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Abstract

Background: Approximately one-third of those treated curatively for colorectal cancer (CRC) will experience recurrence.
No evidence-based consensus exists on how best to follow patients after initial treatment to detect asymptomatic
recurrence. Here, a new approach for simulating surveillance and recurrence among CRC survivors is outlined, and
development and calibration of a simple model applying this approach is described. The model’s ability to predict
outcomes for a group of patients under a specified surveillance strategy is validated.

Methods: We developed an individual-based simulation model consisting of two interacting submodels: a
continuous-time disease-progression submodel overlain by a discrete-time Markov submodel of surveillance and
re-treatment. In the former, some patients develops recurrent disease which probabilistically progresses from
detectability to unresectability, and which may produce early symptoms leading to detection independent of
surveillance testing. In the latter submodel, patients undergo user-specified surveillance testing regimens. Parameters
describing disease progression were preliminarily estimated through calibration to match five-year disease-free survival,
overall survival at years 1–5, and proportion of recurring patients undergoing curative salvage surgery from one arm of
a published randomized trial. The calibrated model was validated by examining its ability to predict these same
outcomes for patients in a different arm of the same trial undergoing less aggressive surveillance.

Results: Calibrated parameter values were consistent with generally observed recurrence patterns. Sensitivity analysis
suggested probability of curative salvage surgery was most influenced by sensitivity of carcinoembryonic antigen assay
and of clinical interview/examination (i.e. scheduled provider visits). In validation, the model accurately predicted overall
survival (59% predicted, 58% observed) and five-year disease-free survival (55% predicted, 53% observed), but was less
accurate in predicting curative salvage surgery (10% predicted; 6% observed).

Conclusions: Initial validation suggests the feasibility of this approach to modeling alternative surveillance regimens
among CRC survivors. Further calibration to individual-level patient data could yield a model useful for predicting
outcomes of specific surveillance strategies for risk-based subgroups or for individuals. This approach could be applied
toward developing novel, tailored strategies for further clinical study. It has the potential to produce insights which will
promote more effective surveillance—leading to higher cure rates for recurrent CRC.
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Background
Roughly two-thirds of the more than 140,000 Americans
diagnosed with colorectal cancer (CRC) each year will be
treated surgically with curative intent [1]. Approximately
one-third of these will experience recurrence of the
original disease or will develop a new primary (metachro-
nous) CRC [2,3]. Median survival for those experiencing
recurrence of original disease is around two years [4].
Ultimately, nearly 50,000 patients in the U.S. die each year
from CRC [1].
Most patients treated curatively are placed on some type

of surveillance program involving periodic follow-up test-
ing to detect preclinical recurrence. For patients who will
experience recurrence, prognosis, though generally poor,
may be improved if detection occurs prior to symptom
onset, particularly if surgical resection of metastatic dis-
ease is possible [5]. Reviews of the relatively small number
of trials comparing two or more specific follow-up strat-
egies have suggested that more intensive strategies tend to
increase survival at five years, detecting recurrence about
six months earlier than less intensive strategies [6-8] at a
point where salvage surgery with curative intent is more
likely to occur (10.7% vs. 5.7%; p = .0002) [7]. However,
the strategies tested, the populations studied, and the
study periods varied significantly between trials [6-8]. As
such, drawing prescriptive conclusions regarding best
practices on the basis of these data is difficult.
Meanwhile, in economic terms, CRC surveillance

consumes significant resources. U.S. investigators found
that five-year follow up can cost as much as US$16,942 per
patient [9]. Another group in Europe reported surveillance
costs of US$9,011 [10] to US$59,841 [11] per detection of a
recurrence resulting in attempted curative salvage surgery.
Not surprisingly, consensus is lacking among expert

panels on how best to follow these patients [12-18]. New
surveillance trials are in progress, but results may be several
years away [19-21]. When complete, these trials will pro-
vide valuable information but will have been able to exam-
ine only a small fraction of possible surveillance strategies.
Given the potential impact on quantity and quality of

life and on health care costs, better tools are needed for
informing decisions around postsurgical surveillance of
colorectal cancer patients. By simulating the dynamics of
recurrence in a population of patients, a realistic computer
simulation model could function as a virtual laboratory
within which an unlimited number of experiments com-
paring hypothetical surveillance strategies could be run in
silico within a compressed timeframe.
Several models have incorporated dynamics of the

adenoma-carcinoma sequence in order to compare the ef-
fectiveness of hypothetical screening strategies in patients
without history of CRC [22-32]; these include three
models used in the National Cancer Institute’s compara-
tive modeling effort CISNET (Cancer Intervention and
Surveillance Modeling Network) [33]. Fewer models
though have simulated the events following diagnosis and
treatment of CRC in order to compare postsurgical
surveillance strategies [34-37]. None has captured the
dynamics of recurrence in a way that accounts for disease
progression during diagnostic delay and that considers the
full range of possible metastatic sites.
Capturing the dynamics of CRC recurrence is a major

methodological challenge mainly because of the difficulty
of estimating parameters describing progression of recur-
ring disease amid the censoring caused by medical and
surgical interventions. In order to create a realistic model
which allows assessment of any hypothetical surveillance
strategy, one must be able to account for disease progres-
sion amid diagnostic delay. Here, we describe a new
approach to modeling the interaction between natural
history of CRC recurrence and early detection of recur-
rence through surveillance testing—an approach designed
to allow the simulation of any potential surveillance strat-
egy. We introduce a basic model we have developed which
applies this approach, preliminarily estimate disease pro-
gression parameters by calibration based on published
outcomes from a classic surveillance trial, and offer a
quantitative validation of the model.

Methods
Overview of approach
The model itself is comprised of two interacting submo-
dels: a continuous-time disease progression submodel and
a discrete time Markov submodel of surveillance testing
and re-treatment. In the disease progression submodel,
the exact time to earliest recurrence detectability is
pre-determined for each simulated patient who will recur
based on random draws from an exponential probability
distribution. A pair of formulas—both functions of the
time to earliest detectability–determines the timing of the
transition to unresectability and to the point of symptom
onset. Once these pre-determinations are made, the
discrete-time Markov surveillance and re-treatment sub-
model simulates scheduled visits for surveillance testing of
asymptomatic patient as frequently as every three months.
This submodel references the pre-determined timeline of
disease progression to determine whether asymptomatic
recurrences are detectable by testing during surveillance
visits, and whether recurrences are considered potentially
resectable versus unresectable at the time they are discov-
ered. Recurrences may alternatively be detected in the
interval between surveillance visits as a result of symp-
toms which prompt individuals to seek earlier care.
To simulate the impact of any combination and sched-

ule of surveillance tests, the disease progression submodel
must be capable—in the extreme—of simulating disease
progression in the absence of surveillance. Since most data
describing recurrence tends to be “contaminated” by the



Figure 1 Modeling disease progression in recurrent colorectal
cancer. Among the subset of individuals who will experience
recurrence, cancerous tissue is considered to be present but
undetectable until time Di. At time, Si, the patient will develop
clinical symptoms of recurrence which will bring them to seek
medical attention and will lead to diagnosis of recurrence if not
previously detected. At time Ui, the recurrent cancer will become
“unresectable”: no longer amenable to curative treatment. Ui may be
greater-than (Scenario 1) or less-than (Scenario 2) Si. In a scenario of
no follow-up for detection of asymptomatic recurrence, the only
patients for whom curative treatment of recurrence would be possible
are those with Si < Ui (Scenario 1) since symptoms would have brought
them to seek medical attention at a point where curative re-
treatment could occur. Continuous, heterogeneous values of Di,
Si, and Ui are assigned to each patient who will recur based on
the disease progression submodel as described in the text.
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effect of testing to detect asymptomatic recurrence and by
subsequent intervention, it is difficult to directly estimate
certain key parameters underlying a disease progression
submodel. Therefore, we use a calibration approach to
estimate these parameters while using the surveillance and
re-treatment submodel described above to control for the
effect of a known surveillance regimen on observed dis-
ease progression. Once these disease progression parame-
ters are estimated through calibration, the schedule of
follow-up tests embodied in the surveillance and re-
treatment submodel can be changed to simulate any num-
ber of hypothetical follow-up regimens. In the case of the
current work, we use the surveillance regimen followed in
the intervention arm of a published CRC follow-up trial to
calibrate disease progression parameters. We then change
the surveillance regimen to be consistent with the control
arm of the same study and compare the predicted to the
observed outcomes.

Modeling disease progression
Each individual i is randomly assigned a future recur-
rence status (i.e. will recur at some point or not) and site
based on random number draws from a uniform prob-
ability distribution with range 0 to 1. Anatomic sites of
recurrence are described in terms of local tumor status
(none, locoregional, anastomotic only, or intraluminal/
metachronous) and metastasis status (none, liver, lung,
or multiple/other organs). All recurrences are considered
to “begin” at the time of initial treatment since, by defin-
ition, there would have been at least some small amount
of cancerous tissue which remained despite treatment.
Each individual who will recur is assigned a future time Di

which represents the earliest point in time at which the
recurrence of patient i will be detectable through surveil-
lance testing. Di is assigned randomly to these individuals
from a continuous exponential probability distribution
with hazard rate rd, leading to a declining incidence of
recurrence with increasing time from initial treatment at
the population level [38]. The time Ui at which the case is
no longer amenable to curative salvage surgery (point of
unresectability) is defined as

Ui ¼ Di þ Xdu
� 1þ ruð ÞDi

Where xdu is the baseline (i.e. where Di = 0) interval
between Di and Ui and ru is the rate of change in this
window. A positive value of Xdu would represent the
minimum possible width of the window between earliest
detectability and unresectability given ru > 0. Beyond the
point of unresectability, the patient will only be eligible
for palliation and will be assigned a life expectancy
accordingly.
A non-trivial number of recurrences are discovered

through work-ups precipitated by patient symptomatic
presentations in the intervals between scheduled surveil-
lance visits [39]. This proportion can be expected to
grow in inverse proportion to the vigilance of follow-up
regimens, and should thus be modeled. The point of
recurrence symptom onset Si for patient i is defined as

Si ¼ Di þ Xds
� 1þ rsð ÞDi þ εds

Where xds is the baseline (Di = 0) interval between Di

and Si and rs is the rate of change in this window. A posi-
tive value of Xds would represent the minimum width of
the window between earliest detectability and symptom
onset given rs > 0. The normally distributed error term εds
(with mean = 0 and standard deviation = σds) is included
to ensure sufficient variation in symptom onset so that
some patients will develop symptoms before the point of
unresectability and some will develop symptoms after that
point. Figure 1 illustrates the two possible scenarios for
progression of recurring individuals through clinically
important points in disease natural history.

Modeling surveillance and re-treatment
We used TreeAge Pro 2012 (Williamstown, MA) to create
an individual-based Markov submodel of surveillance
testing and re-treatment. Individual-based Markov models



Figure 2 Possible state transitions in the surveillance and
re-treatment submodel. An individual-based Markov submodel
simulates the follow-up testing which may lead to detection of
asymptomatic recurrence, and the treatment which may occur after
recurrence diagnosis. The arrows represent possible state transitions
which could occur at each three-month time step. Each patient
begins the model in the “No known recurrence” state wherein they
undergo surveillance testing according to a sepcified schedule. If a
true recurrence is discovered, the patient will proceed to one of the
two states: “Recurrence curatively treated” or “Recurrence palliatively
treated”, depending on whether the current model cycle occurs
before or after Ui (Ui is assigned as a continuous value based on the
disease progression submodel). Patients in the “Recurrence curatively
treated” state continue to undergo surveillance testing after treatment.
During each cycle, individuals may move to the “Dead due to other
causes” state from any other living state based on a background
transition probability of mortality from other causes. Additional file 1:
Figure S1 provides a more detailed depiction of the contingencies which
drive state transitions in the surveillance and re-treatment submodel.
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allow simulation of phenomena which involve transitions
of heterogeneous individuals between states over time.
During each discrete three-month time increment—or
cycle—each of a series of hypothetical individuals may be
in only one state at a time. Within a state, individuals may
experience a series of probabilistic events which determine
whether they will remain in their current state during the
next cycle or transition to a new state. In our model, a
series of simulated patients starts each cycle in one of five
states: no known recurrence, recurrence curatively treated,
recurrence palliatively treated, deceased due to cancer, or
deceased due to other causes (See state transition diagram
in Figure 2). Three months is used as a cycle length since
this represents the shortest recommended inter-visit inter-
val among published recommendations for post-surgical
surveillance in CRC patients [12,15,16,40]. Note that only
surveillance testing of asymptomatic patients occurs based
on discrete time steps. Natural history events are mea-
sured in continuous time so that simulated patients will
reach the point of detectability (Di), the point of unresect-
ability (Ui), and the point of symptom onset (Si) during
the intervals between surveillance visits.
The time horizon of five years for surveillance was

chosen because this is the timeframe over which virtually
all recurrences manifest [7], and the majority of surveil-
lance recommendations focus on this five-year horizon
[12,15,16,40]. All individuals begin the first cycle—repre-
senting the period immediately following curative resec-
tion—in the no known recurrence state.
Each of the living states in the surveillance and re-

treatment submodel is represented by a decision subtree
(see Additional file 1: Figure S1). Whether or not a test
is performed during a particular three-month cycle is
dictated by a surveillance testing schedule matrix with a
row for each three month cycle and a column for each
possible testing modality. Using 1’s and 0’s, this matrix
can specify any combination and timing of laboratory
tests (e.g. carcinoembryonic antigen, or CEA), imaging
studies (e.g. abdominal/pelvic CT), and provider visits.
Positivity or negativity of each test given during a cycle
depends on the current stage of the model compared to
Di, the location of any detectable tumors, and the sensi-
tivity and specificity of the test being employed. If any of
the tests performed in a given cycle is positive, it is
assumed that sufficient further workup using other avail-
able tests is undertaken to correctly identify detectable
recurrence or otherwise rule out recurrence within that
cycle with a combined sensitivity and specificity of 100%.
Once recurrence is diagnosed (whether based on detec-
tion through scheduled surveillance or stemming from
symptoms developing between scheduled visits), patients
are assigned a life expectancy. The exact value depends
on whether their recurrence has been diagnosed before
or after reaching the point of unresectability (Table 1).
Parameters
Calibration to estimate disease progression parameters
Values for the six disease progression parameters described
above (rd, xdu, ru, xds, rs, and σds) are impossible or imprac-
tical to observe, and their values can be expected to differ
based on disease and patient characteristics of the groups
of interest. Therefore, we used a calibration process to esti-
mate values for these parameters. We systematically ran
the model with many thousands of different combinations
of the unknown parameters in order to find the combin-
ation which yielded model outcomes most consistent with
a real world data source [54]. As a data source, we used
published data from a classic trial of an intensive versus
a minimal follow-up strategy for patients who had



Table 1 Estimates for non-calibrated parameters

Variable Input
parameter
estimate

Range for
sensitivity
analysis

Sourcea

Screening test performance

Carcinoembryonic Antigen test (CEA)

Sensitivity .64 .49 - .79 [41]

Specificity .90 .75 – 1.00 [41]

Chest X ray

Sensitivity .76 .61 - .91 [39,42,43]

Specificity .95 .80 – 1.00 [43]

CT – Hepatic metastases

Sensitivity .83 .68 - .98 [44-47]

Specificity .93 .78 – 1.00 [44,47]

CT – Other abdominal metastases

Sensitivity .46 .31 - .61 [44]

Specificity .98 .83 – 1.00 [44]

Hepatic ultrasound

Sensitivity .62 .47 - .77 [47-49]

Specificity .85 .70 – 1.00 [47-49]

Colonoscopy

Sensitivity .95 .80 – 1.00 [23,50]

Specificity 1.00 .85 – 1.00 [23,50]

Clinical interview/examinationb

Sensitivity .42 .27 - .57 [5]

Specificity .95 .70 – 1.00 [5]

Life expectancy

After initial surgery,
given no recurrence

20.7 years –c [51]

After recurrence with
curative salvage

21 months 15 – 27 [52]d

After diagnosis of
unresectable recurrence

8 months 4 – 12 [53]e

aWhen multiple sources are given, the parameter used in the model was
estimated based on a sample-size-weighted mean.
bIn the absence of laboratory or other diagnostic findings
suggesting recurrence.
cSince the time horizon for the model was 5 years, varying this parameter over
all but the most extreme low bounds would have no effect on results.
dEstimate based on incomplete reporting of survival among subjects
undergoing curative salvage surgery in the Pietra study.
eBased on reported survival of 13 months following recurrence of colon cancer
during the era of 1986–1992, and assumption that 1/3 of those relapsing will
undergo curative salvage surgery with survival of 21 months as described
above. The result is that those recurring but not undergoing curative salvage
surgery would be expected to survive approximately 8 months after diagnosis
of recurrence.
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undergone curative resection for CRC from 1987–1990 at
an Italian Center [52]. Among all available trials of surveil-
lance strategies, this study by Pietra et al. offered the most
complete data needed for the exercise. Patients in the trial
had been treated surgically for Astler-Coller Stage B or C
CRC without adjuvant chemotherapy (additional details
describing study participants in Table 2). The focus of the
trial was on local recurrences; however, data for subjects
with metastatic recurrences was also reported. We used
data from the intensive follow-up arm to calibrate our
model; accordingly, we refer to this group as the calibra-
tion group. To account for risk of non-cancer death among
individuals who have not been diagnosed with recurrence,
we calibrated an additional parameter (m) representing
group-specific background (i.e. from non-CRC causes)
mortality probability per cycle. We considered this a more
reliable method to estimate background mortality in a
small group compared to using life table-based estimates.
We selected a set of seven observable outcomes

reported by Pietra et al. to serve as calibration targets
(note that these are distinct from the seven parameters
estimated through calibration). The discrepancies between
observed and model-predicted values of these targets were
compared for each combination of values of the disease
progression and background mortality parameters. The
targets used were disease-free survival at five years (DFS5),
overall survival at years one through five (OS1 – OS5),
and the proportion of patients undergoing eventual
curative salvage surgery following recurrence. Group
characteristics and recurrence rates, surveillance testing
schedule, and observed values for each of the calibration
targets are shown for the intensive (calibration) group
in the middle column of Table 2.
Searching the parameter space was achieved using a

series of increasingly narrow grid searches. Specifically, each
of the seven parameters to be calibrated was given an
initially broad range (shown in the third column of Table 3)
which was divided into three to eight evenly-spaced inter-
vals. Values from across the initial range were systematically
sampled so that all possible combinations of parameters
were tried (i.e. a grid search of the parameter space [54]).
Each run of the model simulated a cohort of 10,000
patients. Model–generated values of each calibration target
were compared to values reported by Pietra et al. Candidate
disease progression parameter sets which yielded target
values > +/− one percentage point (or > +/− two percentage
points if no values varying less than one percentage point
were found) from the observed target value for DFS5 were
eliminated from consideration. Next, model-generated and
observed values for OS5 were compared in this same man-
ner to further reduce the set of candidate parameter values,
followed by OS4, OS3, proportion of patients undergoing
curative salvage surgery, OS2, and finally OS1. OS2 and
OS1 were considered last since these were most subject to
influence from small numbers of events. The result was a
small group of remaining parameter sets. Based on the
range of candidate parameter values suggested by this
process, a second round of calibration was performed, this
time with a narrower set of candidate parameter values.
This process was repeated for subsequent rounds until no
additional gains in model fit—as judged by changes in the



Table 2 Comparison of calibration group and validation group based on intensive and minimal follow-up groups,
respectively, from trial by Pietra et al. [52]

Value Calibration group
(Intensive follow-up)

Validation group
(Minimal follow-up)

Group characteristics

Number of subjects 104 103

Male 56% 51%

Mean age at diagnosis 62.2 +/− 11 64.4 +/− 12

Astler-Coller stage B/C 59.6%/40.4% 58.3%/41.7%

Primary colon/rectal tumors 70.2%/29.8% 64.1%/35.9%

Preoperative complications 14% 11%

Recurrence rate during study period 39.4% 40.4%a

Distribution of metastatic disease if present:
Liver/Lung/Other (includes multiple organs)b

26.7%/0.0%/73.3% 14.2%/4.8%/81.0%

Surveillance testing schedule

Clinical interview/exam Every 3 months for 2 years;
every 6 months thereafter

Every 6 months for 1 year;
every 12 months thereafter

CEA Every 3 months for 2 years;
every 6 months thereafter

Every 6 months for 1 year;
every 12 months thereafter

Hepatic ultrasound Every 3 months for 2 years;
every 6 months thereafter

Every 6 months for 1 year;
every 12 months thereafter

CT of abdomen/pelvis Every 12 months None

Chest x-ray Every 12 months Every 12 months

Colonoscopy Every 12 months Every 12 months

Outcome targets

Disease-free survival at 5 years (DFS5) 68% 53%

Overall survival at one year after initial surgery (OS1) 97% 98%

OS2 90% 89%

OS3 84% 74%

OS4 76% 65%

OS5 73% 58%

Proportion undergoing curative salvage re-operation for recurrence 20% 6%

CEA = serum carcinoembryonic antigen assay; OSx = overall survival at x years.
aIncludes a single metachronous (new primary) CRC
bMetastatic site was only reported by Pietra et al. for patients whose recurrences were metastatic only, and did not feature simultaneous involvement around the
original tumor site.
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value of a goodness-of-fit statistic—were achieved. The
goodness-of-fit statistic used for this purpose was a simple
unweighted sum of squared differences between observed
and predicted values for the calibration targets. The lowest
goodness-of-fit value from among all sets of parameters
from one round of calibration was compared to the lowest
value from the previous round. Once no further improve-
ment was seen between rounds, no further rounds of cali-
bration were undertaken. After the final calibration round,
the remaining parameter sets collectively contained a small
range of candidate values for each parameter. A single best
set was chosen which contained the values closest to the
midpoint of the final range for each parameter (in the same
order of priority which was applied throughout calibration:
DFS5, OS5, OS4, OS3, probability of curative salvage
operation, OS2, then OS1). This approach of using mul-
tiple, increasingly narrow grid searches was preferred on
efficiency grounds to an approach of performing a single
grid search with a large number of closely-spaced intervals
for each parameter. With the latter approach, the number
of parameters combinations would have been astronomical.
Ultimately, we performed nine successive rounds of calibra-
tion, examining a total of 276,960 distinct parameter com-
binations (10,000 patients simulated for each parameter
combination) in order to arrive at the final parameter
estimates.

Non-calibrated parameters
Test sensitivity and specificity, as well as life expectan-
cies, were estimated based on values from published



Table 3 Starting ranges used in first round of model calibration – ranges were narrowed with successive rounds of
calibration to achieve improved fit to the outcomes reported in the intensive follow-up arm of the Pietra trial [52]

Parameter Definition Starting range (inclusive) Final calibrated parameter value

rd Rate per 3-month cycle at which recurrences transition from
undetectable to detectable

0.05 - 0.12 0.092

xds Baseline (Di = 0) presymptomatic window 1 week – 9 months 17 weeks

xdu Baseline (Di = 0) window of resectability 1 week – 9 months 6 weeks

rs Increment in presymptomatic window for each additional unit of Di

(expressed as a rate per 3-month cycle)
−0.025 - 0.15 0.07

ru Increment in window of resectability for each additional unit of Di

(expressed as a rate per 3-month cycle)
0 - 0.15 0.11

σds Standard deviation of normally-distributed error term
for presymptomatic window

1 week – 6 months 11 weeks

m Background five-year cumulative probability of mortality
from non-CRC causes

1% - 20% 1.6%a

aBy comparison, five year cumulative probability of death from any cause in the Italian population for a group with the age and gender makeup of the calibration
group has been estimated at 6.1% for 1990 [51].
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studies (Table 1). Since evidence-based estimates were
obtainable, calibration of these parameters was not
necessary. Sensitivity and specificity values shown are for
individual tests in isolation. It was assumed that metas-
tases to multiple locations or to single sites besides the
liver or lungs would be inoperable. It was also assumed
that lung metastases were 50% as likely as liver metasta-
ses to be operable [55-57].

Sensitivity analysis
One-way sensitivity analyses were performed on all non-
calibrated model parameters according to the ranges
shown in Table 1. The primary outcomes of interest in
sensitivity analyses were OS5 and proportion of subjects
undergoing curative salvage surgery for recurrence of
CRC. The same randomization algorithm seed value was
used throughout sensitivity analysis to minimize the
impact of stochastic variability on comparisons with
baseline model outputs.

Validation
Once values for the six parameters describing the progres-
sion of CRC recurrence and the parameter representing
background mortality for those without known recurrence
had been estimated by calibration, the model was used to
predict the outcomes that would be expected in the min-
imal follow-up arm of the Pietra trial; we will refer to this
arm as the validation group. The primary purpose of this
validation was to assess the model’s ability to predict
cancer-related outcomes for a group with known disease
characteristics and non-cancer mortality risk under a spe-
cified surveillance regimen. Keeping all calibrated disease
progression parameters constant, the follow-up regimen
modeled was modified to be consistent with that under-
gone by subjects in the validation group (see Table 2). Be-
cause the Pietra trial was not sufficiently large that subject
characteristics were evenly distributed between groups
through randomization, the proportion of patients relaps-
ing and the distribution of metastatic sites in the model
(see Table 2) were adjusted in validation to match what
was reported for the minimal follow-up group. Specific-
ally, probability of recurrence was adjusted from 39.4% to
40.4%, and distribution of metastatic disease between
liver/lung/other was adjusted from 26.7%/0.0%/73.3% to
14.2%/4.8%/81.0%. Pietra et al. reported a substantial dif-
ference in DFS5 between the intensive and minimal sur-
veillance groups (68% and 53% respectively). Only 1.0
percentage point of this difference was explained by a dif-
ference in recurrence rate. Since eventual cancer-related
deaths do not affect disease-free survival calculation (ra-
ther, it is the diagnosis of recurrence which precedes death
that counts), it was assumed that the remaining difference
in DFS5 was attributable to differences in background
mortality. We accordingly adjusted the five-year back-
ground cumulative probability of death from other causes
in the validation group by 14.0%, equating to a 3.4 per-
centage point increment in annual mortality from other
causes in the validation group compared to the calibration
group. No adjustments were made to the structure of the
model itself.

Results
Model calibration
Final calibrated parameter estimates are shown in the
fourth column of Table 3. Figure 3 compares observed
values from the intensive follow-up (calibration) group
in the Pietra trial to the model-generated outputs for the
same group using the final best-fitting parameter set. As
seen from the figure, predicted overall survival is slightly
overestimated early in the five-year time horizon, while
five-year disease-free survival and the rate of curative
salvage surgery are slightly underestimated by the model.



Figure 3 Observed outcomes in intensive follow-up
(calibration) group compared to outputs of fitted model.
DFS5 = disease-free survival at 5 years.

a

b
Figure 4 One-way sensitivity analysis results. a) When varied over
the ranges indicated at either end of each horizontal bar, these
parameters had the greatest impact on the predicted proportion of
total patients undergoing curative salvage surgery for CRC recurrence
within five years of initial treatment. b) Parameters with the greatest
impact on predicted overall survival at five years (OS5).
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Additional file 2: Figure S2 depicts the disease progres-
sion milestones for 20 simulated patients with recur-
rence based on the calibrated parameters.

Sensitivity analysis
In order to examine the sensitivity of key model results to
changes in non-calibrated parameters, we conducted a
deterministic sensitivity analysis, varying all non-calibrated
parameters in the fitted model across the ranges shown in
the third column of Table 1. The outcomes of interest for
sensitivity analysis were the proportion of patients under-
going eventual salvage surgery (denominator = all patients
initially treated for CRC, whether or not they eventually
recurred) and OS5.
Figure 4a depicts sensitivity analysis results for the out-

come representing the proportion of patients undergoing
curative salvage surgery. The most influential parameter
was test sensitivity of the CEA assay, with a 15 percentage
point increase in sensitivity to 79% resulting in a 7.9% in-
crease in proportion undergoing curative salvage surgery,
and a 15 percentage point decrease to 49% resulting in a
7.4% decrease in proportion undergoing curative salvage
surgery. Varying all other parameters over the specified
ranges yielded variation in curative salvage surgeries of
within 5% of the base case.
Figure 4b shows sensitivity analysis results for the

outcome of overall survival at 5 years. Life expectancy
values had the greatest impact on this outcome, though
no parameter proved highly influential.

Validation
In order to assess the predictive value of the model for a
similar population under a different follow-up regimen,
we ran the model for the minimal follow-up arm of the
Pietra trial and compared model-predicted with ob-
served outcomes. This comparison is shown in Figure 5.
The largest difference between observed and predicted
outcomes for the validation group was in the proportion
of subjects who would eventually undergo curative sal-
vage surgery for recurrence. The model overestimated
this proportion at 10%, while only 6% of patients in real-
ity underwent curative salvage surgery in the validation
group.

Discussion
We have introduced a new approach for simulating
colorectal cancer surveillance and recurrence and have de-
scribed a model which applies this approach. We estimated
a best-fitting disease progression parameter set for this
model by comparing iteratively generated model outputs
to observed outcomes in one arm of a classic randomized
controlled trial comparing two follow-up regimens (cali-
bration). We then validated the model by demonstrating
that it closely approximated several key outcomes for a
separate group of patients followed less intensively in the
same trial (validation). Application of this approach in
subsequent based on larger, individual-level data sets could
facilitate more personalized post-surgical surveillance of
CRC survivors, ultimately translating into fewer low-yield
tests and more lives saved through early detection of
recurrence.
The approach of developing a generic disease progres-

sion submodel and calibrating its parameters based on



Figure 5 Predicted vs. observed outcomes for the validation
(minimal follow-up) group. DFS5 = disease-free survival at 5 years.
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outcomes data was taken because of the lack of biological
data needed to directly estimate these parameters. The
natural history behavior of recurring colorectal cancer is
difficult to observe directly and is extremely heteroge-
neous. This heterogeneity likely stems, at least partly, from
the greater genotypic diversity of genomically unstable
tumor tissue which has been exposed to the stresses of
treatment.
Though the specific values for the parameter estimates

pertain to the patients in the Pietra trial and should not be
construed to broadly represent disease behavior in the
context of more recent treatment norms, they are consist-
ent with generally-recognized patterns of CRC recurrence.
Specifically, the estimates imply that those who recur later
after initial treatment (higher values of Di) tend to exhibit
a more indolent course of disease (as represented by a
positive value of rds) and are more likely to be considered
curable when diagnosed (as represented by a positive value
of rdu) [53,58-60].
In sensitivity analysis, the proportion of patients under-

going curative salvage surgery was not highly sensitive to
any single parameter. This is partly explained by the fact
that approximately six of ten individuals did not recur;
including these individuals in the denominator somewhat
attenuates the variation in this outcome. However, even if
only patients who recurred are included in the denomin-
ator, no parameter influenced the outcome by more than
20%. An interesting pattern did emerge. Probability of
salvage surgery was most directly influenced by changes in
sensitivity of tests which were not specific to an anatomic
site (i.e. CEA and clinical exam/interview). In the simplest
terms, these “tests” cast a wide net, with the potential to
generate a true positive for any recurrence, regardless of
site. This observation reinforces the rationale behind the
current pursuit of newer, highly sensitive circulating
markers for recurrence.
Paradoxically, proportion of curative salvage surgeries
moved in inverse proportion to the specificity of those
tests which targeted an anatomic site (e.g. hepatic ultra-
sound). This finding suggests that false positives for
such tests actually provide an indirect benefit by pre-
cipitating further workups which diagnose true recur-
rences in other locations. This paradox underscores the
importance of considering quality-of-life impact of test-
ing as well as cost considerations. With these issues in
mind, our model has been designed so that future ver-
sions may be used to compare the costs per quality-
adjusted life year of alternative surveillance regimens.
Specifically, the surveillance and re-treatment submodel
has the ability to track costs due to surveillance testing,
work-up of positive surveillance tests, and subsequent
curative or palliative treatment for each simulated indi-
vidual at each point in time. Quality-adjustment of life
expectancy will be achieved by applying health state
utility parameters to assigned life expectancies.
The fact that overall survival of CRC survivors in gen-

eral is only modestly affected by changes in many of the
parameters associated with diagnostic test characteristics
and differential survival suggests an important implication.
Because most survivors will not recur, and many of those
who do recur have a narrow window within which early
detection may change prognosis, developing tools to bet-
ter identify those at greatest risk and to individualize their
surveillance will likely yield greater benefit than applying
generalized surveillance recommendations to all survivors.
With calibration to larger, individual-based data sets
covering patients with a range of risk factor profiles, it is
hoped that future iterations of the model will provide a
means to compare the effectiveness of proposed surveil-
lance regimens for risk-based subgroups of patients and to
even suggest optimized regimens for individuals.
Multiple models have been developed to evaluate

CRC screening strategies in healthy populations. These
models simulate the sequence by which benign polyps
transform to adenocarcinomas, and by which these adeno-
carcinomas grow and invade healthy tissue [22-32]. Some
of these screening models have spawned research ques-
tions involving disease natural history [28,61], have in-
formed development of U.S. Preventive Services Task
Force (USPSTF) guidelines on colorectal cancer screening
[62], and have been applied by the Centers for Medicare
and Medicaid Services (CMS) to compare the effectiveness
of CRC screening strategies [63,64].
Only a few models have addressed the issue of surveil-

lance of curatively treated CRC patients for early detection
of recurrence. Two of these have not accounted for disease
progression during diagnostic delay in a manner that would
allow realistic assessment of novel surveillance strategies
[34,35]. A separate group of investigators [36] used a so-
phisticated mechanistic, organ-level simulation to compare
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different treatment and surveillance strategies in patients
with hepatic metastases. While the model does account for
disease progression amid diagnostic delay, it does not pro-
vide information useful in determining optimal follow-up
for non-hepatic recurrences. Also, the approach taken may
be less feasible than a more population-based approach
when considering metastases to other sites about which less
detailed data are available.
A final, recent example of a model examining CRC sur-

veillance is provided by Erenay et al. [37]. These investiga-
tors used longitudinal patient data to estimate natural
history parameters related to formation and progression
of metachronous colorectal tumors in patients who were
status post curative resection. Though well-done, this
model does not address recurrence of original cancers
(which represent over 90% of relapses [7]). Furthermore, it
is not validated against any other data source.
The approach we have described uses calibration of a

disease progression submodel interacting with a surveil-
lance and re-treatment submodel to estimate disease pro-
gression parameters while controlling for the impact of
surveillance on disease natural history. The effect is to
estimate group-specific parameters for a model describing
disease progression in the absence of surveillance. Once
calibrated, novel combinations and schedules of surveil-
lance tests can be coupled with the disease progression
model to predict outcomes for a group with similar under-
lying characteristics. Further calibration of the model to
patient-level outcomes data containing individual risk
factors will enable prediction of outcomes for populations
or individuals with specific risk profiles, paving the way
for more personalized and effective surveillance and the
possibility for earlier detection of recurrence at a stage
where cure is more likely.

Limitations
The chief limitation of this work stems from the small
size of the patient groups used in calibration and valid-
ation, and from the lack of individual-level data. With
larger groups, the probability that underlying disease
behavior and background mortality would be similar be-
tween populations used for calibration and populations
for whom outcome predictions were being sought would
be greater. We chose the Pietra trial because of the
wealth of outcomes data it provided and the between-
study-arm similarity in subject characteristics compared
to other available published studies. In validation, we
attempted to alleviate limitations related to group size
by assigning the appropriate background mortality rates
and distribution of metastatic sites to match those re-
ported for the validation group. In a scenario of making
actual population-level predictions, one might not have
the luxury of knowing these characteristics of the group
of interest. However, for our purposes, these adjustments
can be seen as strengthening the internal validation of the
model by controlling for known differences between
groups. In the future, individual-level data describing more
diverse groups will be used to provide more generalizable
parameter estimates and a higher-resolution understand-
ing of the effects of different risk factors. With larger sam-
ple sizes, far less variability can be assumed in metastasis
pattern and background mortality between calibration
populations and populations for which predictions are to
be made.
A minor limitation relates to the fact that we did not ex-

plicitly model the occurrence of second primary (metachro-
nous) CRC’s. Because no subjects in the calibration group
were diagnosed with metachronous CRC, calibrating the
model to simultaneously simulate incidence of metachro-
nous CRC and recurrence of previously-treated disease was
not a feasible option. Fortunately, the impact of this limita-
tion on the integrity of the model validation should be min-
imal since only one individual in the validation group was
reported to have experienced metachronous CRC. Because
metachronous CRC (normally representing between 1.6%
[7] and 7.4% [7,37,65] of CRC recurrences) behaves as a
primary cancer and is associated with higher probability of
cure compared to recurrent disease, it will be important to
explicitly model separate natural history processes for these
two types of events in future iterations of the model.
We do not consider the fact that the study is based on

data gathered in the 1980’s and 1990’s to be a limitation.
The purpose of this work was not to make prescriptive
assertions about survivorship care of CRC patients today,
but rather to demonstrate a method and preliminarily
validate it using publicly-available data. That said, some
useful generalizations are possible regarding the impact of
diagnostic test characteristics and the importance of devel-
oping the ability to better customize follow-up of CRC
survivors as elaborated above.

Conclusion
Scheduled post-operative surveillance of patients cura-
tively treated for colorectal cancer allows the detection of
asymptomatic recurrence which can create the possibility
of cure for some patients. We have described and prelim-
inarily validated a simulation model, based on a novel
approach, which allows comparison of important patient
outcomes under hypothetical combinations and schedules
of common surveillance tests.

Future work
Next steps include adapting the model to a discrete
event simulation framework which will allow calibration
to individual-level patient data in which subject risk fac-
tors as well as precise dates of testing events and clinical
milestones are known. Calibration and validation with
larger, individual-level data sets representing patients



Rose et al. BMC Medical Informatics and Decision Making 2014, 14:29 Page 11 of 13
http://www.biomedcentral.com/1472-6947/14/29
with a more diverse range of demographic and disease
characteristics is planned. Use of richer data sets (e.g.
from combined clinical trials, or based on cancer registry
data) will enable the use of future versions of the model
to compare the effectiveness and cost-effectiveness of
published surveillance recommendations for subgroups
based on cancer stage, location (e.g. rectum versus
colon), age, comorbidity status, presence of molecular
markers, adjuvant treatment received, and other consid-
erations. In addition, the model could be adapted to
utilize an optimization algorithm to generate candidate
follow-up strategies for such subgroups—allowing the
more efficient design of meaningful clinical trials. Future
adaptations could also power interactive clinical decision
aids for planning the management of individual patients,
an approach that itself could be validated in a random-
ized trial.

Additional files

Additional file 1: Figure S1. Simplified schematic of surveillance and
re‐treatment submodel. For simplicity, only three testing modalities are
shown in the figure: serum carcinoembryonic antigen (CEA) assay, CT of
abdomen and pelvis, and chest x-ray. Other tests available in the model
include chest CT, colonoscopy (for detection of second primary CRC’s),
hepatic ultrasound, and clinical interview/exam. Life expectancies based
on cancer-specific survival estimates (see Table 3) are assigned at the
time of diagnosis/treatment. There is a probability of transitioning to the
“Dead due to other causes” state during each cycle spent in any of the three
living states. “Clones” are simply copied elements of the decision tree used
to minimize tree size for display purposes (e.g. Clone 1: Full workup).

Additional file 2: Figure S2. Scatterplot of disease progression for 20
simulated patients experiencing recurrence of previously‐treated
colorectal cancer. These data points were generated using the calibrated
parameter values for rd, xdu, ru, xds, rs, and σds shown in the final
column of Table 3. Individuals are ranked from earliest-recurring to
latest-recurring. In this example, only patients #7 and #12 developed symp-
toms at a point where their recurrent disease would still have been curable.
Note that connecting the green triangles would yield an approximate plot
of the function Di, and that connecting the blue diamonds would yield an
approximate plot if the function Ui. A fitted line through the red circles
would approximate a plot of Si; there is significant deviation from such a line
for individual red circles given the substantial calibrated value of σds, the
standard deviation of the error term x used in calculating Si. In general,
larger values of any of the rate (r) parameters would lead to more drastically
curving lines, while lower values would yield straighter lines. Larger values of
xdu and xds would lead to larger horizontal gaps between the lines
representing Di and Ui, and Di and Si, respectively.
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