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1 Introduction

A new phase of quantum chromodynamics, quark-gluon plasma (QGP), is produced at

relativistic heavy ion collider (RHIC) or these days at large hardon collider (LHC) by

colliding two heavy nuclei such as gold (Au) or lead (Pb), relativistically. Experimental

observations imply that the plasma is strongly coupled [1, 2] and hence the perturbative

calculation is not trustworthy. Therefore non-perturbative methods such as gauge/gravity

duality may be applied to explain various properties of the plasma.

The gauge/gravity duality claims that for certain strongly coupled gauge theories the

dynamics of the quantum fields can be described by the dynamics of the classical fields

living in a higher dimensional space-time [3]. In particular, N = 4 super Yang-Mills theory

(SYM) in the limit of large colors N and large but finite t’Hooft coupling λ, which is

expected to behave in a similar way with the strongly coupled QGP, is dual to type IIb

supergravity on AdS5×S5 background [4]. Similarly a thermal SYM theory corresponds to

the supergravity in an AdS-Shwarzschild background where the temperature of the SYM

theory is identified with the Hawking temperature of AdS black hole [5]. Moreover Mateos

and Trancanelli have introduced an interesting generalization of this duality to the thermal

and spatially anisotropic SYM theory [6, 7].

In order to add matter (quark) in the fundamental representation of the corresponding

gauge group, one needs to introduce a D-brane into the background in the probe limit [8].

The probe limit means that D-brane does not back-react the geometry. Then the asymp-

totic shape of the brane gives the mass and condensation of the matter field. In addition,

the shape of the brane can be classified into two types, one is the Mikowski embedding

(ME) and the other is black hole embedding (BE). While the ME does not see the horizon,

the BE crosses it. Various aspects of these embeddings have been studied in the literature,

for instance see [9].

The results reported in [10] show that the mesons living in the QGP can be described

by quasinormal modes. They are considered as certain small fluctuations around the BE

with a complex frequency. Therefore, they are unstable modes where the imaginary part

of their frequencies is identified with the inverse of the meson life time. The question we
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would like to answer in this paper is how the anisotropy affects the mass of the meson and

its life time.

2 Quasinormal modes

The background we are interested in is an anisotropic solution of the IIb supergravity

equations of motion. This solution in the string frame is given by [7]

ds2 = −FBu−2dt2 + u−2(dx2 + dy2) +Hu−2dz2

+F−1u−2du2 + e
1
2
φdΩ2

5,

dΩ2
5 = dθ2 + sin2 θdΩ2

3 + cos2 θdϕ2,

χ = az, φ = φ(u), (2.1)

where a is a constant. χ and φ are axion and dilaton fields, respectively. H, F and B
depend only on the radial direction, u. In terms of the dilaton field, they are

H = e−φ, (2.2a)

F =
e−

1
2
φ
[
a2e

7
2
φ(4u+ u2φ′) + 16φ′

]
4(φ′ + uφ′′)

, (2.2b)

B′

B
=

1

24 + 10uφ′
(
24φ′ − 9uφ′2 + 20uφ′′

)
, (2.2c)

where the dilaton field satisfies a third-order equation (see equation (13) in [7]). In order

to find the solution one needs to solve the equation of motion for dilaton field. Then the

above equations for metric components and suitable boundary conditions will specify the

solution. For more detail see [7]. Note also that the solution also contains a self dual

five-form field.

The function F(u) in the temporal and radial components of the metric is the black-

ening factor. Therefore the horizon is located at u = uh where F(uh) = 0 and the Hawking

temperature is given by T = − 1
4πF

′(uh)
√
B(uh). The boundary lies at u = 0 and the

metric approaches AdS5 × S5 asymptotically. The coordinates of the spacetime where the

gauge theory lives are (t, x, y, z) where there is a U(1) symmetry in the xy-plane. We call

x and y the transverse directions and the longitudinal direction is z. An anisotropy is

clearly seen between the transverse and longitudinal directions. The entropy density per

unit volume in the xyz-directions is given by

s =
π2

2
N2 e

− 5
4
φ(uh)

π3u3h
. (2.3)

In order to add the fundamental matter to the SU(N) gauge theory we have to intro-

duce a D7-brane into the anisotropic background in the probe limit. The probe limit means

that the D7-brane does not modify the geometry. Flavour D7-branes in this background

have been studied previously, for example see [11]. In fact the open strings stretched be-

tween probe D7-brane and the D3-D7 system leading to the geometry (2.1) give rise to the
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matter in the fundamental representation of the gauge group. The dynamics of the open

strings is described by the DBI action

SDBI = −τ7
∫
d8ξ e−φ

√
det(Gab + 2πα′Fab). (2.4)

The D7-brane tension is τ7 where τ−17 = (2π)7l8sgs and Gab = gMN∂aX
M∂bX

N where in the

large N and t’ Hooft coupling limits the D3-D7 system is replaced with gMN given by (2.1).

The D7-brane is extended along t, x, y, z, u and wrapped around S3 ⊂ S5. Although the

four-form and the axion fields are non-zero in the background, in such an embedding the

Chern-Simon action has no contribution to the action. The shape of the brane is given by

the transverse directions θ and ϕ where we choose ϕ to be zero. Since we do not like to

study the effect of the gauge field living on the brane, we also set Aa to be zero. Because of

the translational symmetry of the metric components in xyz directions and the rotational

symmetry in Ω3 directions, we consider that θ depends on the radial direction and time as

it is shown in (2.6). Therefore, the Lagrangian reduces to

L = e−φ(u)
cos3 θ(u, t)

u5
√
F

(2.5)

×
√
Z3H[BF(1 + u2FZθ′(u, t)2)− u2Z θ̇(u, t)2].

The physical parameters we are interested in can be found from the asymptotic solution

to θ(u) equation of motion, θc(u) = θ0u + θ2u
3 + . . . [12], where m = θ0

2πα′ is the mass of

the fundamental matter and c = θ2− 1
6θ

3
0 corresponds to condensation that is proportional

to 〈ψ̄ψ〉.
It is well known that the small fluctuations about the shape (the equilibrium configu-

ration) of the probe branes represent the low spin mesons [10]. They are classified into two

types according to their frequencies. In the MEs the normal modes, which are the fluctua-

tions with discrete real frequencies, only exist. However, in the case of the BH embeddings,

the fluctuations fall into the black hole and the corresponding frequencies, the so-called

quasinormal modes, are complex. Applying the AdS/CFT corresponding, the meson will

be dissociated in the QGP after the life time, which is given by the inverse of the imaginary

part of the frequency i.e. τ ∝ ω−1I [10]. In order to find the meson life time τ , let us start

with the following ansatz

θ(u, t) = θc(u) + ε eiωtζ(u), (2.6)

where θc(u) is a time-independent solution of the equation of motion for θ(u, t) resulting

from (2.5). Substituting the above ansatz into the equation of motion for θ(u, t) and

expanding it up to the first order in ε, one finds a nonlinear equation for θc(u) and a

linearised equation for ζ(u). The suitable boundary conditions to solve the nonlinear

equation are θh = θc(uh) and θ′c(uh). The latter is fixed in terms of θh by using the

equation of motion for θc(u). Therefore, we have a one parameter family of solutions for

the background profile of the brane θc(u).

In order to find the quasinormal modes, one needs to solve the linear equation of motion

for the ζ(u) by applying the following boundary conditions: modes which are ingoing at
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the horizon and have zero source term at the boundary. The analytic solutions to the near

horizon equation for ζ(u) are

ζ(u) ≈ e±i
ω
T
Log(1−u/uh), (2.7)

where the +(-) sign corresponds to the ingoing(outgoing) modes. On the other hand the

near boundary equation can be analytically solved and the solution is

ζ(u) = ζ1 u+ ζ3 u
3 + . . . . (2.8)

To find the quasinormal modes we have to force the source term, ζ1, to equal zero or

equivalently ζ ′(u)|u=0 = 0. Considering the field redefinition

ζ(u) = e+i
ω
T
Log(1−u/uh) ψ(u), (2.9)

one can see that ψ(u) has the regular expansion

ψ(u) = ψ0 + ψ1(u− uh) + ψ2(u− uh)2 + . . . , (2.10)

near the horizon. Since the equation for ψ is linear, ψ0 can be set to 1 and the other

coefficients will be determined from the equation of motion for ψ(u). Interpolating between

two asymptotic solutions (2.7) and (2.8) is possible only by a set of discrete complex values

of ω which can be found by some standard methods such as shooting method. We would

like to emphasize that the meson in its ground state, corresponding to the first quasinormal

mode, is considered in this paper.

2.1 High temperature limit

Fortunately in the high temperature limit, T � a, the anisotropic solution has been ana-

lytically introduced in [7]. In this limit, up to leading order in a, the functions F , B and

the dilaton field are given by

F = 1− u4

u4h
+ a2F̂2(u) + . . . , (2.11a)

B = 1−
a2u2h
24

(
10u2

u2h + u2
+ log

(
1 +

u2

u2h

))
+ . . . , (2.11b)

φ = −
a2u2h

4
log

(
1 +

u2

u2h

)
+ . . . , (2.11c)

where

F̂2(u) =
1

24u2h

(
8u2(u2h − u2)− 10u4 log 2

+(3u4h + 7u4) log

(
1 +

u2

u2h

))
, (2.12)
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The temperature and the entropy density of the solution in terms of the anisotropy param-

eter are

T =
1

πuh
+

(5 log 2− 2)uh
48π2

a2 +O(a4), (2.13a)

s =
1

2
N2π2T 3 +

N2T

16
a2 +O(a4). (2.13b)

On the other hand at low temperature limit, i.e. a� T , the entropy density is

s = centN
2 a1/3 T 8/3 + . . . , (2.14)

where cent ≈ 3.2 [7].

We would like to find the frequency of the quasinormal modes in the high temperature

background. Setting the anisotropy parameter equal to zero, both the real and imaginary

parts of the frequency increase linearly as one raises the temperature. These are consistent

with the results reported in [10]. As it is expected from the metric components at high

temperature limit, ωR,I depends on anisotropy parameter as a2 for any given value of the

temperature i.e.

ωR,I = ω0
R,I(T,m) + αR,I(T,m) a2, (2.15)

where ω0
R,I(T,m) are frequencies of the quasinormal modes for the isotropic case i.e. a = 0.

Figure 1a shows that at fixed temperature although αR is almost constant with increasing

the mass of the faundamental matter, αI decreases (a few values for ω0
R,I are given in

table 1). It is important to notice that in a region around m = T we expect a first order

phase transition between black hole and Mikowski embeddings [13] and therefore our results

are not reliable in this region. Moreover, we numerically observe that for any given value of

the mass a raise in the anisotropy parameter will increase ωI . And, in turn, as it is clearly

seen from figure 1b, it means that the τ/τ0 decreases. Note that τ0 is the value of meson

life time at a = 0 for each corresponding mass. As a result the mesons will melt sooner

in the QGP. This somehow indicates that anisotropy parameter and temperature behave

similarly and it is in agreement with results in [14, 15]. We observe that the decrease in

τ/τ0 is almost the same for different masses.

In the case of fixed entropy density, the behaviour of the real and imaginary parts of

the frequency is similar to (2.15) as

ωR,I = ω0
R,I

( s

N2
,m
)

+ αR,I

( s

N2
,m
)
a2, (2.16)

where its coefficients have been shown in the figure 1a. Compared to the mass dependence

of αR,I(T,m) at fixed temperature case, a notable increase can be seen for αR,I(s/N
2,m).

Opposite to that seen in the fixed temperature case, raising the anisotropy in the system

will increase the value of the τ/τ0.

2.2 General case

In this section we are going to compute the real and imaginary parts of the frequency

for arbitrary values of the temperature and anisotropy parameter. Our numerical compu-

tations show that both ωR and ωI grow linearly with increasing the temperature over a
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Figure 1: Plot (a): at fixed temperature: αR and αI , normalized to 1 at m = 0, have

been plotted in terms of m. At fixed entropy density: αR and −αI , normalized to 1 at

m = 0, have been plotted in terms of m. In this plot αR(s/N2 = 500π2, 0) = 0.00129867,

αI(s/N
2 = 500π2, 0) = −0.000347639, αR(T = 10, 0) = 0.00418394, αI(T = 10, 0) =

0.00195894. Plot (b): meson life time, normalized to 1 at a=0, has been plotted in terms

of a, at fixed entropy density (blue points) and at fixed temperature (red squares).

limited range of mass 0 < m < T when a = 0. For instance, at fixed temperature, in the

zero mass case we find

ωR = 6.86T + δωR, (2.17)

ωI = 5.54T + δωI .

The two second terms in above equations, δωR and δωI , are a consequence of the anisotropy

parameter. The function for the deviations seems complicated but for example in massless

case δωR and δωI may be approximated by the following polynomials

δωR,I = T
5∑

n=2

cn(R,I)

( a
T

)n
, (2.18)

c2R(I) = 0.051(0.020), c3R(I) = −0.0075(−0.002),

c4R(I) = 4(0.6)× 10−4, c5R(I) = −6.86(0.68)× 10−6.

Here we would like to emphasize that these functions can be applied in the range of our

numerics ( 0.5 < T < 15 and 0 < a < 30 provided that a < 9T ).

One can also calculate the quasinormal modes when the entropy density is kept fixed.

However, it is not easy to find suitable functions for δωR,I(s,m) which fit our numerical

results. Instead, our data turn out to be fit with the following function

s(a, T ) =
π2

2
N2T 3

(
1 + α2

(
a
T

)2
+ α4

(
a
T

)4
1 + β2

(
a
T

)2 )1/6

. (2.19)

Using the expansion of the entropy density in the high temperature limit [7], α4 and β2
can be obtained in terms of α2 as

α4 =
48π2α2 − 37

64π4
, β2 =

4π2α2 − 3

4π2
. (2.20)
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(T = 10) ≡ (s/N2 = 500 π2)

mass ω0
R(T,m) = ω0

R(s/N2,m) ω0
I (T,m) = ω0

I (s/N
2,m)

0 68.7739 55.1979

1 68.7727 55.207

2 68.7694 55.2347

3 68.76 55.2884

4 68.7538 55.3537

5 68.7502 55.4349

Table 1: Isotropic frequencies for fixed values of temperature and entropy density in high

temperature regime.

Notice that this function gives the correct expression for the entropy density of N = 4 super

Yang-Milles theory (a = 0). The value of α2 can be found by using the best fit for the

entropy density and is obtained as α2 = 1/4 with an error less than 0.1% (see figure 2b).

Surprisingly, this value leads to cent ≈ 3.205 which is in perfect agreement with (2.14).

Now (2.19) clearly leads to (2.14) in the low temperature limit. The above discussion may

be generalized by considering higher order terms. As a result we suggest

s(a, T ) =
π2

2
N2T 3

(
1 +

∑n+1
k=1 α2k

(
a
T

)2k
1 +

∑n
k=1 β2k

(
a
T

)2k )1/6

, (2.21)

which is a [(2n + 2)/2n]f (a/T ) Padé approximant for f = (s/T 3)6. In principle, all coef-

ficients can be achieved in terms of α2 by utilizing the higher order expansion of entropy

density in terms of a [7].

At fixed entropy density we found that the effect of anisotropy on the frequencies is

very small (less than 1%). In principle from (2.19), for a fixed value of the entropy density

and given a, the temperature can be found. Inserting the resultant temperature into (2.18),

we obtain δωR and δωI . Although it is promising that we can achive the real and imaginary

parts of the frequecy at fixed entropy density, unfortunately the effect of anisotropy on the

frequencies (1%) is less than the error of the polynomials (2.18) (4%) and therefore the

error washes away the effect.

3 Discussion

Main aim in this paper is to understand the effect of the anisotropy on the life time of

the mesons living in the plasma. As it was already mentioned, according to gauge/gravity

duality, the life time and the mass of the meson are described by ω−1I and ωR, respectively.

By recalling (2.17), one can calculate the following ratios

τ

τ0
=
ωI(0, T )

ωI(a, T )
,

Mmeson

M0
meson

=
ωR(a, T )

ωR(0, T )
. (3.1)

– 7 –
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Figure 2: Plot (a): the values of Mmeson/M
0
meson and τ/τ0 has been plotted versus a/T .

The dots are numerical data and solid curves are the fitted polynomials (2.18). Plot (b):

the fitted function (2.19) (orange curve) and numerical data for s/T 3 (blue dots).

These ratios have been plotted in figure 2a. It was discussed in [16] that a/T for

RIHC(LHC) is 5.81(4.75). Using (2.17) and (3.1), we then have

RHIC (T = 250Mev)

{
Mmeson
M0

meson
≈ 1.12,

τ
τ0
≈ 0.90,

(3.2)

and

LHC (T = 450Mev)

{
Mmeson
M0

meson
≈ 1.08,

τ
τ0
≈ 0.92,

(3.3)

and therefore the mesons dissociate more in the presence of anisotropy. This conclusion is

in agreement with the result reported in [17]. In this paper it was shown that the screening

length as a function of the anisotropy decreases indicating that the life time of the bound

states become shorter in the anisotropic plasma. Furthermore, at RHIC(LHC) energies an

increase in the mass of the mesons occurs which is about 12(8)%. Since the QGP produced

in laboratory is intrinsically anisotropic, one can not measure the mass of the meson living

in the QGP for a = 0. But, interestingly, this mass can be eliminated from our results and

we then have
(Mmeson)RHIC

(Mmeson)LHC
≈ 1.037 (3.4)

In other words the effect of anisotropy can experimentally be observed by comparing the

mass of the meson at RHIC and LHC. In fact at LHC energies, the meson is lighter.
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