
Discrete Applied Mathematics 157 (2009) 1773–1786

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Independent sets in bounded-degree hypergraphsI

Magnús M. Halldórsson, Elena Losievskaja ∗
School of Computer Science, Reykjavik University, 103 Reykjavik, Iceland
Department of Computer Science, University of Iceland, 107 Reykjavik, Iceland

a r t i c l e i n f o

Article history:
Received 31 August 2007
Received in revised form 25 November
2008
Accepted 25 November 2008
Available online 3 January 2009

Keywords:
Approximation algorithms
Maximum independent set
Hypergraph

a b s t r a c t

In this paper we analyze several approaches to the Maximum Independent Set (MIS)
problem in hypergraphs with degree bounded by a parameter ∆. Since independent
sets in hypergraphs can be strong and weak, we denote by MIS (MSIS) the problem
of finding a maximum weak (strong) independent set in hypergraphs, respectively. We
propose a general technique that reduces the worst case analysis of certain algorithms on
hypergraphs to their analysis on ordinary graphs. This technique allows us to show that the
greedy algorithm for MIS that corresponds to the classical greedy set cover algorithm has a
performance ratio of (∆+1)/2. It also allows us to apply results on local search algorithms
on graphs to obtain a (∆ + 1)/2 approximation for the weighted MIS and (∆ + 3)/5 − ε
approximation for the unweighted case. We improve the bound in the weighted case to
d(∆+1)/3e using a simple partitioning algorithm.We also consider another natural greedy
algorithm for MIS that adds vertices of minimum degree and achieves only a ratio of∆−1,
significantly worse than on ordinary graphs. For MSIS, we give two variations of the basic
greedy algorithm and describe a family of hypergraphs where both algorithms approach
the bound of∆.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider the independent set problem in hypergraphs. A hypergraph H is a pair (V , E), where V =
{v1, . . . , vn} is a discrete set of vertices and E = {e1, . . . , em} is a collection of subsets of V , or (hyper) edges. An independent
set in H is a subset of V that does not contain any edge of H , also referred to as aweak independent set [2]. If an independent
set in H intersects any edge in E in at most one element, then it is said to be a strong independent set [2]. Let MIS (MSIS)
denote the problemof finding amaximumcardinalityweak (strong) independent set in hypergraphs, respectively. If vertices
in H are assigned weights, then MIS (MSIS) denotes the problem of finding a weak (strong) independent set of maximum
weight, respectively. When considering a weighted version of MIS (MSIS), we state it explicitly.
MIS is of fundamental interest, both in practical and theoretical aspects. It arises in various applications in data mining,

image processing, database design, parallel computing and many others. MIS is intimately related with classical covering
problems. The vertices not contained in a weak independent set form a vertex cover, or a hitting set. Moreover, a set cover
in the dual of a hypergraph (replacing each set by a vertex and including a set for the incidences of each original node) is
equivalent to a hitting set in the original hypergraph. Thus, in terms of optimization, MIS is equivalent to Minimum Hitting
Set and Minimum Set Cover problems.
Numerous results are known about independent sets in hypergraphs, including approximation algorithms forMIS in [17,

20]. The focus of the current work is on bounded-degree hypergraphs, where each vertex is of degree at most∆. Given that
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bothMIS andMSIS generalize the independent set problem in graphs, the problem is NP-hard to approximatewithin a factor
∆/2O(

√
log∆) unless P = NP [25].

In the case of graphs (2-uniform hypergraphs), there is no distinction between weak and strong independent sets. Thus,
we denote by MIS the problem of finding a maximum independent set in graphs. Various approximation algorithms have
been given for MIS in graphs. Halldórsson and Radhakrishnan [14] showed that the minimum-degree greedy algorithm
approximates unweightedMIS within a factor of ∆+23 . A simple partitioning algorithm due to Halldórsson and Lau [12] gives
a (∆ + 2)/3-approximation of weighted MIS. A better approximation ratio for unweighted MIS is (∆ + 3)/5 obtained by
Berman and Fujito [4] using a local search algorithm. For large values of ∆, the best approximation is obtained by using
semi-definite programming, with a ratio of O(∆ log log∆/ log∆) due to Vishwanathan [26] (and also in the weighted case,
shown independently by Halldórsson [13] and Halperin [15]).
The MSIS problem can be turned into an independent set problem in graphs by replacing each hyperedge with a clique

(assuming that the hypergraph has no singletons which cannot belong to any independent set). The reason for considering
the problem as a hypergraph problem is that the degrees in the hypergraph can be much smaller than in the corresponding
clique graph. If the hypergraph is of degree∆, then the corresponding clique graph contains no∆+ 1-claw, where a k-claw
is an induced star on k edges. The work of Hurkens and Schrijver [18] established that a natural local improvement method
attains a performance ratio of k/2 + ε, for any fixed ε > 0, on k + 1-claw free graphs, see also [13]. Another local search
algorithm by Berman [3] approximates weightedMIS in (k+1)-claw free graphs within a factor of (k+1)/2, which implies
also a ∆/2-approximation. A strong hardness result of Ω( ∆

ln∆ ) is known for MSIS, due to Hazan, Safra and Schwartz [16].
The focus of our study of MSIS is to consider natural greedy methods and establish tight bounds on their performance ratio.
One of the most extensively studied heuristics of all times is the greedy set cover algorithm, which repeatedly adds to

the cover the set with the largest number of uncovered elements. In spite of its simplicity, it is in various ways also one of
the most effective. Johnson [19] and Lovász [21] showed that it approximates the Set Cover problem within Hn ≤ ln+1
factor, which was shown by Feige [10] to be the best possible up to a lower order term. Generalizations to weights [8] and
submodular functions [27] also yield equivalent ratios, and under numerous variations on the objective function does the
greedy algorithm still achieve the best known/possible performance ratio, e.g. Sum Set Cover [11] and Entropy Set Cover [6].
Bazgan, Monnot, Paschos and Serrière [1] studied a differential approximation ratio of the greedy set cover algorithm, which
measures howmany sets are not included in the cover. When viewed on the dual hypergraph, this is equivalent to studying
the performance ratio of the greedy set cover algorithm for MIS. They proved that when modified with a post-processing
phase, it has a performance ratio of at most∆/1.365 and at least (∆+ 1)/4. Caro and Tuza [7] showed that the greedy set
cover algorithm applied to MIS in r-uniform hypergraphs always finds a weak independent set of size at leastΘ

(
n/∆

1
r−1

)
.

Thiele [24] extended their result to non-uniform hypergraphs and gave a lower bound on the size of an independent set
found by a greedy algorithm as a complicated function of the number of edges of different sizes incident on each vertex in
a hypergraph.
Another popular algorithm design technique is local search. This technique is based on the concept of a neighborhood—a

set of solutions close to the current solution. The idea is to start with some (arbitrary) solution S and iteratively replace S
by a better solution found in the neighborhood of S. A local search gives the best approximations known of weighted and
unweighted MIS in bounded-degree graphs for small values of ∆, due to Berman [3] and Berman and Fujito [4]. Bazgan,
Monnot, Paschos and Serrière [1] considered a simple 2-OPT local search algorithm to approximate MIS in hypergraphs and
proved a tight bound of (∆+ 1)/2.
Another simple approach in approximation algorithm design is partitioning. The strategy is to break the problem into

a set of easier subproblems, solve each subproblem and output the largest of the found solutions. This approach yields
d(∆ + 1)/3e approximation to the weighted MIS in graphs, as shown in [13]. In spite of its simplicity, partitioning has not
been used before to approximate MIS in hypergraphs.
In this paper we analyze greedy, local search and partitioning approaches to approximate weighted and unweighted

MIS and MSIS in bounded-degree hypergraphs. We describe a general technique that reduces the worst case analysis of
certain algorithms to their analysis on ordinary graphs. Given an approximation algorithm A, this technique, called shrinkage
reduction, truncates a hypergraph H to a graph G such that an optimal solution on H is also an optimal solution in G, and A
produces the same worst approximate solution on H and G. This technique can be applied to a wide class of algorithms and
problems on hypergraphs. For example, this technique allows us to show that the greedy algorithm forMIS that corresponds
to the classical greedy set cover algorithm has a performance ratio of (∆+ 1)/2, improving the bounds obtained by Bazgan
et al. [1]. In addition, while their analysis required a post-processing phase, our bound applies to the greedy algorithm alone.
It also allows us to apply results on local search algorithms on graphs to obtain a (∆ + 1)/2 approximation for weighted
MIS and (∆ + 3)/5 + ε approximation for unweighted MIS. We improve the bound in the weighted case to d(∆ + 1)/3e
using a simple partitioning algorithm. Finally, we show that another natural greedy algorithm for MIS, that adds vertices of
minimum degree, achieves only a ratio of∆− 1, significantly worse than on ordinary graphs.
ForMSISwedescribe twogreedy algorithms: one constructs an independent set by selecting vertices ofminimumdegree;

the other selects vertices with the fewest neighbors. We show that both algorithms have a performance ratio of∆ and that
this bound is tight. However, in r-uniform hypergraphs the performance ratio of all greedy algorithms is improved: for MIS
toΘ

(
∆

1
r−1

)
and 1+ ∆−1

r , respectively; for MSIS to∆−
∆−1
r for both greedy algorithms.
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The paper is organized as follows. After giving essential definitions of various hypergraph properties, we present the
shrinkage reduction technique and apply it to the analysis of local search and greedy algorithms to MIS in Section 3. We
conclude Section 3 with the application of simple partitioning and the minimum-degree greedy algorithms to MIS. In
Section 4 we describe two greedy algorithms for MSIS.

2. Definitions

Given a hypergraph H = (V , E), let n and m be the number of vertices and edges in H . The degree of a vertex v is the
number of edges incident on v. We denote by∆ and d themaximum and the average degree in the hypergraph, respectively.
In a bounded-degree hypergraph∆ is a constant. A hypergraph is∆-regular if all vertices have the same degree∆.
The rank r of a hypergraph H is the maximum edge size in H . A hypergraph is r-uniform if all edges have the same

cardinality r . By a t-edgewe mean an edge of size t . A hypergraph is simple if no edge is a subset of another edge.
A vertex u is a neighbor of a vertex v, if there exists an edge e ∈ E that includes both u and v. Given a vertex v ∈ V , we

denote by N(v) a set of neighbors of v. Let Nk(v) = {u ∈ V : ∃e ∈ E, {u, v} ⊆ e, |e| = k} be the set of neighbors of v in
edges of size k. Given a set U ⊆ V , let N(U) = {v ∈ V \ U : ∃u ∈ U, ∃e ∈ E, {u, v} ⊆ e} be the set of neighbors of vertices
in U .
A hyperclique is a hypergraph in which each vertex is a neighbor of all other vertices. Note, that a hyperclique need not

be a uniform hypergraph. By analogy with a graph being a 2-uniform hypergraph, a clique is a 2-uniform hyperclique.
An n-star is a tree on n+1 nodes with one node of degree n (the root of the star) and the others of degree 1 (the endpoints

of the star).
We say that a hypergraph H ′(V ′, E ′) is induced in H(V , E) on the vertex set V ′ ⊂ V , if E ′ = {e ∈ E|e ⊆ V ′}. By deleting a

vertex v from a hypergraph H we mean just one operation: V = V \ {v}, and by deleting v with all incident edges we mean
two operations: V = V \ {v} and E = E \ {e ∈ E|v ∈ e}.
In the remainder, we let H and G be the collections of all hypergraphs and graphs, respectively. We denote by H a

hypergraph inH and by G a graph in G, respectively. By a cover we mean a hitting set in H or a vertex cover in G.

3. Weak independent sets

We describe three different approaches to weighted and unweighted MIS in bounded-degree hypergraphs: local search,
greedy and partitioning. We also present a general reduction technique for the worst case analysis of approximation
algorithms on hypergraphs and apply it to local search and greedy algorithms.

3.1. Shrinkage reduction

Shrinkage reduction is a general technique that reduces the worst case analysis of algorithms on hypergraphs to their
analysis on graphs. It is based on a shrinkage hypergraph, or shrinkage for short.

Definition 3.1. A hypergraph H ′ is a shrinkage of H if V (H ′) = V (H), |E(H ′)| = |E(H)| and for any edge e ∈ E(H) there
exists an edge e′ ∈ E(H ′) such that e′ ⊆ e. In other words, the edges of H might be truncated in H ′ into sets of smaller size
(and at least 2).

Shrinkage reduction works for hereditary optimization problems. Given an instance I , an optimization problem consists
of a set of feasible solutions SI and a functionw : SI → R+ assigning a non-negative cost to each solution S ∈ SI .

Definition 3.2. An optimization problem on hypergraphs is hereditary, if for any shrinkage H ′ of a hypergraph H it satisfies
SH ′ ⊆ SH .

Many problems on hypergraphs are hereditary, including the Minimum Hitting Set, the Maximum Independent Set, the
Minimum Coloring and the Shortest HyperPath.1An example of non-hereditary problem is the Longest HyperPath. Given a
hereditary problem, the essence of shrinkage reduction is the following.

Proposition 3.3. Let A be an approximation algorithm for a hereditary problem. Suppose we can construct a shrinkage graph G
of a hypergraph H such that an optimal solution in H is also an optimal solution in G and A produces the same worst approximate
solution on H and G, then the performance ratio of A on hypergraphs is no worse than on graphs.

Note, that Proposition 3.3 applies also to non-deterministic (and randomized) approximation algorithms.
It is not easy to give a general rule on how to construct a shrinkage for an arbitrary approximation algorithm. In the

following sectionswe describe reductions for the greedy set cover and local search algorithms for weighted and unweighted
MIS in bounded-degree hypergraphs. The comparison of the GreedyMAX and the GreedyMIN algorithms, described in
Section 3.3 and 3.5 respectively, suggests that the shrinkage reduction technique might be applicable only to algorithms
that do not alter edge sizes during the execution.

1 A (hyper)path in a hypergraph is a sequence of edges e1, e2, . . . , ep such that ei ∩ ei+1 6= ∅ for any 1 ≤ i ≤ p− 1 and ei ∩ ej = ∅ for any i, j such that
|i− j| > 1.
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3.2. Local search

The idea of the local search approach is to start with a (arbitrary) solution and continually replace it by a better
solution found in its neighborhood while possible. We need formal definitions to determine what a ‘‘better solution’’ and a
‘‘neighborhood’’ mean.
A neighborhood function Γ maps a solution S ∈ SI into a set of solutions ΓI(S) ⊆ SI , called the neighborhood of S.

A feasible solution S̃ is locally optimal w.r.t. Γ , or Γ -optimal for short, if it satisfies w(S̃) ≤ w(S)(w(S̃) ≥ w(S)) for all
S ∈ ΓI(S) for a minimization (maximization) problem. A feasible solution S∗ is globally optimal, or optimal for short, if it
satisfiesw(S∗) ≤ w(S)(w(S∗) ≥ w(S)) for all S ∈ SI for a minimization (maximization) problem. To specify more precisely
the neighborhood functions used in our local search algorithms, we need the following definition.

Definition 3.4. A neighborhood function Γ is said to be edge-monotone for a hereditary problem on hypergraphs if for any
shrinkage H ′ of a given hypergraph H and any solution S ∈ SH ′ the neighborhood of S satisfies ΓH ′(S) ⊆ ΓH(S).

In other words, edge-monotonicity means that edge reduction can only decrease the neighborhood size.
A Γ -optimal algorithm is a local search algorithm that given an instance I , starts with a (arbitrary) solution S and

repeatedly replaces it by a better solution found in ΓI(S) until S is Γ -optimal. The approximation ratio %Γ ,I of a Γ -optimal
algorithm on a instance I is the maximum ratio between the weights of Γ -optimal and optimal solutions over all Γ -
optimal solutions on I , i.e. %Γ ,I = max∀S̃∈SI

w(S̃)
w(S∗)

(
%Γ ,I = max∀S̃∈SI

w(S∗)
w(S̃)

)
for a minimization (maximization) problem.

The performance ratio ρΓ ,I of a Γ -optimal algorithm is the worst approximation ratio over all instances I in the class of
instances I.
In the following theorem we show that if a neighborhood function Γ is edge-monotone, then for the Minimum Cover

problem the analysis of a Γ -optimal algorithm on hypergraph reduces to the analysis of this algorithm on graphs. The
reduction is based on the construction of a shrinkage graph with special properties. Note, that a shrinkage graph is needed
only for the analysis, but not for the Γ -optimal algorithm itself.

Theorem 3.5. Given an edge-monotone neighborhood functionΓ and a hypergraph H with an optimal cover S∗ and aΓ -optimal
cover S̃, there exists a shrinkage graph G of H on which S∗ and S̃ are also optimal and Γ -optimal covers, respectively.

Proof. Given H, S∗ and S̃, we construct a shrinkage G as follows. From each edge e in E(H), we arbitrarily pick vertices u and
v such that {u, v} ∩ S̃ 6= ∅ and {u, v} ∩ S∗ 6= ∅, and add (u, v) to E(G).
Any edge in E(G) contains at least one vertex from S̃ and at least one vertex from S∗, and so S̃ and S∗ are covers in G,

i.e. S̃, S∗ ∈ SG. Since G is a shrinkage of H and the Minimum Cover problem is hereditary, SG ⊆ SH by definition. For all
S ∈ SH we have w(S∗) ≤ w(S), and so w(S∗) ≤ w(S) for all S ∈ SG. Thus, S∗ is an optimal cover in G. The local optimality
of S̃ in G follows by the same argument and the fact that Γ is edge-monotone. �

Corollary 3.6. If a neighborhood function Γ is edge-monotone for MIS, then ρΓ ,H ≤ ρΓ ,G.

Proof. Given a hypergraph H(V , E), the vertices not contained in a weak independent set I form a vertex cover S in H ,
i.e. I = V \ S. Given an edge-monotone neighborhood function Γ for MIS, we define a new neighborhood function
Γ ′(S) = {S ′ : V \ S ′ ∈ Γ (V \ S)}. Note, that Γ ′(S) is edge-monotone for the Hitting Set problem. Moreover, if I∗ and Ĩ
are optimal and Γ -optimal weak independent sets in H , then S∗ = V \ Ĩ∗ and S̃ = V \ Ĩ are optimal and Γ -optimal covers
in H , respectively. The claim then follows from Theorem 3.5. �

The simplest local search algorithm for MIS is t-Opt, which repeatedly tries to extend the current solution by deleting t
elements while adding t + 1 elements. It is easy to verify that the corresponding neighborhood function Γ (S) = {S ′ ∈ SH :
|S⊕ S ′| ≤ t} defined on SH is edge-monotone (where⊕ is the symmetric difference). Then, the following two theorems are
straightforward from Corollary 3.6 and the results of Hurkens and Schrijver on graphs [18].

Theorem 3.7. t-Opt approximates MIS within∆/2+ ε, where limt→∞ ε(t) = 0.

Theorem 3.8. 2-Opt approximates MIS within (∆+ 1)/2.

Theorem 3.9. For every ε > 0, MIS can be approximated within (∆ + 3)/5 + ε for even ∆ and within (∆ + 3.25)/5 + ε for
odd∆.

Proof. We extend the algorithm SIC∆,k of Berman and Fürer [5] for MIS in bounded degree graphs to the hypergraph case.
Given a hypergraph H(V , E) and a weak independent set A in H , let BA equal V −A if the maximum degree of H is three, and
otherwise equal the set of vertices that have at least two incident edgeswith vertices in A. Let Comp(A) be the subhypergraph
induced by BA. The formal description of the algorithm is given in Fig. 1.
There are two neighborhood functions in HSIC . The first function which maps a solution A to a set of all possible local

improvements of sizeO(k log n), is t-optimal with t = O(k log n), and therefore edge-monotone. The second function, which
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Fig. 1. The algorithm HSIC .

Fig. 2. The algorithm HSquareIMP .

Fig. 3. The algorithm GreedyMAX .

maps a solution A to a set of weak independent sets in CompH(A), is edge-monotone, because shrinking H to H ′ reduces the
degree of some vertices, implying BA(H ′) ⊆ BA(H). Consequently, a weak independent set in CompH ′(A) is also a weak
independent set in CompH(A). Thus, both neighborhood functions are edge-monotone and the performance ratio of HSIC is
no worse than the performance ratio of SIC∆,k by Corollary 3.6. �

Theorem 3.10. Weighted MIS is approximable within (∆+ 1)/2 on hypergraphs of a constant rank r.

Proof. We extend the algorithm SquareIMP of Berman [3] for weighted MIS in bounded degree graphs to the hypergraph
case. Let S be a weak independent set in H . We say that (A, B) is an improvement of S, if there is a vertex v ∈ S such that
A ⊆ N(v)∩ (V \ S), B ⊆ N(A)∩ S, (S \B)∪A is a weak independent set andw2((S \B)∪A) > w2(S). The formal description
of the algorithm is given in Fig. 2.
The neighborhood function in HSquareIMP is edge-monotone. Shrinking H to H ′ reduces the degree of some vertices and

so every improvement A, B of S in H ′ is also an improvement of S in H . Hence, the performance ratio of HSquareIMP is no
worse than the performance ratio of SquareIMP by Corollary 3.6.
Note, that finding an improvement (A, B) takes O(n2∆

2(r−2)(r−1)) steps. Namely, in the worst case we check every vertex
v ∈ S, every possible subset A ⊆ N(v) ∩ (V \ S) and every possible subset B ⊆ N(A) ∩ S to see whether (S \ B) ∪ A is a
weak independent set and w2((S \ B) ∪ A) > w2(S). Since |N(v) ∩ (V \ S)| ≤ ∆(r − 2), there are at most 2∆(r−2) possible
A-sets. Similarly, since |N(A)∩ S| ≤ ∆(r − 2)(∆(r − 1)− 1), there are at most 2∆(r−2)(∆(r−1)−1) possible B-sets. In total, we
consider at most 2∆

2(r−2)(r−1) possible pairs (A, B) for every vertex v ∈ S until an improvement is found. �

3.3. The GreedyMAX Algorithm

The idea of the greedy approach is to construct a solution by repeatedly selecting the best candidate on each iteration.
There are two variations, called GreedyMAX and GreedyMIN , depending on whether we greedily reject or add vertices.
The GreedyMAX algorithm constructs a cover S by adding a vertex of maximum degree, deleting it with all incident edges

from the hypergraph, and iterating until the edge set is empty. It then outputs the remaining vertices as a weak independent
set I . The formal description of the algorithm is given in Fig. 3.
Given a hypergraph H(V , E), let S∗ be a minimum cover. Then, the performance ratio of GreedyMAX is:

ρ = max
∀H

n− |S∗|
n− |S|

. (1)
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The analysis has two parts. First we prove that the worst case for GreedyMAX occurs on graphs. Namely, we describe how
to reduce any hypergraph to a graph (actually, a multigraph) G for which GreedyMAX has no better performance ratio. We
then show that the bound actually holds for (multi)graphs.

Lemma 3.11. Given a hypergraph H with a minimum cover S∗, there exists a shrinkage G of H on which S∗ is still a cover and
where GreedyMAX constructs the same cover for G as for H.

Proof. The proof is by induction on s, the number of iterations of GreedyMAX . For the base case, s = 0, the claim clearly
holds for the unchanged empty graph.
Suppose now that the claim holds for all hypergraphs for which GreedyMAX selects s− 1 ≥ 0 vertices. Let u1 be the first

vertex chosen by GreedyMAX , E(u1) be the set of incident edges, and H1 be the remaining hypergraph after deleting u1 with
all incident edges. Based on E(u1), we form a set E ′(u1) of ordinary edges as follows. If u1 is contained in both S and S∗, then
for each edge e in E(u1) we pick an arbitrary vertex v from e and add (u1, v) to E ′(u1). If u1 is only in S and not in S∗, then
for each edge e in E(u1) we pick an arbitrary vertex u from e that is contained in S∗ and add (u1, u) to E ′(u1); such a vertex
umust exist, since e is covered by S∗. This completes the construction of E ′(u1).
By the inductive hypothesis, there is a shrinkage G1 of H1 with a greedy cover of S \ {u1} and G1 is still covered by S∗.

We now form the multigraph G on the same vertex set as H with the edge set E ′(u1) ∪ E(G1), and claim that it satisfies the
statement of the lemma. Since G1 is covered by S∗ and all edges of E ′(u1) are also covered by vertices of S∗, S∗ covers all
edges of G. The edge shrinkage only decreases the degrees of vertices, but does not affect the degree of u1. Therefore, u1
remains the first vertex chosen by GreedyMAX and, by induction, the vertices chosen from G1 are the same as those chosen
from H1. Hence, GreedyMAX outputs the same solution on G as on H , completing the lemma. �

From Lemma 3.11 it follows immediately that the performance ratio of GreedyMAX on hypergraphs is no worse than on
graphs. Sakai, Togasaki, and Yamazaki [23] obtained a lower bound on the size of weighted independent set I produced by
a weighted generalization of GreedyMAX on graphs. In unweighted case this bound reduces to a Caro-Wei improvement of
the Turan bound on graphs |I| ≥

∑
v∈V

1
d(v)+1 . For completeness we give below the proof from [23] adapted for unweighted

multigraphs.

Lemma 3.12. Given a (multi)graph G = (V , E), GreedyMAX finds an independent set of size at least
∑

v∈V
1

d(v)+1 .

Proof. Let s be the number of iterations of GreedyMAX on G. For 0 ≤ i ≤ s, let Gi be the remaining (multi)graph after i
iterations. We denote by dGi(v) and NGi(v) the degree and the neighborhood of a vertex v ∈ V (Gi). Note, that since Gi is a
multigraph, NGi(v) is a multiset and dGi(v) = |NGi(v)|. For a vertex u ∈ NGi(v) let eGi(v, u) be the number of multiple edges
(v, u) in Gi. Let f (Gi) =

∑
u∈V (Gi)

1
dGi (u)+1

be a potential function on a graph Gi. We show that f (Gi+1) ≥ f (Gi) for 0 ≤ i ≤ s.
Consequently, f (Gs) ≥ f (G0), where G0 is the original graph G and Gs is a collection of isolated vertices. Then, GreedyMAX
outputs a weak independent set of size at least:

|I| = f (Gs) ≥ f (G) =
∑
u∈V (G)

1
dG(u)+ 1

. (2)

Let vi be the vertex chosen by GreedyMAX on the iteration i. Then,

f (Gi+1) =
∑

u∈V (Gi+1)

1
dGi+1(u)+ 1

=

∑
u∈V (Gi)

1
dGi(u)+ 1

−
1

dGi(vi)+ 1
+

∑
u∈V (Gi)∩NGi (vi)

(
1

dGi+1(u)+ 1
−

1
dGi(u)+ 1

)

= f (Gi)−
1

dGi(vi)+ 1
+ Y (3)

where

Y =
∑

u∈V (Gi)∩NGi (vi)

(
1

dGi+1(u)+ 1
−

1
dGi(u)+ 1

)

=

∑
u∈NGi (vi)

1
eGi(v, u)

(
1

dGi(u)− eGi(v, u)+ 1
−

1
dGi(u)+ 1

)
(4)

≥ |NGi(vi)| minu∈NGi (vi)

1(
dGi(u)− eGi(v, u)+ 1

) (
dGi(u)+ 1

)
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≥ |NGi(vi)| minu∈NGi (vi)

1
dGi(u)

(
dGi(u)+ 1

)
≥

|NGi(vi)|
dGi(vi)

(
dGi(vi)+ 1

) (5)

=
1

dGi(vi)+ 1
(6)

and (4) follows from dGi+1(u) = dGi(u) − eGi(v, u), which is minimized when eGi(v, u) = 1; (5) holds by the greedy rule
dGi(vi) ≥ maxu∈Gi dGi(u). It follows from (3) and (6) that f (Gi+1) ≥ f (Gi) completing the proof. �

Lemma 3.13. The performance ratio of GreedyMAX on (multi)graphs is at most ∆+12 .

Proof. We show that GreedyMAX attains its worst performance ratio on regular graphs. First we refine d̄ as follows: let
k ∈ [0, 1] be the value so that kn vertices are of degree∆ and the remaining (1−k)n vertices have average degree d′ ≤ ∆−1.
Then,

d̄ = k∆+ (1− k)d′. (7)

Since each vertex can cover at most∆ of them edges of the graph, any optimal cover S∗ is of size at least

|S∗| ≥
m
∆
=
d̄n
2∆
=
n
(
k∆+ (1− k)d′

)
2∆

. (8)

We also rewrite (2) as

|I| ≥
∑
v∈V

1
d(v)+ 1

≥
kn

∆+ 1
+

∑
v∈V : d(v)<∆

1
d(v)+ 1

. (9)

Since f (d) = 1
d+1 is a convex function, we can apply Jensen’s inequality

2 to (9):

|I| ≥
kn

∆+ 1
+
(1− k)n
d′ + 1

. (10)

Note, that the same result follows from the harmonic-arithmetic mean inequality applied to (9). Combining (1), (8) and (10)
we obtain an upper bound on the performance ratio of GreedyMAX:

ρ = max
∀H

n− |S∗|
n− |S|

= max
∀H

n− |S∗|
|I|

≤
2∆− k∆− (1− k)d′

2∆
( k
∆+1 +

1−k
d′+1

)
=
(∆+ 1)(d′ + 1)

2∆

(
1+

∆− d′ − 1
∆+ 1− k(∆− d′)

)
, (11)

where (11) is clearly maximized when k = 1, yielding a bound of ∆+12 . �

Theorem 3.14. The performance ratio of GreedyMAX on hypergraphs is ∆+12 .

Proof. The upper bound is straightforward from Lemmas 3.11 and 3.13, because G and H have the same number of edges
and the same maximum degree. The edge reduction in E(H)might create multiple edges in E(G), but they do not affect the
performance ratio of GreedyMAX .
For the lower bound, consider the graph G∆+1,∆+1, formed by the complete bipartite graph K∆+1,∆+1 missing a single

perfect matching. GreedyMAX may remove vertices alternately from each side, until two vertices remain as a maximal weak
independent set. The optimal solution consists of one of the bipartitions, of size ∆ + 1. By taking independent copies, this
can be extended to hold for arbitrarily large instances. �

Theorem 3.15. The performance ratio of GreedyMAX in r-uniform hypergraphs is atmost
( r−1
r

)∏∆

i=1(1+
1

i(r−1) ) = Θ
(
∆

1
r−1

)
.

Proof. We assume that r ≥ 3 since 2-uniform hypergraphs are ordinary graphs and the analysis of the greedy algorithm on
graphs is given in Lemma 3.13.

2 Jensen’s inequality for a convex function f :
∑n
i=1 f (xi) ≥ nf

( 1
n

∑n
i=1 xi

)
.
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Caro and Tuza [7] showed that GreedyMAX finds an independent set I of size at least:

|I| ≥
∑
v∈V

d(v)∏
i=1

(
1−

1
i(r − 1)+ 1

)
=

∑
v∈V

d(v)∏
i=1

i
i+ 1

r−1

=

∑
v∈V

d(v)!(
d(v)+ 1

r−1

)d(v) , (12)

where xy = x(x − 1) · · · (x − y + 1). The function f (d) = d!(
d+ 1
r−1

)d =
(
d+ 1
r−1
d

)−1
is convex because its first derivative is

monotonically increasing on the interval [1,∆]. Therefore, we can apply Jensen’s inequality to (12):

|I| ≥ n

(
d̄+ 1

r−1

d̄

)−1
.

Amaximum independent set in a hypergraph on n vertices contains n−|S| vertices, where S is a minimum hitting set. Since
there are at most d̄n/r edges in a r-uniform hypergraph and each vertex from S covers at most ∆ edges, there are at least
d̄n
r∆ vertices in S. The performance ratio of GreedyMAX is then at most

ρ ≤
n− d̄n

r∆

n
(
d̄+ 1
r−1
d̄

)−1 = (1− d̄
r∆

)(
d̄+ 1

r−1

d̄

)
≤

(
1−

1
r

)(
∆+ 1

r−1

∆

)

since f
(
d̄
)
=

(
1− d̄

r∆

)(
d̄+ 1
r−1
d̄

)
is maximized when d̄ = ∆. �

Theorem 3.16. The performance ratio of GreedyMAX in r-uniform hypergraphs is at least
( r−1
r

)∏∆

i=1

(
1+ 1

i(r−1)

)
=

Θ

(
∆

1
r−1

)
.

Proof. Let n be a multiple of
∏∆

j=1(j(r − 1) + 1) and for any 1 ≤ i ≤ ∆ let xi =
n

i(r−1)

∏∆

j=i
j(r−1)
j(r−1)+1 . We define a chain of

regular r-uniform hypergraphs H(1) ⊂ H(2) · · · ⊂ H(∆−1) ⊂ H(∆), where our hypergraph H(V , E) = H(∆).
The first hypergraph H(1) is defined on rxi vertices and consists of x1 disjoint edges, i.e V (1) = {v

(1)
1 , . . . , v

(1)
rx1 } and

E(1) = {e(1)1 , . . . e
(1)
x1 }, where e

(1)
j = {v

(1)
(j−1)r+1 · · · v

(1)
jr } for any j ∈ [1, x1]. Let T

(1)
= E(1) and U1 = {v(1)r , v

(1)
2r , . . . , v

(1)
rx1 }.

It is easy to see that H(1) is a 1-regular and r-uniform.
For 2 ≤ i ≤ ∆, let yi = ixi. The hypergraph H(i) consists of H(i−1), an additional set of vertices U (i) = {u

(i)
1 , . . . , u

(i)
xi } and

an additional set of edges T (i) = {t(i)1 , . . . , t
(i)
yi }, connecting U

(i) to H(i−1), i.e V (i) = V (i−1) ∪ U (i) and E(i) = E(i−1) ∪ T (i).
The first yi−1 edges in T (i) are the copies of the edges in T (i−1) with the last vertex in each copy replaced by a vertex
from U (i), i.e t(i)j = t(i−1)j \ {v

(i−1)
jr } ∪ {u

(i)
dj/ie}, for each j ∈ [1, yi−1]. Let the replaced vertices form the set W

(i)
=

{v
(i−1)
r , v

(i−1)
2r , . . . , v

(i−1)
yi−1r } = w1, w2, . . . , wyi−1r . The last yi − yi−1 edges in T

(i) are formed by the vertices in U (i) andW (i):
t(i)j = u

(i)
dj/ie∪{w

(i)
j , w

(i)
j+(yi−yi−1)

, . . . , w
(i)
j+(r−2)(yi−yi−1)

}, for each j ∈ [yi−1+1; yi]. The hypergraphH(i) is i-regular by induction:
each vertex in U (i) is a root of a hyperstar with i edges, while each vertex in H(i) \ U (i) has i− 1 incident edges in E(i−1) and
one incident edge in T (i). Then, the hypergraph H(V , E) = H(∆) is∆-regular and r-uniform.
We show now that GreedyMAX finds a cover S of size

∑∆

i=1 xi in H , while an optimal cover S
∗ in H is of size |E|/∆. Thus,

the ratio between the sizes of the optimal independent set I∗ = V \ S∗ and the greedy independent set I = V \ S is the one
defined in (12). Since the hypergraph H = H(∆) is ∆-regular, GreedyMAX might start by selecting all vertices in U (∆) and
deleting all edges in T (∆). The remaining hypergraph is H(∆−1) and GreedyMAX might continue by selecting all vertices in
U (∆−1) and deleting T (∆−1). Inductively, GreedyMAX might select all vertices in U (∆) ∪ · · · ∪U (1) as a minimal cover S of size∑∆

i=1 ixi and output the remaining (r − 1)x1 vertices as a maximal independent set I .
Let z1 = x1 and zi = xi − zi−1/i, for any 2 ≤ i ≤ ∆. An optimal cover S∗ includes all vertices from U (1) and the last zi

vertices from each U (i) for 2 ≤ i ≤ ∆ (note that by definition xi is multiple of any j ∈ [i + 1,∆], so zi is also a multiple
of any j ∈ [i + 1,∆]). The vertices in U (1) cover all edges in T (1), and the first x1 edges in every T (i) for 2 ≤ i ≤ ∆.
By induction, the last zi vertices in U (i) cover the remaining edges in T (i) and zi edges in every T (j), where j ∈ [i + 1,∆].
Consequently, all edges in H are covered by the vertices from S∗. Since H is ∆-regular and no two vertices from S∗ appear
in the same edge (by construction of H), S∗ is an optimal cover of size |E|/∆. Then, an optimal independent set is of size
|I∗| = n − |E|/∆ = n(r − 1)/r , because |E| = n∆/r in a ∆-regular r-uniform hypergraph. Finally, the ratio in (12) can be
simplified to n

rx1
=
n(r−1)
r

1
(r−1)x1

, which is exactly |I∗|/|I|. �
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Fig. 4. The algorithm GreedyMIN .

3.4. Partitioning

The idea of the partitioning approach is to split a given hypergraph into k induced subhypergraphs so that MIS can be
solved optimally on each subhypergraph in polynomial time. This is based on the strategy of [12] for ordinary graphs. Note,
that the largest of the solutions on the subhypergraphs is a k-approximation of MIS, since the size of any optimal solution
is at most the sum of the sizes of the largest weak independent sets on each subhypergraph.
We extend a partitioning lemma of Lovász [22] to the hypergraph case.

Lemma 3.17. The vertices of a given hypergraph can be partitioned into d(∆ + 1)/3e sets, each inducing a subhypergraph of
maximum degree at most two.

Proof. Start with an arbitrary vertex partitioning into d(∆ + 1)/3e sets. While a set contains a vertex v with degree more
than two, move v to another set that properly contains at most two edges incident on v. A set with at most two edges
incident on v exists, because otherwise the total number of edges incident on v would be at least 3d(∆ + 1)/3e ≥ ∆ + 1.
Any such move increases the number of edges between different sets, and so the process terminates with a partition where
every vertex has at most two incident edges in its set. �

The method can be implemented in time O(
∑
e∈E |e|) by using an initial greedy assignment as argued in [12].

Lemma 3.18. Weighted MIS in hypergraphs of maximum degree two can be solved optimally in polynomial time.

Proof. Given a hypergraph H(V , E)we consider the dual hypergraph H ′(E, V ), whose vertices e1, . . . , em correspond to the
edges of H and the edges v1, . . . , vn correspond to the vertices of H , i.e. vi = {ej : vi ∈ ej in H}. The maximum edge size in
H ′ equals to the maximum degree of H , thus H ′ is a graph, possibly with loops. A vertex cover in H is an edge cover in H ′
(where an edge cover in H ′ is defined as a subset of edges that touches every vertex in H ′), and a minimum weighted edge
cover in graphs can be found in polynomial time via maximumweighted matching [9]. All edges not in a minimum cover in
H ′ correspond to the vertices in H that form a maximum weak independent set in H . �

The following result is straightforward from Lemmas 3.17 and 3.18.

Theorem 3.19. Weighted MIS is approximable within d(∆+ 1)/3e in polynomial time.

3.5. The GreedyMIN Algorithm

The GreedyMIN algorithm iteratively adds a vertex ofminimumdegree into theweak independent set and deletes it from
the hypergraph. If the vertex deletion results in loops (edges containing only one vertex), then the algorithm also deletes the
vertices with loops along with all edges incident on such vertices. The algorithm terminates when the vertex set is empty.
In Fig. 4 is the formal description of the algorithm.

Theorem 3.20. The performance ratio of GreedyMIN is at most ∆− 1.

Proof. Let I and I∗ be the greedy and the optimal solutions. We split the sequence of iterations of the algorithm into epochs,
where a new epoch starts when the algorithm selects a vertex of degree∆. Clearly, if the algorithm always selects a vertex
of degree less than∆, the whole sequence of iterations is just one epoch. Let It and I∗t be the set of vertices from the greedy
and the optimal solutions, respectively, deleted during epoch t . Then, |I| =

∑
t |It | and |I

∗
| =

∑
t |I
∗
t |. We show that

|I∗t |/|It | ≤ ∆− 1 for every epoch t .
Consider an iteration i in epoch t . The algorithm selects a vertex vi, whose set of neighbors in 2-edgeswe denote byN(vi).

The vertices of N(vi) are deleted in the iteration along with all incident edges. The maximum number of nodes removed in
the iteration i that can belong to I∗t is at most the degree of vi. If i is the first iteration in t , then d(vi) = ∆; for any other
iteration in the same epoch d(vi) < ∆ (by the definition of an epoch).
Suppose one of the deleted edges is incident on a vertex u outside of N(vi). Then, in iteration i+ 1, the vertex uwill have

degree at most∆− 1, and therefore, the degree of vi+1 is at most∆− 1. Thus, the iteration i+ 1 will be in the same epoch
as i, and the maximum number of nodes removed in any such iteration that can belong to I∗t is at most∆− 1.
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Fig. 5. Example of a hard 3-regular hypergraph for GreedyMIN, where the grey vertices represent an optimal solution, the black vertices represent the
greedy solution.

Fig. 6. Example of a hard 4-regular hypergraph for GreedyMIN , where the grey vertices represent an optimal solution, the black vertices represent the
greedy solution.

The last iteration of an epoch occurs when a vertex vj is chosen whose neighborhood is contained in N(vj) ∪ {vj}. This
neighborhood then forms a hyperclique, because any vertex in N(vj) has at least the degree of vj and all its neighbors are
contained in N(vj) ∪ {vj}. Notice that we may assume without loss of generality that the hypergraph is simple, namely that
no edge is a proper subset of any other edge. Therefore, since the degree of vj is at most ∆, any edge of the hyperclique
contains at most∆−1 vertices, and the maximum number of nodes removed in this iteration that can belong to an optimal
solution I∗t is at most∆− 2.
We see that in any epoch t the maximum number of deleted vertices that belong to I∗t is at most∆ in the first iteration,

at most ∆ − 2 in the last iteration and at most ∆ − 1 in any intermediate iteration. Amortized, the maximum number of
deleted vertices that belong to I∗t in any iteration of epoch t is at most∆− 1, while exactly one deleted vertex belongs to It .
Therefore, |I∗t |/|It | ≤ ∆− 1 for every epoch t . �

Theorem 3.21. The performance ratio of GreedyMIN is at least ∆− 1 for ∆ = 3 and at least ∆− 2+ 2
∆+1 for any∆ ≥ 4.

Proof. We consider two cases:∆ = 3 and∆ ≥ 4, and describe hard hypergraphs for both cases. Let an n-star refer to a star
with n+ 1 vertices.
Case I: ∆ = 3. For any l ≥ 2 we construct a 3-regular hypergraph, composed of l 2-stars (see Fig. 5). For 1 ≤ i ≤ l,

each 2-star Hi has a root ti and two endpoints vi and ui, connected to the root by the edges (ti, vi) and (ti, ui). The root ti
of each star Hi is connected to the endpoints of the preceding star by one edge (ti, ui−1, vi−1) (the root of the last star is
connected to the endpoints of the first star by an edge (tl, u1, v1)). The endpoints of all stars are connected into one edge
(u1, u2, . . . , ul, v1, v2, . . . , vl).
Since the hypergraph is regular, the algorithm might start by selecting the root of the first star, adding it to the

independent set and deleting it from the hypergraph. After this deletion, the endpoints of the second star have loops, and so
the algorithm deletes the endpoints of the second star with all incident edges, reducing by one the degree of the endpoints
of all other stars and the root of the second star. The algorithm proceeds this way, choosing all the roots of the stars for a
solution of size l. On the other hand, an optimal solution is of size l(∆ − 1) − 1 and includes the endpoints of all but one
stars. Therefore, the performance ratio is ρ = ∆− 1− 1

l , approaching∆− 1, when l is large.
Case II: ∆ ≥ 4. We construct a ∆-regular hypergraph, composed of ∆ blocks and a vertex s. For 1 ≤ i ≤ l, each block

is a∆-star Hi with a root ti and∆ endpoints {v1i , . . . , v
∆
i } connected to the root by∆ edges {(ti, v

1
i ), (ti, v

2
i ), . . . , (ti, v

∆
i )}.

In each block the vertices {v1i , . . . , v
∆−1
i } are connected to the vertex s by a single edge (s, v

1
i , . . . , v

∆−1
i ); the vertex v∆i is

connected to the vertices {v1i , . . . , v
∆−1
i } by∆− 1 edges of cardinality∆− 1 each (see Fig. 6).

The hypergraph is regular, and so the algorithm might start by selecting the vertex s. The deletion of s does not change
the degree of the remaining vertices, because s has no incident 2-edges and the algorithm does not delete any edges. This
leaves disjoint regular∆-stars, where the greedy algorithm chooses only the roots of the stars for a solution of size∆+ 1.
On the other hand, an optimal solution is of size ∆(∆ − 1) and includes ∆ − 1 endpoints from each star. Therefore, the
performance ratio is ρ = ∆−1

1+1/∆ = ∆− 2+
2

∆+1 . �

Theorem 3.22. GreedyMIN attains the performance ratio of 1+ ∆−1
r in r-uniform∆-regular hypergraphs.
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Proof. We assume that r ≥ 3, because 2-uniform hypergraphs are ordinary graphs and the analysis of the greedy algorithm
on graphs can be found in [14].
Let Imax and Imin be the largest and the smallest maximal weak independent sets inH , respectively. The performance ratio

of any non-trivial approximation algorithm for MIS is bounded by the maximum ratio between Imax and Imin taken over all
hypergraphs:

ρ ≤ max
∀H

|Imax|
|Imin|

. (13)

Any minimal cover S in H is of size at least

|S| ≥
|E|
∆
=
∆|V |
r∆
=
|V |
r
, (14)

where in the last equality we use the fact that the number of edges in r-uniform∆-regular hypergraph is exactly |E| = ∆|V |
r .

It is also easy to prove that any minimal cover is of size at most:

|S| ≤
∆|V |

∆+ r − 1
. (15)

For the reader’s conveniencewe include here the proof of (15) from [2]. Since S is aminimal cover, for any vertex v ∈ S there
is at least one edge in E covered only by v. Consequently, each such edge includes r − 1 vertices from V \ S and the total
degree of vertices in V \ S is at least |S|(r−1). On the other hand, the total degree of vertices in V \ S is at most∆(|V |− |S|).
From |S|(r − 1) ≤ ∆(|V | − |S|) the inequality (15) follows immediately.
Any vertex in V belongs either to a minimal cover or to a maximal weak independent set. Consequently, any maximal

weak independent set is of size at least:

|Imin| ≥ |V | −
∆|V |

∆+ r − 1
(16)

and at most

|Imax| ≤ |V | −
|V |
r
, (17)

where the first inequality involves the upper bound on the size of a minimal cover in H from (15), and the second inequality
uses the lower bound from (14).
Finally, combining together (13), (16) and (17) we obtain the upper bound on the performance ratio of any non-trivial

approximation algorithm for MIS:

ρ ≤
1− 1

r

1− ∆

∆+r−1

=
∆+ r − 1

r
= 1+

∆− 1
r

. (18)

For the lower bound, we construct a∆-regular r-uniform hypergraph H composed of a hyperclique B on∆+ 1 vertices and
a set A of r − 1 vertices. The edges of the hyperclique are all possible∆-combinations of∆+ 1 vertices. Each vertex of the
hyperclique except one is connected to the set A by one edge.
Since the hypergraph is regular, the GreedyMIN algorithm might start by selecting vertices in the set A. The deletion of

the first r − 2 vertices reduces the size of the incident edges from r to 2 and does not produce loops. The deletion of the last
vertex in A creates loops on all vertices in B, and the algorithm deletes the set B and all incident edges. Thus, the greedyweak
independent set includes r − 1 vertices from A and one vertex from B, while an optimal weak independent set includes ∆
vertices from B and r − 2 vertices from A. The approximation ratio is then r−2+∆r . �

Remarks. We conjecture that it should be possible to prove that GreedyMIN have the worst performance ratio in ∆-
regular r-uniform hypergraphs, and so the result of Theorem 3.22 applies to arbitrary r-uniform hypergraphs. In any case,
the performance ratio of GreedyMIN in ∆-regular r-uniform hypergraphs is worse than the performance ratio GreedyMAX
in r-uniform hypergraphs.

4. Strong independent sets

There are two greedy algorithms for the MSIS problem in hypergraphs. Both algorithms iteratively construct a maximal
strong independent set by selecting vertices either of minimum degree (the GreedyD algorithm) or with fewest neighbors
(the GreedyN algorithm).

Lemma 4.1. Any maximal strong independent set is a∆-approximation.
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Fig. 7. Example of a hard 4-regular hypergraph forGreedyD, where the grey vertices represent an optimal solution, the black vertex represents the greedy
solution.

Fig. 8. Example of a hard 3-regular hypergraph H4,3 for GreedyN, where the grey vertices represent an optimal solution and the black vertices represent
the greedy solution.

Proof. Each node in the optimal solution is dominated by a node in the maximal solution, i.e. either by itself or by its
neighbor. However, each node in the maximal solution can dominate at most ∆ optimal vertices, as its neighborhood is
covered by at most∆ edges, each containing at most one optimal vertex. �

Lemma 4.2. There exist ∆-regular hypergraphs where the approximation ratio of GreedyD is∆.

Proof. For any l ≥ 2 we construct the hypergraph Hl(V , E), composed of a vertex s and l cliques on l vertices each. The
vertex s is connected to the cliques by l edges, so that the i-th edge includes the vertex s and the i-th vertex from each clique.

Each vertex in the hypergraph has degree l, and so the hypergraph is regular with ∆ = l. The maximum strong
independent set is of size l and includes the i-th vertex from the i-th clique. GreedyD is a non-deterministic algorithm:
in the worst case the vertex s is selected first and nomore vertices can be added to the solution. Thus, the performance ratio
is∆ (see Fig. 7). �

Lemma 4.3. There exist ∆-regular hypergraphs where the performance ratio of GreedyN approaches∆.

Proof. For any m ≥ 2 and l ≥ 2, we construct the hypergraph Hm,l(V , E), composed of m subgraphs on 3l vertices each.
For 1 ≤ i ≤ m, each subgraph Hi consists of sets Ui, Wi and Ti of l vertices each. Vertices in Wi and Ti form a complete
bipartite graph (Wi, Ti) without one matching. For each vertex inWi there is an edge containing this vertex and the set Ui.
All subgraphs are connected by one edge, containing all T sets (see Fig. 8).
Each vertex in the hypergraph has degree l, and so the hypergraph is regular with∆ = l. We can easily verify that every

vertex in U andW has the same number of neighbors, namely 2l− 1, and every vertex in T has l(m+ 1)− 2 neighbors. In
each subgraph Hi every vertex in Ui is a neighbor of l− 1 vertices in Ui and l vertices inWi; every vertex inWi is a neighbor
of l vertices in Ui and l−1 vertices in Ti; every vertex in Ti is a neighbor of l−1 vertices inWi, l−1 vertices in Ti and (m−1)l
vertices in T -sets from the otherm− 1 subgraphs.
A maximum strong independent set is of sizeml and includes allW sets. GreedyN is a non-deterministic algorithm, and

so it might start by selecting a vertex from U1, delete U1 andW1 from the subgraph and reduce the number of neighbors of
any vertex in T1 to l(m−1). Sincem ≥ 2, the vertices in T1 have at least the same number of neighbors as the vertices in any
of the U andW sets of the remaining subgraphs. Thus, the algorithmmight proceed by selecting a vertex from U2 and so on
until all U andW sets are deleted. From the remaining edge composed of all T sets, the algorithm adds only one vertex to
the solution. Therefore, the greedy solution is of size m + 1 and the performance ratio is approximately l = ∆ provided m
is large. �

Theorem 4.4. In r-uniform hypergraphs the performance ratio of GreedyD and GreedyN is at most ∆− ∆−1
r .

Proof. Let vi be the vertex chosen by the algorithm (GreedyD or GreedyN) on the i-th iteration; let di and ni denote the
degree and the number of neighbors of vi, respectively. The greedy algorithm terminates when the vertex set is empty, say
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after t iterations:

t∑
i=1

(ni + 1) = n. (19)

Since the vertex vi has ni neighbors, its degree is at least:

di ≥
ni
r − 1

. (20)

Any neighbor vj of vi has degree
ni
r−1 at least. The reason is simple: in GreedyD the vertex vi has the smallest degree, and

so the degree of vj is at least the degree of vi; in GreedyN the vertex vj has at least the same number of neighbors as vi and
consequently, it is degree is dj ≥

nj
r−1 ≥

ni
r−1 . Then, the total sum of degrees of all vertices in the hypergraph equals to d̄n:

d̄n ≥
t∑
i=1

(
di +

ni∑
j=1

dj

)
≥

t∑
i=1

(
ni
r − 1

+

ni∑
j=1

ni
r − 1

)

=
1
r − 1

t∑
i=1

ni(ni + 1) =
1
r − 1

(
t∑
i=1

(ni + 1)2 − n

)
(21)

≥
1
r − 1

(
n2

t
− n

)
(22)

where in (21) we use Cauchy-Schwarz inequality.3 From (22) we can derive the lower bound on the size of the greedy
solution:

t ≥
n

d̄(r − 1)+ 1
.

Let δ be the minimum degree in a given hypergraph. Since the number of edges in r-uniform hypergraphs is d̄n/r and each
edge includes at most one vertex from a maximum strong independent set, the size of any maximum strong independent
set is at most:

α ≤
d̄n
δr
.

Then, the performance ratio of the greedy algorithm (GreedyD or GreedyN) is at most:

ρ = max
∀α,t

α

t
≤
d̄
δr
(d̄(r − 1)+ 1).

Let k be such that d̄ = k∆+(1−k)δ. Then, it is easy to verify that f (k) = k∆+(1−k)δ
δr ((k∆+(1−k)δ)(r−1)+1) is maximized

when∆ = δ or k = 1, i.e. in regular hypergraphs. �

Theorem 4.5. In r-uniform hypergraphs the performance ratio of GreedyD and GreedyN is at least ∆− ∆−1
r .

Proof. We describe the construction for the GreedyD algorithm; for GreedyN it is similar. The hypergraph H is composed
of r subgraphs on∆r − ∆+ 1 vertices each. The first r − 1 subgraphs Hi are disjoint, each of them consists of a vertex s, a
set A of∆ independent vertices and a set B of∆(r − 2) vertices. The r-th subgraph is connected to the first r − 1 subgraphs
and contains a vertex s and a set C of ∆(r − 1) vertices. In each subgraph the vertex s is connected to all other vertices by
∆-edges: in the first r − 1 subgraphs each such edge includes one vertex from A and r − 2 vertices from B, while in the
last subgraph each such edge includes r − 1 vertices from C . In each of the first r − 1 subgraphs there are also∆− 1 edges
incident on each vertex in A: half of these edges includes (r − 1) vertices from B, the other half of the edges includes (r − 3)
vertices from B and two vertices from C . We can specify the edges such that all edges have the cardinality r and all vertices
in the hypergraph have the same degree∆ (see Fig. 9).
Amaximumstrong independent set is of size (r−1)∆+1 and consists of allA-sets and the vertex s from the last subgraph.

The greedy algorithm might start by selecting the vertex s from the first subgraph and deleting the sets A and B in the first
subgraph. This deletion reduces the size of one edge in the last subgraph by r−2 vertices, but does not reduce the degree of
any of the remaining vertices. Thus, on the next iteration the greedy algorithmmight repeatedly select vertices s from each
subgraphs, and form a maximal strong independent set of size r . Therefore, the performance ratio is∆− ∆−1

r . �

3 Cauchy–Schwarz inequality for one dimensional space:
∑n
i=1 x

2
i ≥

1
n

(∑n
i=1 xi

)2 .
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Fig. 9. Part of a hard 3-regular 4-uniform hypergraph for GreedyN, where one of the first r − 1 subgraphs is connected to the last subgraph. The black
vertices represent the s-vertices, the grey vertices represent the set A and the white vertices represent the sets B and C .

References

[1] C. Bazgan, J. Monnot, V. Paschos, F. Serrière, On the differential approximation of MIN SET COVER, Theoretical Computer Science 332 (2005) 497–513.
[2] C. Berge, Hypergraphs, North-Holland, 1989.
[3] P. Berman, A d/2 approximation for maximum weight independent set in d-claw free graphs, Nordic Journal of Computing 7 (2000) 178–184.
[4] P. Berman, T. Fujito, On approximation properties of the Independent Set Problem for low degree graphs, Theory Computing Systems 32 (2) (1999)
115–132.

[5] P. Berman,M. Fürer, Approximatingmaximum independent set in bounded degree graphs, in: Proc. 5th Ann. ACM-SIAMSymp. onDiscrete Algorithms,
SODA, 1994, pp.365–371.

[6] J. Cardinal, S. Fiorini, G. Joret, Tight results on minimum entropy set cover, Algorithmica 50 (1) (2008) 49–60.
[7] Y. Caro, Z. Tuza, Improved lower bounds on k-independence, Journal of Graph Theory 15 (1) (1991) 99–107.
[8] V. Chvátal, A greedy heuristic for the set-covering problem, Mathematics of Operations Research 4 (3) (1979) 233–235.
[9] J. Edmonds, Paths, trees and flowers, Canadian Journal of Mathematics 17 (1965) 449–467.
[10] U. Feige, A threshold of ln n for approximating set cover, Journal of the ACM 45 (4) (1998) 634–652.
[11] U. Feige, L. Lovász, P. Tetali, Approximating min-sum set cover, Algorithmica 40 (4) (2004) 219–234.
[12] M.M. Halldórsson, H.-C. Lau, Low-degree graph partitioning via local search with applications to constraint satisfaction, max cut, and 3-coloring,

Journal of Graph Algorithms and Applications 1 (1997) 1–13.
[13] M.M. Halldórsson, Approximations of independent sets in graphs, in: Proc. 1s st. Int. Workshop on Approximation Algorithms for Combinatorial

Optimization, APPROX, LNCS, vol. 1441, 1998, pp. 1–13.
[14] M.M. Halldórsson, J. Radhakrishnan, Greed is good: Approximating independent sets in sparse and bounded-degree graphs, Algorithmica 18 (1) (1997)

143–163.
[15] E. Halperin, Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs, SIAM Journal on Computing 31 (5) (2002)

1608–1623.
[16] E. Hazan, S. Safra, O. Schwartz, On the hardness of approximating k-dimensional matching, Electronic Colloquium on Computational Complexity 10

(020) (2003).
[17] Th. Hofmeister, H. Lefman, Approximating maximum independent sets in uniform hypergraphs, in: Proc. 23rd Int. Symposium on Mathematical

Foundations of Computer Science, MFCS, LNCS, vol. 1450, 1998, pp. 562–570.
[18] C.A.J. Hurkens, A. Schrijver, On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for

packing problems, SIAM Journal on Discrete Mathematics 2 (1) (1989) 68–72.
[19] D.S. Johnson, Approximation algorithms for combinatorial problems, Journal of Computer and System Sciences 9 (1974) 256–278.
[20] M. Krivelevich, R. Nathaniel, B. Sudakov, Approximating coloring and maximum independent set in 3-uniform hypergraphs, Journal of Algorithms 41

(1) (2001) 99–113.
[21] L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Mathematics 13 (1975) 383–390.
[22] L. Lovász, On decomposition of graphs, Studia Scientiarum Mathematicarum Hungaria 1 (1966) 237–238.
[23] S. Sakai, M. Togasaki, K. Yamazaki, A note on greedy algorithms for the maximumweighted independent set problem, Discrete Applied Mathematics

126 (2-3) (2003) 313–322.
[24] T. Thiele, A lower bound on the independence number of arbitrary hypergraphs, Journal of Graph Theory 32 (1999) 241–249.
[25] L. Trevisan, Non-approximability results for optimization problems on bounded degree instances, in: Proc. 33rd Ann. ACM symposium on Theory of

computing, STOC, 2001, pp. 453–461.
[26] S. Vishwanathan, Private communication, 1998.
[27] L.A. Wolsey, An analysis of the greedy algorithm for the submodular set covering problem, Combinatorica 2 (4) (1982) 385–393.


	Independent sets in bounded-degree hypergraphs
	Introduction
	Definitions
	Weak independent sets
	Shrinkage reduction
	Local search
	The  G r e e d y M A X  Algorithm
	Partitioning
	The  G r e e d y M I N  Algorithm

	Strong independent sets
	References


