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ABSTRACT 

Faddeev’s method of computing the eigenvalues and eigenvectors of a matrix is 

presented and completed so as also to cover the case of multiple zeros of the 

characteristic equation. 

Let A be an n-by-n matrix with coefficients in a field K of zero 
characteristic. The characteristic polynomial of A may be obtained by a 
method proposed by D. K. Faddeev [3, $47; 41. This is a modification of a 
method of U. J. J. L everrier (1840) which, according to A. S. Householder [B, 
p. 1721, was “rediscovered and improved’ in the late forties also by J. M. 
Souriau [9] and J. S. Frame [5]. Although this method is not optimal from the 
point of view of numerical computation, it is rather elegant and easy to realize 
in a computer program. It consists of the following steps (I denotes the 
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identity matrix): 

A, := A, (1) 

trace A, 
ak ‘= - 

k 
(l<k<n), (2) 

Ak+l :=A(Ak +akz) (1 < k < n - 1). (3) 

Putting a, = 1, one then has 

a( A) := det( AZ - A) = t akAnpk. 
k=O 

(4 

An additional definition at the same time (and under a condition to be 
mentioned below) also furnishes eigenvectors for given eigenvalues: Let 

A, := I, 

xk := A, + ak Z (l<k<n 

and define 

n-1 

C(A) := c x-kAk. 
k=O 

(5) 

(6) 

(7) 

Then 

A.C(A) = AC(A) - @(A)Z, 

and therefore, if A, is an eigenvalue of A, the nonzero columns of C( A,,) 
are corresponding eigenvectors. Faddeev and Faddeeva [3] mention that 
C(A,) # 0 if all eigenvalues of A are distinct. 

Faddeev’s proof, as well as that of Leverrier, Householder, and 
Gantmacher [7], uses the connection between the coefficients of a polynomial 
and the power sums of its roots. The proofs of Souriau and Frame (see also 
[2] and [6]) exploit th e concept of the adjoint of the matrix AZ - A, and we 
shall repeat it very briefly for completeness. (A third proof using a companion 
matrix has been given in [l]). The purpose of this paper is to state the 
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necessary and sufficient conditions for C(h,) # 0 and to show how the 
derivatives of C at A, still may serve to find eigenvectors and generalized 
eigenvectors of A if C(h,,) vanishes. 

THEOREM 1. Let 

@(A) := det( AZ - A) = k akAn-k 
k=O 

(4) 

be the characteristic polynomial of A, and define the matrices & (0 G k G 

n - 0, Ak (1 B k < n>, and C(A) by 

A, := I, 

& := A, + ak 1 (l<k<n 

A, := A, 

Ak+l :=A(A, +akz) (l<k<n 

and 

n-1 

C(A) := c An-l-kxk. 
k=O 

(5) 

11, (6) 

(1) 

(3) 

(7) 

Then 

(a) C(A) = adj(h_l - A) for A E K; 

(b) ak = (trace A,)/(n - k) fir 0 Q k Q n - 1; 

(c) ak = -(trace Ak)/kfor 1 Q k Q n. 

Proof. (a): Let the matrices B, (0 < k < n - 1) be defined by 

n-l 

adj( AZ - A) = c An-l-kBk. 
k=o 
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Then we have 

@(A)Z=(hZ-A)adj(AZ-A), 

2 u,A"-~Z = (AZ - A$ A”-l-kBk 
k=O k=O 

n-l 

= BOA” + c hn-k( B, - A&,) -A&,, 
k=l 

and therefore 

a,z = B,, 

akz = B, - ABk_l (1 < k 6 n - l), 

a,Z = -AB,_,. 

We conclude 

B, = Z = A,, 

and, by induction on k (with inductive hypothesis Bk_ 1 = &- 11, 

(1 <k <n - 1). 

This shows 

n-1 

(8) 

adj( AZ - A) = c A”-l-kxk = C(A). 
k=o 

(b): Let Aii be the (n - l)-by-( n - 1) matrix obtained by deleting the 
ith row and the ith column in the matrix A. The coefficient of A in 
@(A) = det(AZ - A) is 

a,_ 1 = t$l det( -Aii) = trace adj( -A). 
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By the same token, we see that in the polynomial 

@(A + CL) = det[(A + p)Z -A] = E ak(A 
k=O 

the coefficient of Z_L is 

n-l 
kgo~li( tr - k) An-1-k = trace adj( AZ - A) 

223 

g-k -t 

= trace C(A) [by (a)] 

n-l 

= C An-rdk trace Ak. 
k=o 

(c): Since A, = xk - ak 1, we get 

trace A, = trace xk - nuk = (12 - k)a, - nak 

= -ka, (1 Q k < n - 1). 

Finally, from (81, we get 

na, = -trace A,, . n 

REMARKS. 

(1) The equation deduced in (b) of the proof can be put in the following 
form: 

-& det( AZ - A) = trace adj( AZ - A). 

(2) The characterization of C(A) according to Theorem l(a) allows us to 
describe the condition C( A,) # 0 more completely. Namely, by standard 
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matrix theory, we obtain the following equivalences: 

ah,) # 0 * rank(A,l-A)=n-1 

a dimker(A,I - A) = 1 

a the Jordan canonical form of A (over the algebraic closure 
K of K) contains one sole Jordan cell with the 
eigenvalue A,, 

Since the columns of C(h,) are eigenvectors, this is also equivalent with 
rank C(A,) = 1. All these assertions just express the fact that A, is an 
eigenvalue of A of geometric multiplicity 1. 

Some additional information concerning the relation between the matrix 
C(A) and the generalized eigenspaces of A may be found in the literature: 

Gantmacher [7, p. 921 shows that, if A, is an eigenvalue of A and if the 
elements of C(A) have a largest common factor (A - AO)‘n (m 2 O), then 
the nonzero columns of the mth derivative Ccm)(AO) are eigenvectors. 
Householder [8, p. 1681 p roves that, if A,, is an eigenvalue, “C(A,) cannot 
vanish unless A,, is at least a double root.” He states without proof that if A,, 
has multiplicity 2, then if C( A,) f 0, the nonzero columns of C( A,) are 
eigenvectors and the nonzero columns of C ‘( A,) are generalized eigenvec- 
tors. He continues: “If, however, C( A,) = 0, then C ‘(A,) can be shown to 
have rank 2, and any nonvanishing column is a proper vector. For roots of 
higher multiplicity the situation is analogous.” In an exercise the reader is 
invited to prove these assertions. 

In the rest of this paper, we try to give a more complete account of the 
relation between the spans of C( A,) and of its derivatives Ccm)(AO> at an 
eigenvalue A,, on the one hand, and the generalized eigenspace of A for this 
eigenvalue, on the other hand. We assume in the sequel, without loss of 
generality, that K is algebraically closed and that A is given in Jordan 
canonical form. By im B we denote the vector space spanned by the columns 
of a matrix B or, what is the same, the image space of the linear mapping 
defined by B. If A, has multiplicity 1 and index s (i.e., the largest Jordan cell 
corresponding to A,, is s X s), then [see (b), (h) of the Corollary below] 

im C(‘-i)(A,,) = ker(A,I - A)“, th e s p ace of all generalized eigenvectors to 
A,. For 1 < t < s - 1, however, we have 

ker (A,,1 - A)t 2 im C(l-l-r+t)( A,) 
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with equality in place of inclusion only in special cases, to be precisely 
specified in Theorem 3 below. Still, the dimensions of the spaces ker (A, Z - 
Ajt and the Jordan structure of A, related to A,, can be found from the ranks 
of the matrices @ ’ -‘+ “)( AO). 

It should be appreciated that the derivatives C(k)(Jlo) can easily be found 
by executing Faddeev’s algorithm with the matrices A = A - A,, Z in place of 
A, which yields by (7) and Theorem l(a) 

C(“‘(A,) = k!zn_l_k_ Odk<.<n--1. 

THEOREM 2. Let h, E K be an eigenvalue of A of algebraic multiplicity 
1. Denote by G = ker (A,Z - A)l the subspace of K n consisting of the 
generalized eigenvectors with eigenvalue h, (i.e. the vectors annihilated by 
some power of the matrix A, Z - A), and let H = im (A, Z - A>‘. Let MCk’ = 
im C(k’(Ao) for k z 0. Then 

M’k’ = (A,Z - A)“-l-kG for O,<k<l-1, 

H = ker C(‘-l)( A,,) c M(l), 

K” = G @ H. 

Proof. Let V = K n = $ i= 1 V,, , where V,, g KSh is an A-invariant 
subspace of V in which A is represented by an s,, X s,, Jordan cell 

A, = 

‘h o 0 . . . 0 

1 A, 0 ... 0 

0 1 A,, .< : 
. . 

. 0 

0 . . . 0 1 A, 

‘h . 

Suppose A, = A, for 1 < h Q p and A, # A0 for p < h < q, so 1 = CIC1 s,, 
and G = @hp=rV,,. 
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In V,, the matrix C(A) = adj( AZ - A) is represented by an sh X sh 
matrix [also referred to as cell C%(h)] of the form 

‘(A - Ahy 0 

(A - Ah)sh-2 (A - Ah)sh-' 

1 
\ 

x ,rlI,‘” - AkP. 

. . 

. . 

. . (A 'h) 
sh-2 .- (A _ Ah)sh-l 

0 

0 

If cij(Al is a nonzero coefficient of C,(A), then the multiplicity of A,, as 
zero of cij(A) is C{=, sk = 1 if h > p, and it is 

a 

sk + sh - 1 - (i -j) = I - 1 - (i -j) if h <p. 
k=l 
kzh 

Therefore, if k < 1, then Cck)(AO) has nonzero elements on the diagonal 
given by k = I - 1 - (i - j), i.e. i -j = 1 - k - 1, where this diagonal 
meets a cell C, (1 =G h < p), and all elements outside the cells C, (1 f h < 
p) and all elements in these cells but above the diagonal i - j = I - k - 1 
are zero. [We abuse the term “cell C,” also for the location of Ch( A) as an 
sh X sh submatrix of the n X n matrix C(A).] Consequently, Mck) is spanned 
by those basis vectors which are numbered by the row indices corresponding 
to the intersection of this diagonal with the cells Ch (1 < h < p). On the 
other hand, within the cells Ch (1 6 h < p), the only nonzero elements in 
(A,, I - A)‘- k _ ’ are l’s on the same diagonal, and therefore 

(AoZ -A) ‘-k-1G = & (A,1 - Ah)‘-k-lVh 
h=l 

spans exactly the same subspace of K “. Furthermore, C6”-i)(Aa), 1 < h < p, 
is nonsingular on G and vanishes on @ zzP + 1 vh = H. Hence H = 
ker Cc’-‘)(A,). Similarly, for p < h < q, the matrix CK)(A,) is nonsingular. 
This implies that MC’) 2 H. The last assertion follows from the decomposi- 
tion K” = @[=iVh @ @zEP+i Vh. W 
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The assertions contained in the following corollary and in the remarks 
thereupon are all quite immediate consequences of Theorem 2 and especially 
of the equation 

Mck) = (h,Z - A)‘-lmk ker(A,Z -A)“, O<k<l-1. 

We state these facts in great detail simply in order to give a description as 
complete as possible of the situation under scrutiny, and without any preten- 
sions of originality or depth. 

Recall that a function k c, f(k) on Z is called weakly convex if k * 

f(k) -f(k - 1) is nondecreasing. 

COROLLARY. Under the assumptions of Theorem 2 and with the addi- 

tional notation E = ker(& Z - A), m_2 = m _ 1 = 0, mk = dim MCk’ for 

0 Q k < 1 - 1, the following assertions hold: 

(a) For 1 < k < 1 - 1 one has MCk-‘) = (h,Z - A)MCk). 
(b) M(o) G MC’) c . . . c MCI-‘) = G. 

(c)O< , m, Q m, d *.* Q ml_, - - - -2 . 
(d) For 0 < k < 1 - 1 one has 

mk - mk_l = dim( E 17 MCk)), 

and this equals the number of] or da n cells in A belonging to A,, and of size at 

least 1 - k; the function k * mk, - 1 < k Q 1 - 1, is weakly convex. 

(e) Let pk denote the number of Jordan cells in A belonging to ho and of 

size k (1 Q k Q 1); then p - ml-k - 2mt_k_, + ml_k-2. 

(f)F 1 t<l nekhi or < , 0 

ml-1 - ml_,_, = dimker(A,Z - A)t; 

in particular, ml_ 1 - ml_2 = dim E, and this equals the number of Jordan 
cells in A belonging to ho. 

(g) Zf m, > 0, then M (‘) = E and mk = k + 1 for 0 Q k Q 1 - 1; in this 

case there is just one Jordan cell belonging to A,. 

(h) Let k, (0 < k, < 1 - 1) be the smallest index k for which mk > 0, 
i.e., 

0 = m_, = **- = mk,_l < mk, < 0.. < ml_, = Z; 

if s denotes the size of the largest Jordan cell in A belonging to Ao, then 
s = 1 - k, and G = ker(A,Z -A)“, H = im(h,Z -A)“. 
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(i) For 0 < t < s one has 

M(kl-l+t) = (h,Z - A)‘-’ ker (&,I - A)’ 

= im (h,Z - A)‘-’ n ker( A,Z - A)t; 

in partidur, (h,Z - A)tM(kl-’ +‘I = {0}, Mckl) c E. 
<j> For 1 < t < s one has 

(hoI - A)t-lM(k,-l+t) = M’kl’ + {o}. 

(k) rfZ = 12 then MC”-‘1 = K” and M(l) = {O}. 
(1) Zfl <nthen 

(A,Z - A) M”’ g MC’-“, 

(AOZ - A)tM”’ = H # (0) for t>s, 

I(” = M+” @ (A,1 - A)“&‘. 

Proof. Assertion (a) follows directly from Theorem 2. Since (A, I - A) 
G G G, Theorem 2 implies Mck- I) _ c Mck) for 1 < k < 1 - 1. This proves 
(b); (c) follows, since dim G = 1. The first statement of (d) follows from (a), 
since E n Mck’ is the kernel of the mapping AOZ - A restricted to Mck’. 
Since Mck) = (A,Z - A)“-lekG, dim(E n MCk)) is the maximal number of 
linearly independent eigenvectors x with eigenvalue A, which may be written 
asx = (A 0 I - A)l-lmk y, y E G, i.e. which belong to a subspace V,, (h < p) 
corresponding to a Jordan cell of size at least 1 - k. Furthermore, (b) implies 
that the sequence {mk - mk _ ,J::‘, is nondecreasing. Assertion (e) follows 
from Cd), since (ml_k - ml_k_l> - (ml_k - ml_k_2> equals the number of 
Jordan cells of size 1 - k. Assertion (f) follows from MC’- ’ -L) = (A, Z - 
A)‘M(‘- ‘)# To prove <g) we first note that, by Remark 2 above, m, > 0 
implies M (‘) = E and m. = dim E = 1; then (b) and (d) imply mk = k + 1 

(0 < k G I - 1). 
If s denotes the largest size of a Jordan cell in A belonging to the 

eigenvalue A,, then G = ker(A, Z - A)” and ker(A, I - A)“-’ is a proper 
subspace of G. By Theorem 2 this implies Mcl-‘-‘) = IO) f M”-“I, SO 
k, = 2 - s and (h) is proven. The first line of (i) is a reformulation of 
Theorem 2, taking account of (h). Th e second line follows from the first line 
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because, generally, P ker(QP) = im P n ker Q. (j) follows from 6) on 
account of the definition of k,. 

If I = n then M(l) = MC”) = (0}, since C(A) is a polynomial of degree 
12 - 1 [compare (7)], and M (1-1) = G = K". This proves (k). If Z < n, then 
the subspace H is nontrivial by Theorem 2. Since ker (A,Z - A) c G and 
G n H = {0}, the mapping A,, Z - A acts as an automorphism on H. Again 
by Theorem 2 

so certainly 

(A,Z -A)M"'g MC"-') = G. 

Finally, for t > S, 

(AZ - A)tM”’ E im(A,Z - A)" = H = (h,Z -A)tH c(h,Z -A)tM'". 

This shows (A, Z - AjtM (l) = H and completes the proof. n 

REMARKS. 

(1) If k, = 1 - 1 (s = l), then one has 

M(o) = . . . = M(1-2) = {O}, M(l-') = ker(A,Z -A) 

with dim M(l- '1 = 1. This is the case considered in the quotation from 
Householder. In this case, all Jordan cells corresponding to A, have size 1. 

(2) In Theorem 2 and its Corollary, the value of the multiplicity Z of the 
eigenvalue A, is presupposed to be known from the beginning, e.g. by 
decomposing the characteristic polynomial given in Theorem 1. Alternatively, 
Z can be characterized in terms of the numbers rnk or the spaces Mck’. If 

m. = 0, it follows from (d) of the Corollary that 

Part <g) of the Corollary shows that this is not true if m, > 0. Other 
characterizations are based on the distinction between the spaces M'"' and 
Mck) for k < 1, as expressed by parts (a), (k), and (1). It is easily verified that 

Z=max m:l<m<nandM(k-l) I c ker(A,Z - A)" for 1 Q k Q m}. 
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With knowledge of k,, which eventually can be obtained from the definition, 
viz. 

k, = min{k : 0 < k and Mck’ f (O}}, 

the last characterization by parts (i) and (1) can be sharpened to 

Z = max m: 1 f m < n and ZVZ(~-‘) c ker( A,Z - A)k-kl for k, < k < m}. I 

Finally, observe that also (setting M’- ‘) = {O}> 

Z = ms{m: 1 < m < n and (haI - A)M’k-l) 2 M(k-2) for 1 < k < m}. 

THEOREM 3. Let A, ha, 1, E, G, Mck’, mk, k,, s be defined as in Theorem 

2 and its Corollary. Then the f 11 0 owing assertions are equivalent: 

(a) M (k,) = E; 

6) mk, =dimE; 

(c) mk -ml,_Iisin&pendentofkforkI<kkl-I; 

(4 mk - mk_1 = dim Efir k, < k < 1 - 1; 

(e) Mck) = ker(h, Z - A)k-kltl for some k k, < k < 1 - 1; 

(f) Mck) = ker(A,Z - A)‘-kli-l fork, < k ‘< 1 - 1; 

(g) all the Jordan cells of A belonging to the eigenvalue A, have the sa172e 

size. 

Proof. Since Mck ) 1 c E by (i) of the Corollary, the equivalence of 
assertions (a) and (b) is obvious. Furthermore, Mckl) = (A,Z - A)“-‘G 
equals E if and only if all the Jordan cells of A belonging to the eigenvalue 
A, have the same size s. Therefore, assertions (a) and <g) are equivalent. 
Obviously, (d) implies (b) as well as (c) and, conversely, (c) implies (d) by (f) 
of the Corollary. Also, assertion (a), which is equivalent to (b), implies (d) by 
(b) and (d) of the Corollary. Since (f) * (e) is trivial, the proof will be 
complete upon showing that (c) *(f>and(e)*(c). Let k=k,-l+t 
(1 < t < s). Then we have to deal with the relations 

M(kl-lt*) = ker ( A,Z - YI)~. (9) 



ON FADDEEV-LEVERRIER’S METHOD 231 

Since, by (i) of the Corollary, M(kl-l +t) G ker(h,Z - AIt, (9) is true iff 

mk,-l+t = dim ker (A,, Z - A)t. The latter dimension equals ml_ 1 - ml_ 1--t 
by (f) of the Corollary, and hence, if we define 

then 4(O) = 0 and (9) proves to be equivalent with 

4(t) + 4(s - t) = 4(O) + 4(s). (10) 

Now (c) means that 4 is linear, which fact clearly implies (10) and thus (9) 
for 0 Q t Q s. Hence (c) d (f) is proven. In order to show (e) * (c), we 
infer from (d) of the Corollary that 4 is weakly convex in the interval 
0 Q t < s. Hence there are but two possibilities: either 4 is linear or 4 is 
strictly sublinear. In the latter case (10) does not hold for any t with 
0 < t < s, i.e., (e) is false. Consequently, (e) implies the linearity of C#J and 
hence (c). W 

APPENDIX 

Finally, we want to present a proof of Theorem 2 which does not use the 
Jordan decomposition. 

If @(A> = det(AZ - A) as above, then we obtain from the identity 
@(h)Z = (AZ - A)C(A) by differentiation that 

@ck)( A) Z = (AZ - A)Cck’( A) + kCck-‘)( A) for k&l. 

[This equation is a paraphrase of the recursion formulae (3) and (6) with the 
matrix A - AZ in place of A.] If A,, E K” is an eigenvalue of multiplicity Z, 
then @(k)(A,,) = 0 for 0 Q k < I - 1 and hence 

C(k-l)(A,,) = - ;(A,Z - A)C(k)(A,,), i’t~Z’~-‘) = (A,Z -A)@‘, 
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Next we show MC’- ‘) = G. Note that 

(&I-A)“@“(A,) =(-1)“~‘(b l)!(h,Z-A)C(h,) 

= (-l)‘-‘(I - l)!@(A,)Z = 0, 

and hence M”- ‘) = im C”-i’(A,) c G. If we denote ker C”- “(A,) by N, 
then 

dim M(l-‘) + dim N = n = dim G + dim H, 

and hence we can conclude that M (l-l) = G and N = H once we have 
proven that N c H. To this end, restrict the linear mapping 

@(A,) Z = (A,Z - A)C”‘( AO) + ZC”- “( A,) 

to N, in which case the last term vanishes. Since @(‘)(A,) # 0, it follows that 

[Notice that the derivatives of C(A) commute with one another. Hence 
C’“( A,)N c N. Moreover, these derivatives also commute with A, and this 
implies (A, I - A)N c N.] Consequently, N = (A,Z - A)‘N z H. This fin- 
ishes the proof of M (l-l) = G and N = H. 

Incidentally, it has been shown that (A,Z - A)‘H = H, which implies 
G fl H = ker (A,Z - A)” fl H = (O}. Taking account of dimensions, G @ 
H = K n follows. 

Finally, since C(“)( A,,)(A, Z - A)N = (A, I - A)C”‘( A,)N = N, it also 
follows that M(l) = im C(‘)(A,) 2 N = H. 

The first author gratefully acknowledges the facilities of a research fellow- 

ship oflered by the Department of Mathematics and Computing Sciences at 

the University of Technology in Eindhoven. 

REFERENCES 

1 S. Barnett, Leverrier’s algorithm: A new proof and extensions, SIAM J. Mat& 

Anal. Appl. 10:551-556 (1989). 

2 P. S. Dwyer, Linear Computation, Wiley, New York, 1951. 

3 D. K. Faddeev and W. N. Faddeeva, Computational Methods of Linear Algebra, 

Freeman, San Francisco, 1963. 



ON FADDEEV-LEVERRIER’S METHOD 233 

4 D. K. Faddeev and I. S. Sominskii, Collection of Problems in Higher Algebra (in 

Russian). Gosudarstv. Izdat. Tekhn-Teor. Lit., Moscow, 1952. 
5 J. S. Frame, A simple recursion formula for inverting a matrix (Abstract), Bull. 

Amer. Math. Sot. 55:1045 (1949). 
6 J. S. Frame, Matrix functions and applications, Part IV-Matrix functions and 

constituent matrices, IEEE Spectrum 1:123-131 (1964). 
7 F. R. Gantmacher, Matrix Theory, Vol. 1, Chelsea, New York, 1959. 
8 A. S. Householder, The Theo y of Matrices in Numerical Analysis, Blaisdell, New 

York, 1964. 

9 J. M. Souriau, Une mdthode pour la decomposition spectrale et I’inversion des 

matrices, C. R. Acad. Sci. Paris 227:1010-1011 (1948). 

Received 14 December 1990;jnal manuscript accepted 21 May 1992 


