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There are strong arguments favoring a four-quark interpretation of sub-GeV light scalar mesons and
the diquark–antidiquark body-plan of the tetraquark seems to provide the most convincing picture. The
building diquarks of these particles are assumed to be spin zero objects. In this Letter we explore the
possibility that radially excited aggregations of spin zero or spin one diquarks might exist and discuss
the possibility of the Y (2175) state observed by BaBar and confirmed by BES being one such state.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

It has been shown recently how the diquark-antidiquark interpretation of the sub-GeV scalar meson nonet made of f0(980), a0(980),
κ(800), σ(500) can lead to a remarkable description of the decay properties of these particles [1], adding a rather strong confidence that
they are indeed tetraquark objects.

In terms of diquarks q, the light scalar nonet can be interpreted as qq̄ particles made of spin zero diquarks, so-called “good”. A good
diquark operator in the attractive anti-triplet color channel (Greek letters), antisymmetric in flavor (Latin letters) can be written as [2]:

qiα = εi jkεαβγ q̄ jβ
c γ5qkγ . (1)

Also “bad”, spin one, diquarks can be conceived. A bad diquark operator can be written as:

qik
α = εαβγ

(
q̄β j

c �γ qkγ + q̄βk
c �γ q jγ )

. (2)

Both represent positive parity, 0+ and 1+ , states. Similarly one can construct 0− and 1− operators as: q̄cq and q̄c �γ γ5q. The latter are
identically zero in the ‘single mode configuration’, quarks that are unexcited with respect to one another. Lattice studies, see, e.g. [3],
suggest that diquarks are preferably (energetically) formed in spin zero configurations. In fact the most solid tetraquark candidates are
scalars made of good diquarks. Since we intend to study excited tetraquark states along the lines defined in the paper [1], we shall neglect
the possibility of having two diquarks both in the repulsive 6c color channel although they might experience an overall effective attraction.

The next step in building this new spectroscopy is to find states belonging to other multiplets. Recently, the BaBar experiment has
observed a new J P C = 1−− resonance, the Y (2175), decaying into φ f0 [4], later confirmed by BES [5]. The fact that it has been first
observed into a mode including a light scalar makes it a good candidate for belonging to a higher tetraquark multiplet.

In this Letter we make a simple ansatz that properly reproduces the light scalar nonet and utilize it to make predictions on possible
excitations, focusing on J P C = 1−− states and searching for a match with the Y (2175).

2. The model

This is developed in the framework of a non-relativistic Hamiltonian including spin–spin interactions inside a single diquark, spin–spin
interactions between quarks and antiquarks belonging to the two diquarks forming the hadron, spin–orbit and a purely orbital term:

H = 2mq + H(qq)
S S + H(qq̄)

S S + H S L + HLL, (3)

where:
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Table 1
Estimate, in MeV, of the parameters in the Hamiltonian in Eq. (4) depending on the diquark type q = [q1q2].
[q1q2] mq kq kq1 q̄2 kq1 q̄1 kq2 q̄2

[qq] 395 103 315 315 315
[sq] 590 64 195 121 315
[ss] 740 93 121 121 121

H(qq)
S S = 2κq(�Sq1 · �Sq2 + �Sq̄1 · �Sq̄2 ),

H(qq̄)
S S = 2κq1q̄2 (

�Sq1 · �Sq̄2 + �Sq̄1 · �Sq2 ) + 2κq1q̄1
�Sq1 · �Sq̄1 + 2κq2q̄2

�Sq2 · �Sq̄2 ,

H S L = 2Aq(�Sq · �L + �Sq̄ · �L),

HLL = Bq
L(L + 1)

2
. (4)

The parameters in these equations are fit to data: mq is the mass of the [q1q2] diquark, κq is the spin–spin coupling between the quarks
inside the diquarks, κq1q2 are the spin–spin couplings ranging outside the diquark shells, Aq is the diquark spin–orbit coupling, and
Bq weights the contribution of the total orbital angular momentum of the qq̄ system to its mass; the overall factors of two are just
conventional notations. We focus on the case where only light u,d, s quarks are involved. The spin–spin interaction Hamiltonian has the
form:

H S S =
∑
pairs

κi j

mim j
(�Si · �S j)δ

3(�ri j), (5)

because the color-magnetic moments are inversely proportional to quark masses. In Eqs. (4) we incorporate the mass dependencies in the
κi j constants. The Hamiltonian (5) describes contact interactions. For this reason we could expect that allowing a relative orbital angular

momentum between the diquarks will decrease or switch-off the spin–spin interactions between quarks and antiquarks, namely H (qq̄)
S S . In

the following we shall consider both cases.
The values of the couplings appearing in Eqs. (4) were estimated in Ref. [6] from a fit to meson and baryon masses under the

assumption that the spin–spin interactions are independent of whether the pair of quarks belong to a meson or a diquark. The estimates
are summarized in Table 1.

Extending the same procedure to the S = 1, L = 0,1 meson states ρ(770), a1(1230), a2(1320), b1(1229) [7] we also infer the parameters
related to the orbital angular momentum: Aq = 22.5 MeV, Bq = 505 MeV.

To describe a qq̄ quantum state we adopt the following non-relativistic notation:

|Sq, Sq̄; Sqq̄〉 = ∣∣sT Γ q, s̄T Γ q̄; Sqq̄
〉
, (6)

where Γ ∝ σ2 for a spin zero diquark and Γ ∝ σi for a spin one diquark. The action of a spin–spin interaction operator, e.g. �Ss̄ · �Sq , on (6)
is described as follows:

(�Ss̄ · �Sq)
∣∣sT Γ q, s̄T Γ q̄; Sqq̄

〉 = 1

4

∑
j

∣∣sT Γ σ jq, s̄T σ T
j Γ q̄; Sqq̄

〉
. (7)

As an example let us diagonalize the Hamiltonian in Eq. (4) between scalars made of diquarks, i.e. |0q,0q̄;0〉 with a relative Lqq̄ = 0.
With an obvious shorthand notation:

|0q,0q̄;0〉 = 1

2

∣∣sT σ2q, s̄T σ2q̄;0
〉 := 1

2
σ2 ⊗ σ2. (8)

We can then compute:

〈0q,0q̄;0|�Ss · �Sq|0q,0q̄;0〉 = −1

4
× 3, (9)

where we have used the fact that σ T
j σ2 = −σ2σ j and σ jσ j = 3 × 1. The final result is:

m = 2mq − 3κq. (10)

If q = [sq], then, using the values in Table 1, we get:

m = 988 MeV, (11)

reproducing the mass of ma0 and m f0 , considered as [qs][q̄s̄] particles with the two diquarks in spin zero and in S-wave [1]. Repeating
the same calculation with q = [ud] one gets, for the σ -meson mass:

m = 481 MeV. (12)

3. Higher mass tetraquark spectrum

The next orbital excitation comes when Lqq̄ = 1 and both good and bad diquarks are considered. Among these, also 1−− multiplets are
generated, which are the main interest of this Letter. To estimate the masses, one needs to repeat the diagonalization with the basis:
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Table 2
Eigenvalues of spin–orbit and angular momentum operators in (4). All these combinations of diquark spins and orbital angular momenta allow a J = L + Sqq̄ = 1 state.

a(Sq, Sq̄, L) b(Sq, Sq̄, L)

Sq = 0, Sq̄ = 0, L = 1 0 1
Sq = 1, Sq̄ = 0, L = 1 −2 1
Sq = 1, Sq̄ = 1, Sqq̄ = 2, L = 1 −6 1
Sq = 1, Sq̄ = 1, Sqq̄ = 1, L = 1 −2 1
Sq = 1, Sq̄ = 1, Sqq̄ = 0, L = 1 −2 1

Table 3
Mass values m(i)

Y in MeV for the 1−− states as computed from Eqs. (18) and (19). When applicable, the first value includes spin–spin interactions between diquarks, the

second one neglects them: H(qq̄)
S S = 0.

m(1)
Y m(2)

Y m(3)
Y m(4)

Y

[qq′] 986 1432/1342 1293/1923 1203/1833
[sq] 1493 1749/1726 1591/2004 1501/1914
[ss] – – 2090/2333 2000/2243

|1〉 = |0q,0q̄;1 J 〉, (13)

|2〉 = |1q,0q̄;1 J 〉 + |0q,1q̄;1 J 〉√
2

, (14)

|3〉 = |1q,1q̄;1 J 〉. (15)

Since both the good and the bad diquarks have positive parity, the state |2〉 has P = C = −1, provided that Lqq̄ = 1. For the states |1〉 and
|3〉, since Cqq̄(−1)Lqq̄ (−1)Sqq̄ = 1, Cqq̄ = −1 provided that Sqq̄ = 0,2 and Lqq̄ = 1.

To perform the diagonalization we adopt the shorthand notation described above:

|0q,0q̄;1 J 〉 = 1

2
σ2 ⊗ σ2,

|1q,0q̄;1 J 〉 = 1

2
σ2σi ⊗ σ2,

|0q,1q̄;1 J 〉 = 1

2
σ2 ⊗ σ2σi,

|1q,1q̄;1 J 〉 = 1

2
√

2
ε i jkσ2σ j ⊗ σ2σk. (16)

Hence, it is rather straightforward to derive the mass term shift �mS S due to the part of the Hamiltonian in Eq. (4) constraining only
spin–spin interaction terms, H S S :

�mS S =
[−3κq 0 0

0 −κq − κq1q̄2 + (κq1q̄1 + κq2q̄2 )/2 0
0 0 κq − κq1q̄2 − (κq1q̄1 + κq2q̄2 )/2

]
. (17)

Writing the latter matrix as diag(λ1, λ2, λ3), the four solutions for states having quantum numbers 1−− are:

m(1)
Y (Sq1 = 0, Sq2 = 0, Sqq̄ = 0, Lqq̄ = 1) = 2mq + λ1 + Bq,

m(2)
Y (Sq1 = 1, Sq2 = 0, Sqq̄ = 1, Lqq̄ = 1) = 2mq + δ + λ2 − 2Aq + Bq,

m(3)
Y (Sq1 = 1, Sq2 = 1, Sqq̄ = 0, Lqq̄ = 1) = 2mq + 2δ + λ3 − 2Aq + Bq,

m(4)
Y (Sq1 = 1, Sq2 = 1, Sqq̄ = 2, Lqq̄ = 1) = 2mq + 2δ + λ3 − 6Aq + Bq, (18)

where δ = mq(S=1) − mq(S=0) . Following Jaffe and Wilczeck [8], we will assume for q = [qq], δ 
 285 MeV whereas for q = [sq], δ 

150 MeV. The numerical values for the coefficients of Aq and Bq , call them a,b, are given in Table 2.

In case q = [ss], only the last state in Eq. (16) is allowed since only bad diquarks can be formed by Fermi–Dirac. One should therefore
consider only the 〈1q,1q̄;1 J |H S S |1q,1q̄;1 J 〉 correction to the mass, from Eq. (17) is equal to κs − 2κss̄ . We therefore have:

m(3)
Y (Sq1 = 1, Sq2 = 1, Sqq̄ = 0, Lqq̄ = 1) = 2mq + 2δ + (κs − 2κss̄) − 2Aq + Bq,

m(4)
Y (Sq1 = 1, Sq2 = 1, Sqq̄ = 2, Lqq̄ = 1) = 2mq + 2δ + (κs − 2κss̄) − 6Aq + Bq. (19)

The numerical values for m(i)
Y masses can be found in Table 3. The fact that 1−− tetraquark particles require an angular momentum

barrier Lqq̄ �= 0 between diquarks must suppress the diquark-antidiquark chromomagnetic interactions. Switching off spin–spin interactions
between quarks and antiquarks leads to the second estimates in Table 3.

4. Tetraquark decay modes

From these results, if we want to identify the Y (2175) as a tetraquark state, we have to resort to either a q = [qs] hypothesis, with
spin–spin interactions between diquarks set to zero or to a q = [ss] hypothesis: indeed we use the hypothesis that f0(980) in the decay
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products of Y (2175) is itself a qq̄ particle with q = [qs]. In order to test the match of the Y (2175) with these assignments, we study its
possible decays under both hypotheses, q = [qs], [ss], and the correspondence with observations. With both assignments, the observed
Y (2175) → φ f0(980) decay mechanism would be described by the following diagram:

As for other expected decays, a significant contribution is expected to come from φη via the diagrams below:

Similar diagrams would also yield φφ and ηη decays, but they are forbidden by charge conjugation and Bose statistics selection rules.
We can also estimate the decay width of the Y (2175) → φη channel. The decay proceeds through P -wave and the matrix element is

given by:

〈
φ
(

p′, ε(φ)
)
η(q)

∣∣Y (
p, ε(Y )

)〉 = gV εμνρσ pμqνε
(φ)
ρ ε

(Y )
σ . (20)

The quark exchange amplitude considered above has been studied first in [9] were a rather good fit of the scalar meson decays to
pseudoscalar, S → P P , was obtained associating to this amplitude a coupling strength A 
 2.6 GeV. Discarding angular momentum barrier
effects and following the definition given in [6]:

gV MV = A√
2
, (21)

where here MV = MY , we get the following estimate for the Y partial width in φη:

Γ
(
Y (2175) → φη

) = ξ
A2

2

1

8π M2
Y

√
λ(M2

Y , M2
φ, M2

η)

2MY

(MY + Mη)2 − M2
φ

M2
Y

, (22)

where ξ = 1
6 or 2

3 depending on the q = [qs] or q = [ss] respectively. We therefore estimate Γ (Y (2175) → φη) ∼ 5 MeV or ∼ 20 MeV
under the two hypotheses respectively. The most typical decay mode expected for tetraquarks is the baryon–antibaryon one. Stretching
the color string between the diquark and the antidiquark a qq̄ pair is formed, q��������qq̄��������q̄, letting two baryons in the decay products.
The favored decay diagram is

where the topology is suggested by the fact that the diquark in the Λ baryon could only be of the [ud] type.
Since the ΞΞ̄ decay mode is phase-space forbidden for the Y (2175), only the q = [sq] assignation would allow a dominant baryonic

decay, Y (2175) → ΛΛ̄. With the other assignment, q = [ss], the Y (2175) → ΛΛ̄ would be made possible by the annihilation of an ss̄ pair
by, e.g., an instanton interaction giving two pairs of light quarks in the final state: in diagrammatic terms

The 6-fermion instanton interaction has the form L I ∝ det(q̄i
Lq j

R) and its role in scalar meson dynamics has been recently underscored
in [1].

Nonetheless, it is known from [1] that the instanton coupling, fitted to explain light scalar meson decays like f0(980) → ππ , is about
ten times smaller that the quark exchange one. Therefore, under the hypothesis that the baryonic mode would be instanton driven in the
q = [ss] case, we would not expect it to be easily visible.

The latter diagram allows also a number of possible decays of the Y (2175) like pp̄, σπ , πππ , and ηπ0π0 in the q = [sq] hypothesis
and K −κ+ , K −π0 K + , and φπ0π0 in the q = [ss] one.
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Fig. 1. Fit to the φ f0 invariant mass distribution.

Table 4
Fit results to the φ f0 invariant mass distribution (Fit A), the φ f0 and ΛΛ invariant mass distributions (Fit B), and the invariant mass distributions of all three modes (Fit C).
The meaning of the symbols is explained in the text.

Fit χ2/DOF m0 (MeV) Γ0 (MeV) R(ΛΛ̄,φ f0) R(φη,φ f0)

A 25/36 2167 ± 11 69 ± 21 N/A N/A
B 47/45 2158 ± 11 66 ± 20 44 ± 19 N/A
C 85/103 2153 ± 9 72 ± 20 6.6 ± 3.5 10 ± 3

5. Observed Y(2175) decays

In order to test the compatibility of the Y (2175) state with a tetraquark interpretation and to discriminate between the two possible
diquark compositions, we have reanalyzed the published BaBar data for e+e− → φ f0γ [4], ΛΛ̄γ [10], and φηγ [11]. These are initial
state radiation processes, where J C P = 1−− states are produced together with the initial state photon. The invariant mass of the system
produced with the photon is then expected to show a resonant behavior in correspondence to states.

We perform simultaneous fits applying a consistent notation for the Breit–Wigner and several possible models for the non-resonant
component Anr. The general notation for the expected cross section as a function of the invariant mass of the system under study is

σ(m) ∝ Φ
f

PS(m)
∣∣A(m)

∣∣2
, (23)

A(m) = eiδ Anr(m) + √
σ0 B(Y → f )

m0Γtot(m0)

m2 − m2
0 + iΓtot(m)m0

,

where δ is the relative phase between the two components at the pole; Φ
f

PS(m) = (p(m)/p(m0))
α f is the final state dependent phase

space factor: αφη = 3, αφ f0 = αΛΛ̄ = 1; p(m) is the momentum of the two particles in the final state when their c.o.m. energy is m; m0
and σ0 are the pole mass and production cross section and are independent of the considered final state; B(Y → f ) is the branching
fraction to the specific final state; Γtot(m) is the comoving width, the sum over the considered final states plus a constant term to account
for all other decays with thresholds far from the pole mass:

Γtot(m) = Γ0

(
1 −

∑
f

B(Y → f )
(
1 − ξ f (m)

))
, (24)

ξ f (m) = Φ
f

PS(m)/FBW(m),

where FBW is the Blatt–Weisskopf factor [12] and Γ0 is the bare width. Note that for masses below the threshold of a given final state the
corresponding ξ is imaginary.

Of the three considered modes, in two cases the Y (2175) would decay to states where it is above threshold while for the other (ΛΛ̄)

m0 is below threshold. A fit to the discovery mode, φ f0, with Anr = A × e−k(E−mφ−m f0 ) × (1 − e−(E−mφ−m f0 )4/a1 ) (see Fig. 1) returns the
results listed as “Fit A” in Table 4.

Including the ΛΛ̄ mode in a simultaneous fit, with common bare mass and width and letting the ratio between the branching fractions
R(ΛΛ̄,φ f0) = BΛΛ̄/Bφ f0 float, yields different results depending on the assumptions Anr in the ΛΛ̄ mode (see Fig. 2). In case we assume
no non-resonant contribution, Anr = 0, we find that the Y (2175) → ΛΛ̄ decay can explain the whole observed spectrum, with mass and
width parameters consistent with the fit to the φ f0 mode. The results are reported as “Fit B” in Table 4.

There is an indication that the ΛΛ̄ decay is favored, even by one order of magnitude. If instead we assume Anr(m) = A × e−km , letting
k float, we observe no significant decay into ΛΛ̄, but with huge uncertainties: R(ΛΛ̄,φ f0) = 23 ± 51.

Finally, the φη mass distribution shows a significantly higher background than the other modes and small structure in a position
which is lower and narrower than the one observed in the φ f0 channel and marginally consistent with it. Fitting the three distributions
simultaneously as shown in Table 4, “Fit C” gives an overall good fit (see Fig. 3).
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Fig. 2. Fit to the ΛΛ̄ invariant mass distribution under the assumption of no non-resonant contribution (left), or assuming an exponential amplitude for it (right).

Fig. 3. φ f0, ΛΛ̄, and φη invariant mass distributions with the simultaneous fit overlaid.

We can then conclude that the presence of the Y (2175) → ΛΛ̄ is suggested by the fact that its existence would explain the whole
ΛΛ̄ mass spectrum. Under this hypothesis the baryonic decay mode would be dominant (BΛΛ̄/Bφ f0 = 44 ± 19), thus favouring q = [qs]
for the Y (2175). As for the φη mass distribution, uncertainties are large, but the case of a relatively large decay amplitude into it is not
disfavored.

Both the calculation of the mass spectrum and the reanalysis of the experimental data tend to favor the assignment of the Y (2175) to
a [sq][s̄q̄] state with both diquarks in the S = 1 state and with one unit of relative orbital angular momentum.

6. Conclusions

In this Letter we have studied the consequences of allowing spin one diquarks to build 1−− (qq̄) orbitally excited tetraquark states
potentially visible in processes with initial state radiation at BaBar and Belle. In particular we have focused on the Y (2175) resonance
recently discovered by BaBar. This particle could be the first tetraquark state showing the expected baryon–antibaryon decay. Indeed,
reanalyzing BaBar data, we find that if we set to zero the non-resonant contributions, the ΛΛ̄ decay mode is the prominent one, indicating
a q = [qs] assignation for the Y (2175). Under this hypothesis we would also expect to have a dominant Kκ decay mode and visible pp̄
and σπ decays, suppressed by about two orders of magnitude.
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