$\frac{1}{n!} X(t)^n = \sum_{\alpha} \frac{t^n}{\alpha!} X(\alpha).$$

Then $X(\alpha) = X_1^{\alpha_1} \cdots X_d^{\alpha_d}$ mod \mathfrak{u}_{n-1}, and the cosets $\{X(\alpha) + \mathfrak{u}_{n-1}\}$ form a basis for $\mathfrak{u}_n/\mathfrak{u}_{n-1}$ (cf. [11, Chap. 2, Section 2]). Thus, an element $Q \in \mathfrak{g} \otimes \mathfrak{u}^*$ can be written uniquely as a finite sum $Q = \sum c_{\alpha,\beta}X(\alpha) \otimes X(\beta)$, so that $Q = Q^\ast$ if and only if $c_{\alpha,\beta} = c_{\beta,\alpha}$.

Let m be an integer ≥ 1. By the Poincaré–Birkhoff–Witt theorem [3], there is a canonical linear isomorphism of $\mathfrak{u}_m/\mathfrak{u}_{m-1}$ with the space $S_m(\mathfrak{g}_c)$ of symmetric tensors of degree m over \mathfrak{g}_c. Since $S_m(\mathfrak{g}_c)$ is naturally isomorphic to the space $\mathcal{P}_m(\mathfrak{g}_c)$ of homogeneous polynomial functions of degree m on the dual space \mathfrak{g}_c', it follows that one has a canonical linear map

$$\sigma_m : \mathfrak{u}_m(\mathfrak{g}_c) \to \mathcal{P}_m(\mathfrak{g}_c').$$

If $X(\xi) = \langle \xi, X \rangle$ for $\xi \in \mathfrak{g}_c'$, $X \in \mathfrak{g}_c$, then for a multiindex α with $|\alpha| = m$, the function $\sigma_m(X(\alpha))$ is easily seen to be given by the formula

$$\sigma_m(X(\alpha))(\xi) = X_1(\xi)^{\alpha_1} \cdots X_d(\xi)^{\alpha_d} \xi^\alpha. \quad (2.5)$$

Let $S, T \subset \mathfrak{u}_m$, and define $(S \otimes T)^\ast$ to be the function on \mathfrak{g}_c' given by

$$(S \otimes T)^\ast(\xi) = \sigma_m(S(\xi))\sigma_m(T(\xi))^\ast. \quad (2.6)$$

The right-hand side of (2.6) is a sesquilinear function of the pair (S, T), so depends only on $S \otimes T$ and m. (To be precise, we will write m in place of $^$ when necessary.) Thus we obtain a linear map $Q \to \hat{Q}$ from $\mathfrak{u}_m \otimes \mathfrak{u}_m$ to functions on \mathfrak{g}_c'. We shall refer to \hat{Q} as the Hermitian symbol of Q (m being understood). If $Q = \sum c_{\alpha,\beta}X(\alpha) \otimes X(\beta)$, with $|\alpha| \leq m$, $|\beta| \leq m$, then

$$\hat{Q}(\xi) = \sum_{|\alpha| = |\beta| = m} c_{\alpha,\beta} \xi^\alpha(\beta)^\ast.$$

Definition. An element Q of $\mathfrak{u}_m \otimes \mathfrak{u}_m$ is Hermitian elliptic (of degree m) if $\hat{Q}(\xi) > 0$ for all $\xi \neq 0$ in \mathfrak{g}_c'.

Example. If $A_j \in \mathfrak{u}_m$ and the polynomials $\{\sigma_m(A_j)\}$ have no common complex zero, except $\xi = 0$, then $Q = \sum A_j \otimes A_j$ is Hermitian elliptic.
Since \(u \) and \(\ast u \) are associative algebras over \(\mathbb{C} \), so is \(u \otimes \ast u \), where

\[(A \otimes \ast B) \cdot (C \otimes \ast D) = AC \otimes \ast BD.\]

If \(P \in u_k \otimes \ast u_k \) and \(Q \in u_m \otimes \ast u_m \), then \(PQ \in u_n \otimes \ast u_n \), \(n = k + m \).

The Hermitian symbols are related by

\[(PQ)^\ast = P^\ast Q^\ast \quad \text{(2.7)}\]

(pointwise product on the right side of (2.7)). Hence if \(P \) and \(Q \) are Hermitian elliptic of degrees \(k \) and \(m \), then \(PQ \) is Hermitian elliptic of degree \(k + m \).

The usefulness of the notion of Hermitian ellipticity in connection with a-priori estimates for forms \(Q^n \) comes from the following version of a result of D. Quillen:

Lemma 2.1. Suppose \(Q \in u_m \otimes \ast u_m \) is Hermitian elliptic of degree \(m \). For \(n \) a positive integer define the \(n \)-th prolongation \(Q_n \) (with respect to the basis \(\{X_j\} \) for \(g \)) by \(Q_n = Q \Gamma_n \), where

\[
\Gamma_n = \sum_{\gamma \vdash n} \frac{n!}{\gamma!} \: X(\gamma) \otimes \ast X(\gamma).
\]

Then if \(n \) is sufficiently large, there exist elements \(A_j \in u_{m+n} \) such that

\[
Q_n = \sum A_j \otimes \ast A_j \mod \left(\sum_{p+q < 2r} u_p \otimes \ast u_q \right), \quad r = m + n. \quad \text{(2.8)}
\]

Furthermore, the \(A_j \) form a linear basis for \(u_{m+n} \mod(u_{m+n-1}) \).

Proof. By (2.5) we have

\[
\Gamma'_n(\xi) = \sum_{\gamma \vdash n} \frac{n!}{\gamma!} \: \xi^\gamma(\xi^\gamma)^* = |\xi|^2n.
\]

Hence, by (2.7), \(Q_n(\xi) = |\xi|^2n Q(\xi) \). We can apply Corollary 1 of [19], which asserts that for \(n \) sufficiently large there exists a linear basis \(\{P_j\} \) for the space \(\mathcal{P}_{m+n}(g_{e'}) \) such that

\[
Q_n(\xi) = \sum |P_j(\xi)|^2.
\]

Choose \(A_j \in u_{m+n} \) such that \(\sigma_{m+n}(A_j) = P_j \). Then \(R = Q_n - \sum_j A_j \otimes \ast A_j \) satisfies \(R^r = 0, \: r = m + n \). Hence by the Poincaré–Birkhoff–Witt theorem, (2.8) and the last statement of the lemma hold. Q.E.D.

The Hermitian symbol of \(Q \in u_m \otimes \ast u_m \) can also be defined analytically, although we shall not need this alternate definition in the present paper.
For this purpose, we first obtain an expression for Q^π, a unitary representation, in terms of a sesquilinear form on germs of $\mathcal{H}(\pi)$-valued functions on G. Write $\mathcal{H} = \mathcal{H}(\pi)$, and let $C^\infty(e; \mathcal{H})$ denote the space of \mathcal{H}-valued C^∞ functions defined on an open neighborhood of the identity element e in G (the neighborhood depending on the function). Let ρ be the right regular representation of g on this space:

$$\rho(X)f(g) = \left. \frac{d}{dt} f(g \cdot \exp tX) \right|_{t=0}.$$

Extend ρ to a representation of u. If $f(g) = \pi(g) v = \tilde{v}(g)$, for $v \in \mathcal{H}^\infty(\pi)$, then $\rho(T)\tilde{v}(g) = (\tilde{\pi}(T)v)^\ast(g)$, when $T \in u$ (cf. [20]). In particular,

$$\rho(T)\tilde{v}(e) = \tilde{\pi}(T)v. \quad (2.9)$$

Given $C = A \otimes B \in u \otimes u$, define $\tilde{C}_{\mathcal{H}}$ to be the sesquilinear form on $C^\infty(e; \mathcal{H})$ given by

$$C_{\mathcal{H}}(f_1, f_2) = (\rho(A)f_1(e), \rho(B)f_2(e)) \quad (2.10)$$

($\langle \cdot, \cdot \rangle$ denoting the inner product in \mathcal{H}). The map $C \to \tilde{C}_{\mathcal{H}}$ extends to a linear map from $u \otimes u$ to sesquilinear forms on $C^\infty(e; \mathcal{H})$. By (2.9) and (2.10) we have

$$Q^\pi(u, v) = \tilde{Q}_{\mathcal{H}}(\tilde{u}, \tilde{v}), \quad (2.11)$$

for $Q \in u \otimes u$ and $u, v \in \mathcal{H}^\infty(\pi)$. When $\mathcal{H} = \mathbb{C}$ with $(z, w) = zw^\ast$, we simply write $\tilde{Q}_{\mathcal{H}} = \tilde{Q}$. If $\xi \in \mathfrak{g}^\prime$, define $f_s(x) = \exp\langle \xi, \log x \rangle$, for x in a neighborhood of e on which $\log: G \to \mathfrak{g}$ is defined.

Proposition 2.1. Let $Q \in u_m \otimes u_m$, and $\xi \in \mathfrak{g}_e$. Then the Hermitian symbol \tilde{Q} (of degree m) satisfies

$$\tilde{Q}(\xi) = \lim_{s \to \infty} s^{-2m} \tilde{Q}(f_{s\xi}, f_{s\xi}). \quad (2.12)$$

Proof. If f is a C^∞ function on a neighborhood of e, then defining $X(t)$ as before, $t \in \mathbb{R}^d$, we have

$$\left(\frac{\partial}{\partial t} \right)^3 f(\exp X(t)) \bigg|_{t=0} = \rho(X(\alpha))f(e)$$

([11, p. 98]. We have incorporated the factor $\alpha!$ into our definition of $X(\alpha)$).
Thus $\rho(X(\alpha))f_{e}(e) = \xi^\alpha$. If $Q = \sum c_{\alpha,\beta}X(\alpha) \otimes X(\beta)$, with $|\alpha| \leq m$ and $|\beta| \leq m$, then it follows that

$$s^{-2m}Q(f_{s\alpha}, f_{s\beta}) = \sum_{|\alpha| = m} c_{\alpha,\beta} \xi^\alpha(\xi^\beta)^* + O(s^{-1}),$$

which gives (2.12).

Q.E.D.

3. Coercive Forms

Let π be a unitary representation of G, and suppose $Q \in \mathfrak{u}_m \otimes \star \mathfrak{u}_m$, $m > 0$. Then by the Schwarz inequality one has an estimate

$$|Q^\pi(u, u)| \leq C \|u\|^2_m$$

holding for some constant C and all $u \in \mathcal{H}^\pi(\pi)$.

Definition. Q is π-coercive (of order m) if there exist constants $C_0 > 0$ and λ_0 such that

$$\Re Q^\pi(u, u) \geq C_0 \|u\|^2_m - \lambda_0 \|u\|^2_0$$

for all $u \in \mathcal{H}^\pi(\pi)$ (\(\Re\) denoting real part).

By estimate (1.3), an equivalent definition of coerciveness is that an estimate

$$\Re Q^\pi(u, u) \geq C_0 \|u\|^2_m - C_1 \|u\|^2_t$$

should hold for some $C_0 > 0$ and $t < m$.

If $W = \frac{1}{2}(Q + Q^\star)$, then W is Hermitian-symmetric and $W^\pi = \Re Q^\pi$. Thus, to obtain criteria for coerciveness, it suffices to consider Hermitian Q.

Our principal result is the following theorem:

Theorem 3.1. Suppose $Q \in \mathfrak{u}_m \otimes \star \mathfrak{u}_m$ is Hermitian elliptic (of degree $m > 0$). Then Q^π is π-coercive (of order m) for all unitary representations π.

Let $\{X\}$ be a basis for \mathfrak{g}, and let Q_n be the n-th prolongation of Q (with respect to this basis), as defined in Section 2. Then the form Q_n^π is given by

$$Q_n^\pi(u, v) = \sum_{|\gamma| = n} \frac{n!}{\gamma!} \bar{Q}(X(\gamma)u, X(\gamma)v).$$
(When π is understood, we write \(\dot{\pi}(T)u = Tu \), for \(T \in \mathcal{H} \) and \(u \in \mathcal{H}^\pi(\pi) \). Indeed, if \(Q = \sum_{\alpha, \beta} c_{\alpha, \beta} X(\alpha) \otimes X(\beta) \), then

\[
Q_n = \sum_{|\gamma| = n} \sum_{\alpha, \beta} \frac{n!}{\gamma!} c_{\alpha, \beta} X(\alpha) X(\gamma) \otimes X(\beta) X(\gamma).
\]

By the definition of \(Q^n \) and \(Q_n^n \) we thus obtain relation (3.2). Notice that if \(Q \) is Hermitian then so is \(Q_n \), and the sesquilinear forms \(Q_n^n \) are then all Hermitian symmetric. Before proving theorem 3.1 we first show that coerciveness is stable under prolongation.

Lemma 3.1. \(Q \) is \(\pi \)-coercive (of order \(m > 0 \)) if and only if \(Q_n \) is \(\pi \)-coercive (of order \(m + n \)) for all positive integers \(n \).

Proof of Lemma 3.1. Since \((Q^n)_n = (Q^n)^* \), it suffices to consider Hermitian \(Q \). (We do not need Hermitian ellipticity of \(Q \) for this lemma, however.) Let \(L = γ(Q) \in \mathcal{H}_m \) be the operator associated with \(Q \). Then \(Q^n(u, u) = (Lu, u) \), and hence by (3.2) we have

\[
Q^n_n(u, u) = (-1)^n \sum_{|γ| = n} \frac{n!}{γ!} (X(γ)LX(γ)u, u)
\]

where \(A \) is the closure of the operator \(\partial π(1 - A) \) and \(R \in \mathcal{H}_{2m+2n-1} \). Thus we can write

\[
Q^n_n(u, u) = (-1)^n \sum_{|γ| = n} \frac{n!}{γ!} (X(γ)LX(γ)u, u) = (La^n u, u) + (Ru, u),
\]

with \(B = A^{1/2} \) as in Section 1. Now if \(n \) is even, then \([L, B^n]u = Tu, T \in \mathcal{H}_{2m+2n-1} \); so by Lemma 1.2 the last two terms in (3.3) are bounded by \(C(\|u\|_{m+n-(1/2)})^2 \). If \(n = 2k + 1 \) is odd, then

\[
[L, B^n]B^n = [L, A^k]B^{n+1} + B^{2k}[L, B]B^{2k-1}.
\]

Since \(\deg(L) = 2m \geq 2 \), Lemma 1.2 is again applicable, so that for any \(n \)

\[
|Q^n_n(u, u) - Q^n(B^n u, B^n u)| \leq C(\|u\|_{m+n-(1/2)})^2.
\]

Suppose now that \(Q \) is \(\pi \)-coercive. Then

\[
Q^n(B^n u, B^n u) \geq C_0 \|B^n u\|_m^2 - \lambda_0 \|B^n u\|^2_0 \geq C_0 \|u\|_{m+n}^2 - \lambda_0 \|u\|^2_n.
\]
Since $m > 0$, it follows from (3.1)' and (3.4) that Q_n is π-coercive. Conversely, if Q_n is π-coercive, then by (3.4) we have

$$Q^*(B^n u, B^n u) \geq C_0 \| u \|^2_{m+n} - C_1 \| u \|^2_{l+n},$$

with $t = m - \frac{1}{2}$. Replacing u by $B^{-n} u$ and using (3.1)', we obtain the coerciveness of Q. Q.E.D.

Proof of Theorem 3.1. By Lemma 2.1 we can write, for sufficiently large n,

$$Q_n^*(u, u) = \sum_j \| A_j u \|^2 + (S u, u),$$

where $\{A_j\}$ is a basis for $u_{m+n} \bmod u_{m+n-1}$, and $S \in u_{2m+2n-1}$. By Lemmas 1.2 and 3.1, it suffices to show that the form $\sum_{\alpha} \| A_\alpha u \|^2$ is coercive (of order $m + n$). But if α is a multi-index with $|\alpha| = m + n$, then we can write $X(\alpha) = \sum a_j A_j + R$, where $a_j \in \mathbb{C}$ and $R \in u_{m+n-1}$. Thus by Schwarz' inequality,

$$|(X(\alpha) u, v)| \leq C \left(\sum \| A_\alpha u \|^2 + \| u \|^2 \right)^{1/2} \cdot \| v \|,$$

for any $u \in \mathcal{H}^\infty$, $v \in \mathcal{H}$, where $t = m + n - 1$. It follows that

$$\| X(\alpha) u \|^2 \leq C^2 \left(\sum \| A_\alpha u \|^2 + \| u \|^2 \right).$$

Q.E.D.

Remarks. If Q is coercive for the regular representation of G on $L^2(G)$, then by the converse to Gårding's inequality [1, Theorem 7.12] the symbol \hat{Q} must be strongly elliptic, i.e., $\hat{Q}(\xi) > 0$ for ξ real on \mathfrak{g}. Conversely, if \hat{Q} is strongly elliptic and G is compact or abelian, then Gårding's inequality [1, Theorem 7.6] and standard facts from representation theory can be used to show that Q is π-coercive for all unitary representations π. In the non-compact, nonabelian case we do not know if strong ellipticity of \hat{Q} suffices to force π-coerciveness of Q.

For irreducible π, Q may be π-coercive without having \hat{Q} strongly elliptic. If $Q = Q_0 + Q_1$, where Q_0 is Hermitian elliptic of degree m and

$$| Q^*(u, u) | \leq C \| u \|_t$$

for some $t < m$, then Q^* will be π-coercive. For example, let G be simple, noncompact, and $\mathfrak{g} = \mathfrak{t} + \mathfrak{p}$ a Cartan decomposition. If $\{X_j\}$, $\{Y_j\}$ are orthonormal bases for \mathfrak{t} and \mathfrak{p} respectively (with respect to the Killing form), then $Q = \sum X_j \otimes * X_j$ is not strongly elliptic (\hat{Q} vanishes on \mathfrak{t}^\perp). However, $\omega = \sum Y_j \otimes * Y_j - Q$ is the Casimir element, while $Q_0 = \frac{1}{2} \omega + Q$ is Hermitian elliptic. In an irreducible representation π, $\omega^*(u, u) = \lambda \| u \|^2$.

so \(Q \) is \(\pi \)-coercive (cf. [16, Section 2]). In Section 6 we will give another example of this phenomenon, based on the following criterion for \(\pi \)-coerciveness:

Corollary 3.1. Let \(Q \in \mathfrak{u}_m \otimes \mathfrak{u}_m^* \) and suppose that for some basis \(\{Z_j\}, 1 \leq j \leq d, \) of \(g_c \) and \(C_0 > 0 \), the form \(Q^\pi \) satisfies

\[
\mathcal{H}Q^\pi(u, u) \geq C_0 \sum_{j=1}^{d} \|Z_j^\pi u\|^2 - C_1 \|u\|^2,
\]

where \(t < m \). Then \(Q \) is \(\pi \)-coercive.

Proof. Let \(Q_0 = \sum Z_j^m \otimes Z_j^m \). Then \(Q_0(\xi) = \sum |Z_j(\xi)|^{2m} > 0 \) if \(\xi \neq 0 \), since \(\{Z_j\} \) is a basis for \(g_c \). Hence, \(Q_0 \) is \(\pi \)-coercive by Theorem 3.1, so that (3.5) is equivalent to (3.1)’. Q.E.D.

Remark. As a particular case of Corollary 3.1, we have an estimate

\[
\|X_{j_1} \cdots X_{j_m} u\| \leq C \left(\sum_{k=1}^{d} \|X_k^\pi u\| + \|u\| \right)
\]

holding for \(\{X_j\} \) a basis of \(g, u \in \mathcal{H}^{\infty}(\pi) \). If \(\pi \) is a continuous representation on a nonreflexive Banach space, then (3.6) need not hold. For a counterexample, with \(G = \mathbb{R}^2 \) and \(\pi \) the regular representation on \(L^1(G) \), see [17]. We do not know if (3.6) holds for representations on reflexive spaces (e.g., for the regular representation on \(L^p(G), 1 < p < \infty, p \neq 2 \)).

4. Operators Defined By Coercive Forms

Let \(Q \in \mathfrak{u}_m \otimes \mathfrak{u}_m^* \) and suppose \(\pi \) is a unitary representation of \(G \). We want to study the operators \(\partial \pi(L) \) and \(\partial \pi(L^*), L = \gamma(Q) \), under the assumption that \(Q \) is \(\pi \)-coercive. (Recall that \(Q^\pi(u, v) = (\partial \pi(L)u, v) \); so the \(\pi \)-coerciveness of \(Q \) means that Gårding’s inequality holds for \(\partial \pi(L) \).) This class of operators is stable under \(L \to L^* \) and perturbation by elements \(R \) of \(\mathfrak{u}_{m-1} \), by virtue of Lemma 1.2 and the fact that \(R = \gamma(Q_1) \) for some \(Q_1 \in \mathfrak{u}_m \otimes \mathfrak{u}_m^* \). We shall use the standard “Hilbert space approach” to elliptic regularity as developed, e.g., in [2]. We first prove three lemmas, adapted from the arguments in [2, pp. 173–175]. In these lemmas we assume \(L = \gamma(Q) \) as above, with \(Q \) \(\pi \)-coercive of order \(m \).

Lemma 4.1. For every \(t \in \mathbb{R} \) there exists a \(\lambda_t > 0 \) and \(C_t > 0 \) such that

\[
C_t \|u\|_{l+m} \leq \|\partial \pi(L + \lambda)u\|_{l-m}
\]

whenever \(\mathcal{H}(\lambda) > \lambda_t \) and \(u \in \mathcal{H}^{\infty}(\pi) \).
Proof. By the quadratic interpolation theorem it suffices to prove (4.1) for $t \geq 0$. From the proof of Lemma 3.1 we have

$$\mathcal{H}(B^t \partial \pi(L + \lambda)u, B^t u) \geq C_\|u\|_{L^t+m}^2 + \mathcal{H}(\lambda)\|u\|_t^2 - \lambda_t\|u\|_0$$

(4.2)

for some $C_\| > 0, \lambda_t \geq 0$. If $\mathcal{H}(\lambda) \geq \lambda_t$, the right-hand side of (4.2) is bounded from below by $C_\|u\|_{L^t+m}^2$. By the Schwarz inequality, the left-hand side of (4.2) is bounded from above by $\| \partial \pi(L + \lambda)u \|_t \|u\|_{L^t+m}$. Dividing by $\|u\|_{L^t+m}$, we obtain (4.1) for t. The proof of Lemma 3.1 also gives an estimate

$$\mathcal{H}(\partial \pi(L + \lambda)B^{-2t}u, u) \geq C_\|\|u\|_{L^t+m}$$

for some $C_\| > 0$, provided $\mathcal{H}(\lambda) \geq \lambda_t$. Replacing u by $B^{-2t}u$, we have

$$\mathcal{H}(B^{-m-t} \partial \pi(L + \lambda)u, B^{-m-t}u) \geq C_\|\|u\|_{L^t+m}$$

which yields (4.1) for $-t$ by virtue of Schwarz' inequality again. Q.E.D.

Lemma 4.2. Let $t \in \mathbb{R}$. Then if $\mathcal{H}(\lambda)$ is sufficiently large, $\partial \pi(L + \lambda)|_{\mathcal{H}^t}$ is an isomorphism onto \mathcal{H}^{t-2m}.

Proof. Since $L \in \mathcal{H}_{2m}$, we have $\| \partial \pi(L + \lambda)u \|_{t-2m} \leq C_\|u\|_t$. By Lemma 4.1 and the density of \mathcal{H}^α in \mathcal{H}^t, we obtain the estimates

$$C_\|u\|_t \leq \| \partial \pi(L + \lambda)u \|_{t-2m} \leq C_\|u\|_t$$

(4.3)

when $\mathcal{H}(\lambda)$ is sufficiently large, for all $u \in \mathcal{H}^t$. This implies that

$$\partial \pi(L + \lambda) : \mathcal{H}^t \rightarrow \mathcal{H}^{t-2m}$$

injectively with closed range. If $v \in \mathcal{H}^{2m-t}$ is orthogonal to $\partial \pi(L + \lambda)(\mathcal{H}^t)$, then $(\partial \pi(L^* + \lambda^*)v, u) = (v, \partial \pi(L + \lambda)u) = 0$ for all $u \in \mathcal{H}^{2m-t}$. Hence $\partial \pi(L^* + \lambda^*)v = 0$. If $\mathcal{H}(\lambda)$ is so large that (4.3) holds for $L^* + \lambda^*$, then $v = 0$. Thus, $\partial \pi(L + \lambda)\mathcal{H}^t = \mathcal{H}^{t-2m}$ in this case. Q.E.D.

Lemma 4.3. If $u \in \mathcal{H}^{-\alpha}$ and $\partial \pi(L)u \in \mathcal{H}^t$, then $u \in \mathcal{H}^{t+2m}$.

Proof. Let $v = \partial \pi(L)u$. Assume that $u \in \mathcal{H}^s$ for some $s \leq t$. Then $v + \lambda u = \partial \pi(L + \lambda)u \in \mathcal{H}^s$. Hence taking $\lambda \geq 0$ sufficiently large, we have by Lemma 4.2 that $u \in \mathcal{H}^{s_1}$, $s_1 = s + 2m$. If $s_1 < t$, we may repeat this argument until we get $u \in \mathcal{H}^s$ for some $s \geq t$. A final application of lemma 4.2 then gives $u \in \mathcal{H}^{t+2m}$. Q.E.D.

We now state and prove the regularity theorem for operators defined by coercive forms. If T is an operator on a Banach space \mathcal{H}, then $\mathcal{D}(T)$ denotes the domain of T as a normed space with the graph norm $\| x \| + \| Tx \|$.

Theorem 4.1. Let \(\pi \) be a unitary representation of \(G \), and suppose \(Q \in u_m \otimes u_m^* \) is \(\pi \)-coercive. Let \(L = \gamma(Q) \in u_{2m} \), and let \(A \) be the closure of the operator \(\partial \pi(L) \) in \(\mathcal{H}(\pi) \). Then

(i) \(A = \partial \pi(L^*)^* \) (Hilbert space adjoint);

(ii) \((A + \lambda)^{-1} \) exists as a bounded operator on \(\mathcal{H}(\pi) \) for \(\lambda \) in a half-plane \(\mathcal{H}(\lambda) > \lambda_0 \), and satisfies

\[
\|(A + \lambda)^{-1}\| \leq [\mathcal{H}(\lambda - \lambda_0)]^{-1};
\]

(iii) \(\mathcal{Q}(A^n) = \mathcal{H}^{2m}(\pi) \) with equivalent norms.

Corollary 4.1. Suppose \(L = L^* \) (as an element of \(u \)). Then \(A \) is self-adjoint and bounded below. Pick \(\lambda \geq 0 \) so that \(A + \lambda \geq I \), and set \(\Gamma = (A + \lambda)^{1/2m} \). Then for all \(t \geq 0 \),

\[
\mathcal{Q}(\Gamma^t) = \mathcal{H}^t(\pi)
\]

with equivalent norms.

Proof of Theorem 4.1. Since \(\partial \pi(L) \subseteq \partial \pi(L^*)^* \) by relation (1.6), we have \(A \subseteq \partial \pi(L^*)^* \). Suppose \(\{u, v\} \in \mathcal{H} \oplus \mathcal{H} \) is orthogonal to the graph of \(A \). Then for all \(w \in \mathcal{H} \),

\[
0 = \langle u, w \rangle + \langle v, \partial \pi(L)w \rangle = \langle u, w \rangle + \langle \partial \pi(L^*)v, w \rangle.
\]

Hence, \(\partial \pi(L^*)v = -u \). Since \(u \in \mathcal{H} \), we have by Lemma 4.3 that \(v \in \mathcal{H}^{2m} \).

Since \(L^* \) is of degree \(2m \), \(v \) is thus in the domain of the closure, call it \(\Lambda^* \), of \(\partial \pi(L^*) \), and \(\Lambda v = -u \). If now \(w \in \mathcal{Q}(\partial \pi(L^*)) \), we have

\[
\langle u, w \rangle + \langle v, \partial \pi(L^*)^*w \rangle = \langle u, w \rangle + \langle A^*v, w \rangle = 0.
\]

Hence \(\{u, v\} \) is orthogonal to the graph of \(\partial \pi(L^*)^* \). This proves (i).

As a consequence of (i), we obtain that \(A \) is the restriction of \(\partial \pi(L) \) to \(\mathcal{Q} = \{u \in \mathcal{H}, \partial \pi(L)u \in \mathcal{H} \} \). Indeed, by the definition of Hilbert-space adjoint, \(\partial \pi(L)|_{\mathcal{Q}} = \partial \pi(L^*)^* \). But by Lemma 4.3, \(\mathcal{Q} = \mathcal{H}^{2m}(\pi) \). Statement (ii) is now an immediate consequence of Lemma 4.2 and Schwarz' inequality applied to the estimate

\[
\mathcal{H}(\partial \pi(L + \lambda)u, u) \geq \mathcal{H}(\lambda - \lambda_0)\|u\|^2,
\]

which holds for some \(\lambda_0 \geq 0 \) by the coerciveness assumption on \(Q \).
Since L^n is of degree $2mn$, the inclusion $\mathcal{H}^{2mn}(\pi) \subseteq \mathcal{D}(A^n)$ holds and is continuous. In case $n = 1$, we obtained the opposite inclusion in the preceding paragraph. Suppose inductively that $\mathcal{D}(A^n) \subseteq \mathcal{H}^{2mn}(\pi)$. If $u \in \mathcal{D}(A^{n+1})$, then $Au \in \mathcal{H}^{2mn}(\pi)$. Since $Au = \delta\pi(L)u$, we obtain from Lemma 4.3 that $u \in \mathcal{H}^{2mn+1}(\pi)$. By the closed graph theorem (or by Lemma 4.1), the norm on the Banach space $[\mathcal{D}(A^n)]$ is equivalent to $\| \cdot \|_{mn}$.

Proof of Corollary 4.1. The only point to verify is Eq. (4.4). Since $\mathcal{H}^q(\pi) = [\mathcal{D}(B')]$, and (4.4) holds for $t = 2mn$, we obtain (4.4) for all $t \geq 0$ by the monotonicity theorem of Loewner–Heinz [10, Satz 3].

Q.E.D.

5. Applications

Our first application of the results of Sections 3 and 4 is the following sharpening of a result of Nelson and Stinespring [16, Corollary 2.4]:

Theorem 5.1. Let π be a unitary representation of G, and suppose $Q \in u_m \otimes \ast u_m$ is Hermitian symmetric and π-coercive (e.g., assume Q is Hermitian elliptic). Let $L = \gamma(Q)$, and assume $T \in \mathfrak{u}(g)$, commutes with L. Then,

(i) $\mathcal{D}(T)$ has a dense set of bounded vectors;

(ii) $\mathcal{D}(T^*)^\ast$ is the closure in \mathcal{H} of $\mathcal{D}(T)$.

Remark. A bounded vector for an unbounded operator S is a vector $v \in \cap_n \mathcal{D}(S^n)$ for which there exists a constant C with $\| S^n v \| \leq C^n$.

Proof of Theorem 5.1. Replace L by $L + \lambda$ to achieve $\mathcal{D}(L) \supseteq 1$. Let $\Lambda = \mathcal{D}(L)^\ast$. Then Λ is a self-adjoint operator and $\mathcal{D}(\Lambda^n) = \mathcal{H}^{2mn}(\pi)$ by Theorem 4.1. If n_0 is chosen so that $2mn_0 \geq \text{order}(T)$, one has an estimate

$$\| Tu \| \leq M \| \Lambda^{n_0} u \|, \quad u \in \mathcal{H}^\infty(\pi).$$

Since Λ is self-adjoint and $\cap_n \mathcal{D}(\Lambda^n) = \mathcal{H}^\infty(\pi)$, it follows by spectral theory that Λ has a dense set of bounded vectors in $\mathcal{H}^\infty(\pi)$. But if $u \in \mathcal{H}^\infty$ and $\| \Lambda^n u \| \leq C^n$, then $\| T^n u \| \leq M \| \Lambda^{n_0} T^{n-1} u \| = M \| T^{n-1} \Lambda^{n_0} u \|$. Iterating this estimate, we obtain $\| T^n u \| \leq M \| \Lambda^{n_0} \| \| M^n \| \| \Lambda^{n_0} \| = (MC^n)^n$, giving (i).

To prove (ii), we observe that $T^* T$ commutes with L, since $L = L^*$. Hence by (i) and a theorem of Nelson [15], the operator $\mathcal{D}(T^* T)$ is essentially self-adjoint. By Lemma 2.3 of [16], this implies (ii).

Remark. For operators L that are elliptic on G (i.e., $\hat{Q}(\xi) \neq 0$ for $\xi \in \mathfrak{g}$'), Theorem 5.1 can in fact be deduced from the results of [16]. Indeed, elliptic regularity gives Λ self-adjoint and $\mathcal{H}^\infty(\pi) = \cap_n \mathcal{D}(\Lambda^n)$ in this case, and the argument just given may be used.
As the next application of our coerciveness estimates we obtain a "filtered" version of Theorem 1.1 of [7] in the case of unitary representations of G. This result can be used to facilitate giving an explicit description of elements of $\mathcal{H}^m(\pi)$ in concrete representations, just as Theorem 1.1 of [7] was used for the space $\mathcal{H}^\infty(\pi)$.

Theorem 5.2. Let $\{X_j\}, 1 \leq j \leq d$, be a basis for \mathfrak{g}, and let G_j be the one-parameter subgroup of G generated by X_j. Suppose that π is a unitary representation of G, and set $\tau_j = \pi|_{G_j}$. Then, for every positive integer m,

$$\mathcal{H}^m(\pi) = \bigcap_{j=1}^d \mathcal{H}^m(\tau_j).$$

Proof. The left-hand side of (5.1) is of course contained in the right-hand side. For the converse we consider the Hermitian element $Q = \sum_j X_j^m \otimes X_j^m$ of $\mathfrak{u}_m \otimes \mathfrak{u}_m$, and the associated operator $L = \sum (-1)^m X_j^{2m}$. Q is π-coercive by Corollary 3.1; so by Corollary 4.1 the self-adjoint operator $\Lambda = \partial \pi(L)^* \pi$ has domain $\mathcal{H}^{2m}(\pi)$. Since $\Lambda \geq 0$, the operator $(\Lambda + 1)^{1/2}$ has domain $\mathcal{H}^m(\pi)$. On the other hand, $\mathcal{H}^m(\pi_j) = \mathcal{D}(d\pi(X_j)^m)$; so it suffices to show that if $u \in \bigcap_{j=1}^d \mathcal{H}^m(\tau_j)$ then $u \in \mathcal{D}((\Lambda + 1)^{1/2})$.

Now $(\Lambda + 1)^{1/2}$ is essentially self-adjoint on $\mathcal{H}^\infty(\pi)$, since this is the space C^∞-vectors for this operator by Corollary 4.1. Thus, $u \in \mathcal{D}((\Lambda + 1)^{1/2})$ if and only if there is a constant $C > 0$ such that

$$|\langle (\Lambda + 1)^{1/2} v, u \rangle| \leq C \| v \|$$

for all $v \in \mathcal{H}^\infty(\pi)$. Replacing v by $(\Lambda + 1)^{1/2} v$ and using Corollary 4.1, we see that (5.2) is equivalent to

$$\langle Lv, u \rangle \leq C \| v \|_m$$

holding for all $v \in \mathcal{H}^\infty(\pi)$. But now if $u \in \bigcap_{j} \mathcal{H}^m(\tau_j)$, then

$$(Lv, u) = \sum (\partial \pi(X_j)^m) v, d\pi(X_j)^m u)$$

for all $v \in \mathcal{H}^\infty(\pi)$. By Schwarz' inequality we obtain (5.3). Q.E.D.

We can use Theorem 5.2 to obtain regularity properties for a vector from regularity properties of the associated representative functions on G:

Corollary 5.1. (Hypotheses of Theorem 5.2). Suppose $u \in \mathcal{H}(\pi)$ is such that for every $v \in \mathcal{H}(\pi)$ and $1 \leq j \leq d$ the function

$$\varphi(t) = (\pi(\exp tX_j)u, v), \quad t \in \mathbb{R},$$

is of class C^{m-1}, with $\varphi^{(m-1)}(t)$ Lipschitz-continuous at $t = 0$. Then $u \in \mathcal{H}^m(\pi)$.

Proof. Consider first the case \(m = 1 \). By the uniform boundedness principle, the \(\mathcal{H} \)-valued function \(t \to \pi(\exp tX_j)u \) satisfies a Lipschitz condition at \(t = 0 \). It follows that \(u \in \mathcal{D}(d\pi(X_j)) \). Indeed, \(i\pi(X_j) \) is a self-adjoint operator, and if we take it as multiplication by a function \(\xi \) on \(L^2(\Omega) \), then by the Lipschitz condition and Fatou’s lemma we obtain

\[
\int \lim_{t \to 0} t^{-2} | e^{it\xi} - 1 |^2 | u |^2 < \infty.
\]

Since \(\lim_{t \to 0} t^{-2} | e^{it\xi} - 1 |^2 = \xi^2 \), this implies that \(u \in \mathcal{D}(d\pi(X_j)) \). (We could have also invoked a general theorem of Butzer to obtain this conclusion, cf. [4].) Iteration of this argument and Theorem 5.2 complete the proof.

As the last application we have the following generalization of Theorem 2 of [6]:

Theorem 5.3. Let \(Q \in u_m \otimes u_m^\ast \) be Hermitian symmetric and \(L = \gamma(Q) \) the associated Hermitian element of \(u_{2m}^\prime \). Suppose \(\pi \) is a unitary representation of \(G \), such that \(Q \) is \(\pi \)-coercive. Set \(\Lambda = \text{closure in } \mathcal{H}(\pi) \) of \(d\pi(L) \), and let \(\mathcal{H}^\omega(\pi) \) be the space of analytic vectors for \(\pi \). Then,

\[
v \in \mathcal{H}^\omega(\pi) \iff v \in \bigcap_n \mathcal{D}(\Lambda^n) \quad \text{and} \quad \| \Lambda^nv \| \leq C^n(2mn)!
\]

for some constant \(C \) (depending on \(v \)) and all \(n \).

We may also state this theorem in the following form, which displays it as a generalization of a theorem of Paley and Wiener (cf. Introduction to [7]):

Corollary 5.2. (Hypotheses of Theorem 5.3.) Let \(T : \mathcal{H}(\pi) \to L^2(\Omega, d\mu) \) be a unitary map such that \(T \Lambda T^{-1} \) is multiplication by a measurable function \(\varphi \) on \(\Omega \). Write \(Tu = \hat{u} \). Then \(u \in \mathcal{H}^\omega(\pi) \iff \hat{u} \) satisfies

\[
\int_\Omega | \hat{u}(\omega)|^2 \exp(\| \varphi(\omega) \|^{1/2m}) \, d\mu(\omega) < \infty \tag{5.4}
\]

for some \(r > 0 \).

Proof of Theorem 5.3. By Theorem 4.1 the space \(\bigcap_n \mathcal{D}(\Lambda^n) \) coincides with \(\mathcal{H}^\omega(\pi) \). Pick \(\lambda > 0 \) sufficiently large so that \(\Lambda + \lambda I \), and set \(\Gamma = (\Lambda + \lambda)^{1/2m} \). By Corollary 4.1 we have

\[
\| u \|_1 \leq C \| \Gamma u \|
\]

\[
\| u \|_{2m} \leq C \| \Gamma^{2m} u \|
\]
if \(u \in \mathcal{H}^{\omega}(\pi) \). On the other hand, since \(L \in \mathfrak{u}_{2n} \), we have an estimate

\[
\|[\text{ad} X_{i_1}, \ldots, \text{ad} X_{i_n}(L)]u\| < C^{n} \| u \|_{2n}
\]

for \(u \in \mathcal{H}^{\omega}(\pi) \) and \(\{X_i\} \) a basis for \(\mathfrak{g} \). It follows from Theorem 1’ and the proof of Theorem 2 of [6] that \(u \in \mathcal{H}^{\omega}(\pi) \Leftrightarrow u \) is an analytic vector for the operator \(\Gamma \). By elementary estimates this is equivalent to \(\|A^nu\| \leq C^n(2mn)! \)

\(\Box \).

Proof of Corollary 5.2. Such a unitary map \(\mathcal{F} \) exists by the spectral theorem. By Proposition 4.1 of [7] and elementary estimates, condition (5.4) is equivalent to \(u \) being an analytic vector for \(\Gamma \) (\(\Gamma \) as in preceding proof), which in turn has been shown equivalent to \(u \in \mathcal{H}^{\omega}(\pi) \).

Q.E.D.

6. An Example

To illustrate the kind of concrete analytical information that can be obtained from our estimates, we consider the following situation (generalizing Section 6 of [7]):

Let \(g_d \), \(d \geq 1 \), be the \((d + 2)\)-dimensional real nilpotent Lie algebra with basis \(X, Y_j \), \(j = 0, 1, \ldots, d \), satisfying the commutation relations

\[
[X, Y_j] = Y_{j-1}, \quad [Y_j, Y_k] = 0.
\]

(Set \(Y_{-1} = 0 \).) Let \(G_d \) be the corresponding simply-connected group (\(G_1 \) is the so-called "Heisenberg group"). An infinite-dimensional irreducible representation \(\pi \) of \(G_d \) may be realized on \(L^2(\mathbb{R}^d) \), with \(\partial \pi(X) : = d/dx \), \(\partial \pi(Y_j) \) = multiplication by \(iP_j(x) \), all acting on the Schwartz space \(\mathcal{S} \).

Here \(P_j \) is a real polynomial satisfying \(P_j' = P_{j-1} \), \(P_0(x) = \sigma \), with some \(P_j \neq 0 \) [13, Section 9]. We may restrict our attention to representations for which \(\sigma \neq 0 \), since otherwise we can pass to a representation of \(g_d/(\mathfrak{y}_0) \) \(\simeq g_{d-1} \).

We shall call such a representation nondegenerate. In this case \(P_d(x) = \sigma x^d/d! + \cdots \) is of degree exactly \(d \). Let \(S_{a, \beta}^{\delta} \subset \mathcal{S} \) be the space defined by Gel’fand and Shilov in [5], and as before let \(\mathcal{H}^{\omega}(\pi) \) be the space of analytic vectors for \(\pi \).

Lemma 6.1. Let \(\pi \) be a nondegenerate irreducible unitary representation of \(G_d \), realized as above. Then

\[
\mathcal{H}^{\omega}(\pi) = S_{1/d}^{\delta}. \quad (6.1)
\]

Remarks. 1. A function \(f \in S_{1/d}^{\delta} \) if and only if \(f \) is the restriction to \(\mathbb{R} \) of
a function holomorphic in some strip $|\mathcal{I}(z)| < r$ which satisfies the growth estimate

$$|f(x + iy)| < C \exp(-a|x|^d)$$

(6.2)

for some $r > 0, a > 0$ (r, a, C depending on f), and $|y| < r$ (cf. [5]).

2. The case $d = 1$ was treated in [7, Theorem 6.2] in more detail. (The statement of this theorem in [7] has a misprint. It should read:

$$\mathcal{H}^a_1(\pi^\lambda) \supseteq \mathcal{H}^a_1 \supseteq \mathcal{H}^a_2(\pi^\lambda).$$

Proof of Lemma 6.1. Let $P = d/dx, Q = $ multiplication by x, acting on \mathcal{S}. By Lemma 5.1 of [8], the space $S^{1,\lambda}_{1,0}$ consists of all $f \in \mathcal{S}$ for which there exists a constant C with

$$\|Q^r P^s f\| \leq C^{r+s} (d/d)^{s} f$$

(6.3)

$r, s = 1, 2, 3, \ldots$ (C depending on f).

On the other hand, since π is nondegenerate we can choose a basis $\{X_j\}$ for g_d such that $\partial \pi(X_j) = iQ^j, 0 \leq j \leq d,$ and $\partial \pi(X_{d+1}) = i\partial$. By using the coordinate system $\exp t_1X_1 \cdots \exp t_{d+1}X_{d+1}$ for G_d, we see that $f \in \mathcal{H}^a(\pi)$ if and only if $f \in \mathcal{S}$ and there exists a constant C with

$$\|Q^r P^s f\| \leq C^{r+s} r_1 \cdots r_{d+1} s!$$

(6.4)

Here $r = \sum_{k=0}^{d} kr_k, n = \sum_{k=0}^{d} r_k,$, and (6.4) is to hold for $r_k, s = 0, 1, 2, \ldots$. Elementary estimates show that (6.3) and (6.4) are equivalent, modulo a change in C.

We now apply the foregoing theory to obtain the following analysis of the spectra and eigenfunction expansions for certain ordinary differential operators with polynomial coefficients:

Theorem 6.1. Let L be a formally self-adjoint differential operator with polynomial coefficients on $L^2(\mathbb{R})$ of the form

$$L = (-1)^m (d/dx)^{2m} + c_0 x^{2m\alpha} + R,$$

where $c_0 > 0$, m is a positive integer, and

$$R = \sum c_{jk} x^j (d/dx)^k \quad ((j/d) + k < 2m).$$

Then, L is essentially self-adjoint on the Schwartz space \mathcal{S}, and the closure Λ of L has these properties:

(i) $\cap_n \mathcal{D}(\Lambda^n) = \mathcal{S}$;

(ii) Λ is bounded from below and the resolvent of Λ is of Hilbert–Schmidt class for $m = 1$, and of trace class for $m \geq 2$.

(iii) Let \(\{ \varphi_k \} \) be an orthonormal basis of eigenfunctions for \(\Lambda \), with corresponding eigenvalues \(\{ \lambda_k \} \). If \(f \in L^2(\mathbb{R}) \) and \(\hat{f}(k) = (f, \varphi_k) \), then

\[
\hat{f} \in S^1_{1/2} \Rightarrow \hat{f}(k) = O(\exp -r|\lambda_k|^{1/2m})
\]

for some \(r > 0 \).

Remarks. 1. For the case \(m = d = c_0 = 1, R = 0 \), the functions \(\{ \varphi_k \} \) are the Hermite functions, and (iii) was first proved by Hille (cf. Section 6 of [7]).

2. The eigenfunctions \(\{ \varphi_k \} \) are of course entire functions, since \(L \) has no finite complex singularities. It would be of interest to know if \(\varphi_k \) is an entire vector for the representation \(\pi \) of \(G_d \) (in the sense of [7]). By Lemma 4.3 of [8], this will be the case, e.g., if \(\varphi_k \) is in the space \(S^{0}_{a, d} \) of Gel'fand–Shilov for some \(a < 1 \) (This space is nontrivial provided \(a > d/(d + 1) \)). In case \(m = d = 1 \) and \(R = 0 \), \(\varphi_k \in S^{1/2}_{1/2} \) by the behavior in the complex domain of the Hermite functions. In the case \(m = 1 \) and \(d > 1 \), the asymptotic estimates of [12] might be useful for establishing a similar result.

Proof of Theorem 6.1. Let the Lie algebra \(\mathcal{G}_d \) and representation \(\pi \) be as above. We first observe that \(L \) is of order \(2m \) relative to \(\mathcal{G}_d \). Indeed, if \(j, k \) are non-negative integers with \((j/d) + k < 2m \), write \(j = ld + r, 0 \leq r < d \).

Then \(l + k \leq 2m - 1 \), and \(Q^jP_k = Q^r(Q^{d})^lP^k \) is hence of order \(2m \) relative to \(\mathcal{G}_d \), since \(Q^r, Q^d, P \in \partial \pi(\mathcal{G}_d) \). The "leading term"

\[
L_0 = (-1)^{m}(d/\mathcal{d})^{2m} + c_0 x^{2md}
\]

is obviously of degree \(2m \) relative to \(\mathcal{G}_d \). We have

\[
(L_0f, f) = \|P^m f\|^2 + c_0 \|Q^{md} f\|^2 \tag{6.5}
\]

if \(f \in \mathcal{F} \). By Corollary 3.1 the form (6.5) is \(\pi \)-coercive of degree \(m \). To show that \(L \) itself is associated with a \(\pi \)-coercive form of degree \(m \), it thus suffices to have an estimate

\[
|\langle R, f, f \rangle | \leq C \|f\|_s^2, \quad f \in \mathcal{F}, \tag{6.6}
\]

for some \(s < m \), where \(\| \cdot \|_s \) is the norm on \(\mathcal{H}^s(\pi) \).

To establish (6.6) we first prove that

\[
\|Q^lP^k f\| \leq C \|f\|_r, \tag{6.7}
\]

where \(r = (j/d) + k \). It suffices to consider the case \(0 < j < d \), since \(Q^{d}P^k \) is of order \(l + k \) relative to \(\mathcal{G}_d \), for integers \(l, k \).

Now if \(f \in \mathcal{F} \), then \(\|Q^l\| = \|Q^l f\| \), where \(|Q| \) is the operator of multiplication by \(|x| \). Furthermore, \(\mathcal{D}(|Q|) = \mathcal{D}(d\pi(X_d)) \supseteq \mathcal{D}(B) \), where
B is the operator defining the scale $\mathcal{H}^\ell(\pi)$. Hence by the monotonicity theorem of Loewner–Heinz [10, Satz 3], one has
\[
\| Q^j f \| = \| Q^d |Q^j|^{1/d} \| \leq C \| B^{i/d} f \|,
\]
$0 \leq j \leq d$. Together with (1.4) this yields (6.7).

Next observe that the commutation relation $[P, Q] = -i$ gives, by the usual commutator formula, the relation
\[
P^k Q^j = \sum_{l} \binom{k}{l} (-i)^l Q^{j-l} P^{k-l}, \tag{6.8}
\]
with $\binom{k}{l} = k! j! ((k - l)! (j - l)! l!)$. Hence if $S = Q^j P^k$ and $S' = P^k Q^j$, then by (6.7) and (6.8) the hypotheses of Lemma 1.1 are satisfied, with $\alpha = 0$, $\beta = (j/d) + k$, and $\gamma = -r$. Taking $t = \frac{1}{2}$ in this lemma, we obtain the estimate
\[
|(S f, f)| < C \| f \|_{1/2}^2,
\]
for $f \in \mathcal{F}$. Since R is a sum of operators of the form cS, with $r < 2m$, we obtain estimate (6.6).

We may now apply the conclusions of Corollary 4.1 and Theorem 5.3 to the operator A.

Since $\mathcal{F} = \mathcal{H}^\infty(\pi)$, statement (i) and the first part of statement (ii) follow immediately. To obtain the rest of (ii), we compare A with a “known” operator, namely the closure H of the operator $P^2 + Q^2 + 1$. This operator is self-adjoint, and H^{-1} is of Hilbert–Schmidt class (H has simple point spectrum with eigenvalues $\lambda_n = 2n + 2$, $n = 0, 1, ...$). On the other hand, H is of order 2 relative to the scale $\mathcal{H}^\ell(\pi)$, and $\mathcal{D}(H^m) \supseteq \mathcal{H}^{2m}(\pi)$. If $\lambda > 0$ is so large that $(A + \lambda)^{-1}$ exists, then it follows from Corollary 4.1 that $H^m(A + \lambda)^{-1} \equiv T$ is a bounded operator on $L^2(\mathbb{R})$. Hence we can factor $(A + \lambda)^{-1}$ as $H^{-m} T$. Together with the resolvent equation $(A + \mu)^{-1} = (A + \lambda)^{-1} + (\lambda - \mu)(A + \lambda)^{-1}(A + \mu)^{-1}$ this establishes (ii), since H^{-m} is trace class for $m > 1$, and the Hilbert–Schmidt and trace classes are ideals in $\mathcal{B}(\mathcal{H})$.

To establish (iii), it suffices by Corollary 5.2 and Lemma 6.1 to show that
\[
\sum_k |f(k)|^2 \exp(a|\lambda_k|^{1/2m}) < \infty \tag{6.9}
\]
for some $a > 0$ provided that $f(k) = O(\exp - r|\lambda_k|^{1/2m})$ for some $r > 0$. (The converse is trivially true, with $a = 2r$.) But by (ii), the series
\[
\sum_k (1 + |\lambda_k|^{1/2m})^{-4m} < \infty.
\]

Hence (6.9) holds for any $a < 2r$. Q.E.D.
REFERENCES