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Abstract

Background: Genetic variation associated with human leukocyte antigen (HLA) genes has immunological functions
and is associated with autoimmune diseases. To date, large-scale studies involving classical HLA genes have been
limited by time-consuming and expensive HLA-typing technologies. To reduce these costs, single-nucleotide
polymorphisms (SNPs) have been used to predict HLA-allele types. Although HLA allelic distributions differ among
populations, most prediction model of HLA genes are based on Caucasian samples, with few reported studies
involving non-Caucasians.

Results: Our sample consisted of 437 Han Chinese with Affymetrix 5.0 and Illumina 550 K SNPs, of whom 214 also
had data on Affymetrix 6.0 SNPs. All individuals had HLA typings at a 4-digit resolution. Using these data, we have
built prediction model of HLA genes that are specific for a Han Chinese population. To optimize our prediction
model of HLA genes, we analyzed a number of critical parameters, including flanking-region size, genotyping
platform, and imputation. Predictive accuracies generally increased both with sample size and SNP density.

Conclusions: SNP data from the HapMap Project are about five times more dense than commercially available genotype
chip data. Using chips to genotype our samples, however, only reduced the accuracy of our HLA predictions by only ~3%,
while saving a great deal of time and expense. We demonstrated that classical HLA alleles can be predicted from SNP
genotype data with a high level of accuracy (80.37% (HLA-B) ~95.79% (HLA-DQB1)) in a Han Chinese population. This
finding offers new opportunities for researchers in obtaining HLA genotypes via prediction using their already existing
chip datasets. Since the genetic variation structure (e.g. SNP, HLA, Linkage disequilibrium) is different between Han
Chinese and Caucasians, and has strong impact in building prediction models for HLA genes, our findings emphasize the
importance of building ethnic-specific models when analyzing human populations.

Keywords: Major histocompatibility complex (MHC), Human leukocyte antigen (HLA), Single-nucleotide
polymorphisms (SNPs)
Background
With the advent of high-throughput genotyping technolo-
gies, it is now relatively easy to obtain large-scale, genome-
wide data concerning single-nucleotide polymorphisms
(SNPs) in humans. This allows for more thorough analyses
of questions that involve population genetics. Multiple
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SNPs often cover or flank functionally important genes,
such as human leukocyte antigen (HLA) genes that com-
prise the major histocompatibility complex (MHC) in
humans. The HLAs localize to chromosome 6p and in-
clude MHC class I (HLA-A, HLA-B, and HLA–C) and
MHC class II (HLA-DR, HLA-DQ and HLA-DP) genes.
Unlike bi-allelic SNPs, HLA genes are extremely poly-
morphic. Currently, more than 8794 alleles for the HLA
loci have been identified in various populations, including
2862 HLA-B alleles according to the IMGT/HLA database
3.11.0 version [1]. Mismatched HLA alleles can lead to
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graft rejection and graft-versus-host diseases [1,2]. HLA
genes also play critical roles in both population genetics
and immune-related disease status [3,4]. Furthermore,
previous comparative studies have shown that immune
systems are generally under strong selective pressures,
which are likely driven by virus-host interactions [5,6].
Because of these selective pressures, comparisons be-
tween ethnic groups reveal linkage disequilibrium and
highly variable patterns of allelic distributions for HLA
genes [5,7].
The Taiwanese comprised the Minnan and Hakka people

groups. The genetic profile of the Taiwanese shows
many affinities to southern Asian populations [8]. HLA-B*
4601/B46 displays higher frequencies in Southern Han
(15.4%), Singaporean (15.1%) and Vietnamese (13.2%) than
in Northern Han (2.8%) [9]. There were a few studies that
have focused on the association between HLA markers
and disease using Southern Han Chinese data. Most of the
studies found them a homogeneous group [8-11].
Recent advances in array-based SNP genotyping tech-

nologies have led to a revolution in the nature and scale
of disease-association studies. These developed technolo-
gies yield economical ways to genotype one million SNPs
across the entire genome in large-population studies. To
date, direct experimental methods for typing HLA genes
(via serology or PCR) remain laborious, expensive, and
time consuming. This has limited large-scale studies in-
volving HLAs [5,12]. To reduce the cost of these studies,
researchers have begun to use data from SNPs around the
HLA regions to make predictions concerning HLA allele
types [13,14]. Leslie et al. [14] developed a statistical
method based on identity by descent, which uses phase-
resolved genotype data (i.e. full haplotype information was
inferred by multiple SNPs) to predict HLA alleles. Li et al.
[13] proposed a complementary method for predicting
HLA alleles based on unphased genotype data. Given a
training data set of unphased genotypes and their cor-
responding phased HLA alleles, they used a likelihood
method to compute probabilities associated with all pos-
sible pairs of HLA alleles and their particular haplotypes.
Because of high-throughput SNP-genotyping technologies,
the method developed by Li et al. [13] analyzes many less-
common HLA alleles. This results in more accurate pre-
dictions concerning HLA alleles.
After a decade of research, HLA prediction method-

ologies have achieved a high level of accuracy. For clas-
sical HLA class I and class II genes, there is typically a
97% accuracy when Caucasian populations are analyzed
[13,14]. These types of studies, however, have not been
rigorously applied to other ethnic groups [7]. Zhang et al.
[7] revealed that predictive accuracies were poor if HLA al-
leles from non-Caucasian subjects were used as the train-
ing data set to build predictive HLA models for different
ethnic groups. Hence, the African-specific HLA-prediction
model has been developed [15]. Unfortunately, there is
very little information concerning HLA allele prediction in
Han Chinese populations. This need must be addressed
before effective, ethnic-specific prediction model of HLA
genes can be formulated.
Leslie et al. [14] achieved a high level of accuracy using

data from the Haplotype Map (HapMap) Project as the
training data. They validated their HLA-prediction model
using genotypes and HLA allele information from the
British 1958 birth cohort study. Unfortunately, genotype
datasets with densities that approach the HapMap Project
are not commonly available. As such, the use of chip data
may represent an alternative method for constructing pre-
diction model of HLA genes that are specific for Han
Chinese populations.
Toward this goal, we applied the Li et al. [13] method to

samples from Taiwan to build ethnic-specific prediction
model of HLA genes for Han Chinese populations. This
study comprised 437 Han Chinese with Affymetrix 5.0 and
Illumina 550 K SNPs, of whom 214 also had data on Affy-
metrix 6.0 SNPs. All individuals were HLA typed at a 4-
digit level resolution at 6 HLA loci and were used for
training and testing the prediction model of HLA genes. To
optimize these prediction models for classical HLA class I
and class II genes, we addressed the following questions: 1)
would there be differences in HLA allele distributions and
optimal flanking regions between our Han Chinese data set
and the HapMap Caucasian samples, 2) could MHC SNP
data generated by different platforms yield comparably
accurate HLA allele predictions, and 3) could imput-
ation of untyped MHC SNPs improve the accuracy and
robustness of the model? We provide practical recom-
mendations concerning ethnic-specific prediction model
of HLA genes regarding HLA gene regions, platforms, and
imputation.
Methods
Ethics statement
Blood samples from 437 Han Chinese subjects residing in
Taiwan were obtained from the Taiwan Han Chinese Cell
and Genome Bank [16] and were used for this analysis.
This study was approved by the Internal Review Board of
Academia Sinica. A written informed consent was signed
by every participant at his/her initial clinic visit. All in-
dividuals in this study were Han Chinese. All partici-
pants in this study have full Han ethnicity through both
maternal and paternal grandparents and familial resi-
dence in the area of Taiwan for the last 3 generations.
Our data consisted of three Taiwanese subgroups: Minnan
(70%), Hakka (13%) and Mainlanders (14%). In one of our
previous study for MHC SNPs in Han Chinese residing in
Taiwan, we have shown that the Taiwanese population is
homogeneous [17].
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DNA samples and MHC SNP data
Genomic DNA was extracted from blood using the Pure-
gene DNA Isolation Kit (Gentra Systems, Minneapolis,
USA). Four hundred and thirty seven samples were geno-
typed using the Affy 5.0 (Affymetrix, Santa Clara, CA,
USA) and the Illumina 550 K chips (Illumina, San Diego,
CA, USA). Two hundred fourteen of these samples were
also genotyped using the Affy 6.0 chip. The Affy 5.0 chip
contains 31,393 SNPs on chromosome 6 among 488,756
SNPs across 22 chromosomes. The Affy 6.0 chip con-
tains 56,202 SNPs on chromosome 6 among 906,600 SNPs
across 22 chromosomes. The Illumina 550 K chip contains
36,591 SNPs on chromosome 6 among 546,401 SNPs
across 22 chromosomes. The National Center for Genome
Medicine at Academia Sinica carried out all genotyping.
All of the sample call rates were > 97%, and the mean
individual-sample call rate was 98.4 ± 0.7%.
Within the extended human MHC region, which in-

cludes ~6 megabases (Mb) on chromosome 6p (position
28–34 Mb), the Affy 6.0 chip contains 2,203 SNPs, the
Affy 5.0 chip contains 1,406 SNPs, and the Illumina
550 K chip contains 1,939 SNPs (Additional file 1). The
intra-MHC region spanning the HLA-A gene at the telo-
meric end and the HLA-DPB1 gene at the centromeric
end actually harbors class III genes (which are also termed
complement genes), in addition to both class I loci (HLA-A,
HLA-B, HLA–C) and class II loci (HLA-DRB1, HLA-DQB1,
HLA-DPB1).

HLA genotyping
HLA genotypes were observed from our previous study
[18]. Briefly, six classic HLA genes (HLA-A, -B, –C,
-DQB1, -DRB1, and -DPB1) to a 4-digit resolution were
analyzed in the present study. Among these genes, the
HLA-A, -B, –C, -DQB1, and -DRB1 alleles were geno-
typed using the Dynal RELI SSO typing kit (Dynal
Biotech Ltd., Bromborough, Wirral, UK; now part of Life
Platforms, Carlsbad, CA, USA). In brief, both exon 2 and
exon 3 of class I genes (HLA-A, -B and –C) and exon 2 of
class II genes (HLA-DQB1 and -DRB1) were amplified by
PCR using locus-specific primer sets. After amplification,
PCR products were hybridized to sequence-specific oligo-
nucleotide (SSO) probes that had been previously fixed to
a nylon membrane in a linear array. SSO probes included
48 HLA-A probes, 61 HLA-B probes, 37 HLA–C probes,
41 HLA-DQB1 probes, and 60 HLA-DRB1 probes. The
Pattern-Matching Program (Dynal Biotech, Ltd.) was used
to interpret genotypes. Because the Dynal RELI SSO system
lacked an HLA-DPB1 genotyping kit, HLA-DPB1 was geno-
typed using the Gold SSP HLA-DPB1 High Resolution
Kit (Invitrogen; now part of Life Platforms; California,
USA). This genotyping technique is based on the sequence-
specific primer amplification method. The HLA-DPB1
genotyping was based on 48 PCR reactions for each DNA
sample. The UniMatch software (Invitrogen) used the pat-
tern of PCR amplification to interpret HLA-DPB1 geno-
types. While medium to high resolution typing results were
obtained from those reverse SSO typing systems, several
genotype combinations produced same reaction patterns.
For these conditions, allele designation were assigned ac-
cording to the most common alleles (allele frequency > 0.01)
found in Taiwanese populations and southern Chinese
populations as determined in the population studies of 13th

international histocompatibility workshop or to the allele
with the lowest definition number. The four digit alleles
detected at each HLA locus and allele frequencies in our
Han Chinese data (n = 214) were listed in Additional file 2.

HLA prediction methodology
To build prediction model of HLA genes using unphased
genotypes, we adopted an estimating equation approach
[13]. For each gene, the HLA-predictive methodology was
then carried out as two separate procedures. The first pro-
cedure constructed a prediction model, whereas the sec-
ond procedure validated the model generated by the first
procedure. In the first procedure, a set of unphased geno-
types was selected to build a prediction model. This selec-
tion process was evaluated using an objective function
[13], which was the negative log-likelihood of the HLA
allele given unphased genotypes (based on the Akaike
Information Criterion) [19]. Genotype selection was then
performed using the forward-selection and backward-
elimination scheme. This started with genotypes associated
with an HLA allele and we gradually added one genotype
at a time. The second procedure validated the prediction
model using an independent set of samples. For these in-
dependent samples, unphased genotypes and phased HLA
alleles were provided. Following the parsimonious rule, the
best prediction model should use the smallest possible
flanking region and the fewest possible SNPs to generate
the most accurate predictions.

Scenarios
Differences in HLA allele frequency distributions and
flanking-region sizes between ethnic groups
HLA alleles and their allelic distributions differ substan-
tially between ethnic groups, reflecting their recent evo-
lutionary histories [7,20]. Furthermore, HLA genes cover
different regions on chromosome 6p and include various
numbers of SNPs [12]. Here we explored allele frequency
distributions within our Han Chinese samples and within
Caucasian samples from the HapMap Project [21]. For each
HLA allele, we used chi-square and Fisher’s exact tests to
determine whether HLA allele proportions were different
between these two populations. Following Li et al.’s [13], we
assessed flanking regions that extended ±10 kb to ±400 kb
to construct the prediction model of HLA genes. Within
the Han Chinese population, the most appropriate flanking
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region for each HLA gene was determined using the par-
simonious rule described above. Furthermore, we com-
pared flanking-region sizes derived from our Han Chinese
population (from the Affy 5.0 chip) with flanking-region
sizes from the Caucasian population in Li et al.’s [13].
Different platforms
Three platforms were used in this study: 1) the Affymetrix
Genome-Wide Human SNP Array 5.0 (Affy 5.0) [22,23],
2) the Affymetrix Genome-Wide Human SNP Array 6.0
(Affy 6.0), and 3) Illumina’s HumanHap550 Genotyping
BeadChip (Illumina 550) [24,25]. To measure the com-
patibility between these platforms we compared overlap-
ping SNP data from each pair of platforms. Genotype data
concordance was computed using Cohen’s kappa coeffi-
cient [26], a measurement commonly used to assess the
degree of concordance between two independent groups
[7]. Values of kappa > 0.9 generally indicate excellent reli-
ability [27]. For each platform pair, genotype concordance
was evaluated between all observed SNPs and all imputed
SNPs. For each pair, we also compared variation between
genotypes that were selected during the HLA model-
building process. This was done to determine whether
selected genotypes were platform specific. Variation was

defined as ∪ plati; platj
� �

−∩ plati; platj
� �

∪ plati; platj
� � , where plati

and platj are two different platforms, ∪(plati, platj) is
the union of the SNPs for two different platforms, and
∩(plati, platj) is the intersection of the SNPs for two dif-
ferent platforms.
Imputation
“Genotype imputation” is the term used to describe the
process of imputing genotypes that are not directly assayed
in a sample of individuals [28-30]. Genotype imputation
has become a routine practice in genome-wide association
studies (GWASs). Here we evaluated the usefulness of
imputed genotypes in constructing prediction model of
HLA genes. For data consistency and optimal-imputation
performance, we used the MaCH [31] software and the
Chinese Han Beijing (CHB) + Japanese Tokyo (JPT) data
set [32] as a reference. This was used to impute genotypes
beyond our SNPs, which were derived from the HapMap
Project. Standard GWAS quality-control filters (e.g., minor-
allele frequency < 0.01, genotype call rates < 0.95, and a sig-
nificant departure from Hardy-Weinberg equilibrium at
p < 10–4) are usually sufficient before genotype imputation
[33-35]. We applied these recommendations, therefore, and
checked our genotype data for all SNPs within the MHC
region. Furthermore, each imputed SNP that were included
in this study should have an imputation posterior prob-
ability from MaCH> 0.8, call rate > 0.95, and minor-allele
frequency > 0.01. The three steps used for genotype
imputation were as follows: 1) apply standard GWAS
quality-control filters to our MHC SNPs, 2) use MaCH
software to impute genotypes beyond MHC SNPs that
were determined in step 1, and 3) check the imputation
posterior probabilities from MaCH for the imputed
SNPs that were determined in step 2.
Cross-validation
Before beginning the HLA prediction analysis, we divided
the data into multiple partitions for cross-validation (CV).
All 437 individuals were HLA typed at a 4-digit level reso-
lution at 6 HLA loci and were used for training and testing
the prediction model of HLA genes. We used a 10-fold
CV in the study, the data set was divided into a training
data set (9/10 of the 437 data) and a testing data set (1/10
of the 437 data). The testing accuracy was assessed ac-
cording to the comparison between the original HLA al-
leles and predictive HLA alleles for each sample. If the
pair of HLA alleles between the original HLA alleles and
predictive HLA alleles was the same, the predictive value
was assigned 1. If a half pair of HLA alleles was the same,
then the predictive value was assigned 0.5, else it was
assigned 0. For each CV subset, the testing accuracy was
calculated for the testing set and defined as Tv

Nv
, where Tv

is the number of correctly predicted samples (the sum of
the predictive values from each predicted sample) in the
testing set and Nv is the total number of samples in the
testing set. The average testing accuracy is the mean of
the 10 CV subsets and indicates how well the constructed
HLA model predicts the HLA alleles. The HLA prediction
can be performed without CV, but CV execution can
avoid over-fitting the prediction model and can save both
time and costs associated with attaining an independent
set of samples for validation [36]. We built prediction
model of HLA genes, therefore, using 10-fold CV.
Confidence threshold (CT)
For each sample within the testing data set, probability
values were assigned to each possible pair of HLA alleles
given a particular haplotype. These values were based on
the provided unphased genotypes and phased pairs of
HLA alleles. After assigning probabilities, we selected
the pair with the maximum probability, if that probabil-
ity exceeded a pre-specified CT. When CT is set to be 0,
it means that the call rate is 100% (i.e., all samples will
be predicted). If CT is set to be 0.5 (or any value greater
than 0), only samples for which the maximum predictive
probability exceeds CT will be used. Here we set CT to
be 0, 0.5, or 0.9 to evaluate the effects of CT on con-
structing prediction model of HLA genes. If a higher CT
is applied, the prediction model of HLA gene results in
greater prediction accuracy.
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Results
HLA allele frequency distributions and flanking-region sizes
We calculated allele frequency distributions for the six
classical HLA genes using 214 samples that were geno-
typed using three different genomic platforms (Affy 5.0,
Affy 6.0, and Illumina 550 K chips). Analyzed samples
were from Han Chinese subjects living in Taiwan pro-
vided by the Han Chinese Cell and Genome Bank [16].
We also analyzed 180 Caucasian samples from the
HapMap Project, although HLA-DPB1 data were not
available for these samples. The Caucasian samples from
HapMap were CEPH samples and only founders were in-
cluded. The most polymorphic HLA locus was HLA-B.
Across the HLA-B region, we observed 44 alleles in our
Han Chinese population and 32 alleles in the HapMap
Caucasians. To address the issue of a sparse contingency
table, the allele frequency for HLA-A, -B, –C, -DQB1,
and -DRB1 genes between Caucasians and Han Chinese
was compared using program clump (http://www.smd.
qmul.ac.uk/statgen/dcurtis/software.html) [37]. All dis-
tribution differed significantly between the Caucasians and
Han Chinese at the adjusted 5% level using Bonferroni’s
correction. We confirmed the previous finding, therefore,
that HLA allele frequency distributions differ extensively
across populations. As such, predictive HLA models that
are built using HLA alleles from one population may gen-
erate poor predictions concerning a different ethnic popu-
lation. Ethnic-specific prediction model of HLA genes are
generally preferred [7].
Using the HLA-predictive methodology described above,

we evaluated testing accuracies given various flanking-
region sizes following Li et al.’s [13]. We assessed flanking
regions that were extended from ±10 kb to ±400 kb (the
testing accuracies remained almost the same after ±300 kb
across 6 classical HLA genes). Within the Han Chinese
population, the most appropriate flanking region for
each HLA gene for prediction was determined using the
parsimonious rule. For most of the prediction models
(HLA-A, -B, –C, -DQB1, -DRB1, and -DPB1), trends in
the data indicated that more-accurate results were ob-
tained when larger flanking regions were used (Figure 1).
The number of predictive SNPs selected also increased
with the size of the flanking region. The most dramatic
effects on testing accuracy were observed for HLA-
DRB1 and HLA-DQB1. When a ±10 kb flanking region
was used, HLA-DRB1 yielded the lowest testing accuracy
(68.51%). This accuracy increased to >85% when the flank-
ing region was increased to ±50 kb. For HLA-DQB1, testing
accuracy ranged from 80.75% (±10 kb flanking region) to
95.79% (±40 kb region). Once the size of the flanking region
increased to ±30 kb, the testing accuracy of HLA-DQB1 in-
creased to >90%. Testing accuracies for HLA-C (92.02%)
and HLA-DPB1 (87.42%) were satisfactory at ±10 kb. Not-
ably, testing accuracies for HLA-A (74.52%) and HLA-B
(77.34%) were particularly low with ±10 kb flanking re-
gions. Using the size ± 150 kb, however, raised the ac-
curacy to >80% for both genes. Flanking-region results
across the different genotyping platforms (Affy 5.0, Illumina
550 K, and a union of the three platforms) are provided in
Additional file 3.
We also compared flanking-region sizes derived from our

Han Chinese population with those from the Caucasian
population described previously by Li et al.’s [13]. HLA-A
gene required the largest flanking regions (±200 kb for
the Han Chinese and ±350 kb for the Caucasian sam-
ples, respectively). For HLA-C, a ±20 kb region leads to
an accuracy of 90.87% which is the best model by our
definition for the Han Chinese, however, it was ±180 kb
for the Caucasian population (Li et al. [13]). The size
difference in the optimal flanking region was even more
dramatic for HLA-DQB1, which was ±40 kb for the Han
Chinese and ±300 kb for the Caucasians. The compari-
sons of flanking region were based on Affy 5.0 chip
(Table 1) which was used by Li et al.’s [13] (data not
shown). D’ values was also listed in Table 1. The flank-
ing region sizes from Caucasian described previously by
Li et al.’s [9] were different from ours (Affy 5.0) probably
due to population stratification. From our chip data, the
range of the highest D’ for the HLA markers was between
0.47 and 0.83 without imputation. It was 0.51 to 0.85 with
imputation. HLA-C had the highest D’ regardless of imput-
ation and platform while HLA-DPB1 had the lowest D’.
HLA-A had the longest flanking region regardless imput-
ation or not while HLA-DQB1 had the shortest flanking
region. The length of the HLA gene and the LD intensity
is negative. However, the LD intensity might not be related
to the flanking region size for the optimized predictive
models for each platform (Table 1).
Predictive accuracies without imputation
The overlapping data between each pair of platforms
was quite few (Additional file 1). Affy 6.0 had the most
SNPs within the MHC regions, whereas Affy 5.0 had the
fewest (Additional file 1). Additional file 4 shows kappa
coefficients between paired platforms, with respect to ob-
served genotypes. Comparing the two Affymetrix arrays,
the kappa coefficient was as high as 0.9926 for the geno-
types present on both arrays. This high level of concord-
ance indicated high-quality genotyping, which was further
supported by the determination of comparable genotypes
between platforms.
In general, Union generated more accurate HLA-allele

predictions than did each of the individual platforms. For
CT = 0, the average testing accuracy was 89.78% with
Union, but 86.92%, 88.42%, and 88.06% for Affy 5.0, Affy
6.0, and Illumina 550 K, respectively (Figure 2A). These
findings were consistent with Zhang et al. [7], who

http://www.smd.qmul.ac.uk/statgen/dcurtis/software.html
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Figure 1 Testing accuracies associated with different flanking-region sizes. For each of the six HLA genes (colored lines), testing accuracies
are shown for increasing flanking-region sizes. Data from the Affy 6.0 chip are shown without imputed SNPs.
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suggested that higher SNP densities increased the accur-
acy of HLA-allele predictions.
In comparisons between the three genotyping platforms,

Affy 6.0 generated the most-accurate HLA-allele predic-
tions. For example, Affy 6.0 was 3.52% more accurate than
Affy 5.0 at the HLA-DRB1 locus; and Affy 6.0 was 2.58%
more accurate than Illumina 550 K at the HLA-DPB1
locus. It was possible that Affy 6.0 did have the highest
density of genotypes within the MHC region. For CT = 0,
the overall highest testing accuracy was obtained with Affy
6.0 and HLA-DQB1 (95.79%), whereas the lowest accuracy
was from Illumina 550 K and HLA-B (80.37%; Figure 2A).
By applying a CT of 0.9 to the maximum probability of all
possible pairs of HLA alleles, the highest accuracy was
increased to 98.62% at the HLA-C locus (with a call rate
of 77.47% from Illumina 550 K), whereas the lowest ac-
curacy was elevated to 87.67% at HLA-B (with a call rate
of 64.94% from Affy 5.0; Additional file 5). The range of
accuracies generated by Illumina 550 K-based prediction
models was more dramatic across HLA loci than was seen
with the other genotyping platforms. With CT = 0, the ac-
curacy of the Illumina 550 K prediction model was only
80.37% at the HLA-B gene but was 95.29% at HLA-DQB1.
The Affy 5.0 predictions were 0.45% and 0.96% more ac-
curate than Illumina 550 K for the HLA-B and HLA-DPB1
genes, respectively. Illumina 550 K predictions were 1.56%
and 0.27% more accurate than Affy 6.0 for the HLA-A and
HLA-DRB1 genes, respectively (Figure 2). These results
agreed with Zhang et al.’s [7], who showed that slight im-
provements associated with Affy 5.0 and Illumina 550 K
may be attributed to unique SNPs on these platforms.
Overall, accuracies of these prediction models were gen-
erally comparable across genotyping platforms. Details
concerning testing-accuracy results and the call rate for
predictions across different platforms and different CTs
are provided in Additional file 5.
The investigation into the sufficient flanking regions

(i.e., the shortest stretch of flanking genomic sequence
that yielded the most accurate HLA-allele prediction)
was performed. The shortest sufficient flanking region
was identified at the HLA-C locus using Illumina 550 K
(±10 kb). The length of HLA-C was 3,325 bp and this
sufficient flanking region covered 22 SNPs, of which 13
were incorporated into the HLA-C-prediction model
(testing accuracy of 92.01% at CT = 0). The longest suffi-
cient flanking region was ±350 kb at HLA-A when Affy 6.0
data were used (Table 1). Within this region, there were
299 SNPs, of which 16 were incorporated into the HLA-A-
prediction model (testing accuracy of 85.29% at CT = 0).
For each HLA gene, we further assessed between-

platform overlap of the genotypes which were incorpo-
rated into the HLA prediction model (Additional file 6).
The largest percentage of overlapping genotypes for data
without imputed SNPs was 21.36% at HLA-DRB1 when
Affy 6.0 and Union were compared. These findings sug-
gest that different platforms might use unique SNPs to
select platform-specific genotypes. These genotypes were
then used to build the different prediction model of HLA
genes. We listed the SNPs that best predict the HLA al-
leles using the genotype information currently available



Table 1 Flanking regions associated with optimized prediction models for each platform

Flanking region2 (SNPs3/total SNPs4 (D’)5)

Without imputation With imputation

Gene Start1 Stop1 Length (bp) Affy5.0 Affy6.0 Illumina550K Union Affy5.0 Affy6.0 Illumina550K Union

HLA_A 30,018,310 30,021,632 3,322 200 K
(14/122 (0.76))

350 K
(16/299 (0.69))

150 K
(14/121 (0.79))

200 K
(16/329 (0.74))

150 K
(19/352 (0.81))

150 K
(17/364 (0.80))

200 K
(17/515 (0.73))

150 K
(16/366 (0.80))

HLA_B 31,429,630 31,432,914 3,284 150 K
(20/100 (0.61))

100 K
(20/123 (0.66))

100 K
(18/131 (0.59))

100 K
(21/237 (0.64))

100 K
(24/282 (0.67))

40 K
(21/110 (0.71))

30 K
(22/102 (0.71))

40 K
(22/110 (0.71))

HLA_C 31,344,509 31,347,834 3,325 150 K
(17/104 (0.64))

20 K
(14/25 (0.83))

10 K
(13/22 (0.82))

30 K
(17/95 (0.79))

30 K
(19/137 (0.83))

20 K (18/88 (0.85)) 20 K
(16/88 (0.85))

20 K
(18/88 (0.85))

HLA_DPB1 33,151,738 33,162,954 11,216 100 K
(13/88 (0.49))

150 K
(15/154 (0.47))

100 K
(15/120 (0.52))

150 K
(18/280 (0.47))

20 K
(34/113 (0.79))

100 K
(33/352 (0.54))

150 K
(35/452 (0.51))

100 K
(35/355 (0.54))

HLA_DQB1 32,735,635 32,742,419 6,784 40 K
(12/15 (0.61))

40 K
(11/30 (0.71))

30 K
(12/13 (0.72))

30 K
(13/29 (0.70))

30 K
(16/52 (0.69))

30 K
(16/52 (0.69))

30 K
(15/52 (0.69))

30 K
(15/52 (0.69))

HLA_DRB1 32,654,527 32,665,559 11,032 200 K
(16/108 (0.60))

100 K
(16/27 (0.73))

150 K
(17/108 (0.61))

150 K
(21/204 (0.61))

150 K
(25/325 (0.61))

100 K
(22/91 (0.76))

200 K
(25/523 (0.58))

150 K
(24/326 (0.62))

1Based on NCBI build 36.3.
2Flanking region for the most accurate prediction model.
3Number of SNPs within the region that were selected for the model (based on predictive power).
4Total number of SNPs in the MHC and HLA regions.
5Hedridge’s multialleic D.

H
sieh

et
al.BM

C
G
enom

ics
2014,15:81

Page
7
of

13
http://w

w
w
.biom

edcentral.com
/1471-2164/15/81



Figure 2 Testing accuracies for optimized models generated from each genotyping platform. Testing accuracies and call rates are shown
for the six HLA genes (for CT = 0). Values from each of the three genotyping arrays as well as from the union of the three arrays (colored bars) are
shown both without (A) and with (B) imputed SNPs.
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from different platforms (Additional file 7) and listed
the alleles of the SNPs that predict HLA allele types
(Additional file 8).

Predictive accuracies with imputation
We also performed comparisons between each pair of
genotyping platforms to assess the concordance of SNPs
with imputation. The Kappa coefficients were at least
0.9587 for these measurements, which were based on the
genotypes originally observed and then imputed on Affy
5.0 and Illumina 550 K (Additional file 4). These results
implied high imputation quality and comparable geno-
types across the platforms.
In general, Union (average testing accuracy of 90.17%

at CT = 0) generated more-accurate HLA-allele predic-
tions than the three individual platforms (for CT = 0, aver-
age testing accuracies were 89.90%, 88.61%, and 89.75%
for Affy 6.0, Affy 5.0, and Illumina 550 K, respectively;
Figure 2B). As such, higher SNP densities may increase
the accuracy of genotype imputation and, therefore, the
accuracy of the final prediction. These results are con-
sistent with Zhang et al.’s [7]. However, Illumina 550 K
and Affy 6.0 sometimes yielded better accuracy than the
union arrays in our results. One of the possible reasons
might be due to “non-concordance” among these platforms.
The kappa coefficients ranged from 95.87% to 97.62%
(Additional file 4). It’s likely that those with low concord-
ance genotypes might decrease imputation accuracies.
In the comparisons between the three genotyping plat-

forms with imputation, Affy 6.0 predictions were gener-
ally more accurate for HLA alleles (up to 4.23% more
accurate than Affy 5.0, and 4.61% more accurate than
Illumina 550 K at the HLA-DPB1 locus; Figure 2B). Among
these models (CT = 0), the HLA-DQB1 locus had the high-
est testing accuracy (96.75%, from Illumina 550 K), whereas
the HLA-B locus had the lowest (80.81%, from Affy 5.0). By
applying a CT value of 0.9 to the maximum probability of
all possible pairs of HLA alleles, the highest accuracy was
increased to 99.09% at the HLA-C locus (with a call rate of
82.40%, from Illumina 550 K), and the lowest accuracy was
increased to 91.58% at the HLA-A locus (with a call rate of
41.65%, from Affy 5.0). Besides HLA-B from Affy 5.0, accur-
acy improvements based on this CT adjustment were most
dramatic for the HLA-DRB1 gene, which rose from 86.67%
to 95.90% when CT was changed from 0 to 0.9. Affy 5.0
(CT = 0), however, generated a prediction that was 0.45%
more accurate than Affy 6.0 at the HLA-A. Besides HLA-
DPB1 (with a more testing accuracy of 4.61%), Illumina
550 K generated predictions that were 0.27%, 1.10%, 1.11%,
0.05% and 1.19% more accurate than Affy 6.0 at the HLA-
A, -B, -C, -DQB1 and -DRB1 loci, respectively (Figure 2).
These findings are consistent with Zhang et al.’s [7], which
showed that prediction improvements from the Affy 5.0
and Illumina 550 K array data may be attributed to SNPs
that are exclusively represented on these platforms. Details
concerning testing accuracies and prediction call rates
across different platforms and different CTs are listed in
Additional file 5.
For each HLA locus, we also assessed the sufficient

flanking region with imputation. One of the shortest
flanking regions was identified by Affy 5.0 at the HLA-
DPB1 locus (±20 kb) (Table 1). This region covered 113
SNPs, of which 34 were selected for the HLA-DPB1-
prediction model (testing accuracy of 88.28% at CT = 0).
The other shortest flanking regions were identified by
Affy 6.0, Illumina 550 K and Union at the HLA-C
locus (±20 kb). The longest sufficient flanking region
was ±200 kb at HLA-A from Illumina 550 K; Table 1).
Within this region there were 515 SNPs, of which 17
were used in the HLA-A-prediction model (testing ac-
curacy of 86.93% at CT = 0).
For each HLA gene, the amount of overlap among

genotypes used by the different prediction models was
at most 60.08% (Additional file 6). Imputation, there-
fore, seemed to reduce discrepancies among the dif-
ferent platforms.
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Differences in predictive accuracies with and
without imputation
We performed comparisons between each pair of geno-
typing platform to assess overall concordance between
SNPs with and without imputation. The lowest kappa
coefficient was 0.9922, which was derived from Affy 5.0
genotypes (Additional file 4). These results demonstrated
high imputation quality, even though nearly 10,000 SNPs
within this 6-Mb region were imputed from the Affy
5.0 chip.
Comparisons of testing accuracies among prediction

models with and without imputation across different
platforms revealed that prediction models built with im-
puted SNPs were more accurate than those built without
imputed SNPs (average accuracies of 89.61% and 88.30%,
respectively, for CT = 0; Figure 2). Prediction improve-
ments associated with imputation of the HLA-DRB1 al-
leles on Affy 5.0 were more dramatic than those seen with
other HLA genes across the three platforms. Imputation
at this locus elevated prediction accuracy from 83.14% to
86.67%. These results essentially agree with Zhang et al.’s
[7], who suggested that more SNPs generally increased
HLA allele-prediction accuracy.
For CT = 0, the Union platform with imputation had

the highest testing accuracy (97.18%) for HLA-DQB1 al-
leles, whereas Illumina 550 K without imputation had
the lowest testing accuracy (80.37%) for HLA-B alleles.
By applying a CT of 0.9 to the maximum probability of
all possible pairs of HLA alleles, the highest accuracy was
elevated to 99.09% at the HLA-C locus with Illumina
550 K (with imputation and a call rate of 82.40%). This
CT adjustment increased the lowest accuracy to 87.67% at
the HLA-B locus with Affy 5.0 (without imputation and
with a call rate of 64.94%; Additional file 5).
Comparing testing-prediction accuracies with and with-

out imputation among the different platforms, indicated
genotype variation generally decreased when imputed SNPs
were used to build the prediction model of HLA genes. For
each HLA gene among the different platforms, the percent-
age overlap among genotypes that were selected to build
the models increased 25.02% on average with imput-
ation (Additional file 6). These results may have stemmed
from using a consistent set of HapMap SNPs, which could
have minimized discrepancies among different genotyping
platforms.

Discussion
Because classic technologies for the direct typing of HLA
alleles are economically infeasible, we instead applied a
method developed by Li et al. [13], which identifies specific
HLA alleles based on their corresponding unphased geno-
types. We used this method to build prediction model of
HLA genes for HLA class I (HLA-A, HLA-B, and HLA-C)
and class II (HLA-DRB1, HLA-DQB1, and HLA-DPB1)
genes. We compared allele frequency distributions of HLA
genes between the Han Chinese from Taiwan and the
Caucasian population (from the HapMap Project) Allele
frequencies are different between our Han Chinese and
the Caucasian samples p < 0.0001 with chi-square and
Fisher’s exact tests. That is because some of the alleles
are the same but just at different frequencies. The most
polymorphic HLA locus was HLA-B. Within the HLA-B
region, we identified more alleles in the Han Chinese
population (44 alleles) than in the Caucasian HapMap
population (32 alleles). This allele frequency difference
supports the use of the method of Li et al. [13], as well
as the use of a Taiwan-based data set to build ethnic-
specific prediction model of HLA genes for a Han Chinese
population. We have built a number of models for predict-
ing class I and class II HLA genes at a four-digit resolution
and have examined critical parameters associated with
these models (e.g., the sufficient flanking region, platform
accuracy, and the effect of imputation). We found that
our models accurately predict these alleles within a Han
Chinese population. Results from this study have direct
implications for detailed analyses of HLA-related disease
associations.
HLA genotypes were observed from our previous

study [15]. Briefly, six classic HLA loci (HLA-A, -B, -C, -
DQB1, -DRB1, and -DPB1) to a 4-digit resolution were
analyzed in the present study. We did not include DQA1
or DRB3, 4, and 5 in this study, partly because of the un-
availability of genotyping kits and partly because that
their LD with corresponding DQB1 or DRB1 alleles would
be too tight to be delineated. In some of our previous
studies, we reported that HLA-B*15:02 was highly associ-
ated with Carbamazepine-induced Stevens-Johnson syn-
drome and toxic epidermal necrolysis [38-41].
HLA-B had the highest overlapping density between

our Han Chinese and the Caucasian population (Li et al.
[13]), the number of predictive SNPs was 69 for the
former and 86 for the latter. Among the 155 predictive
SNPs, the number of the overlapping SNPs was 11.
HLA-DRB1 had the lowest overlapping density (4 over-
lapping SNPs), in which, our Han Chinese required 51
predictive SNPs and the Caucasian population required
41 predictive SNPs.
In an attempt to differentiate between the effects of

the Li et al.’s algorithm and the Han Chinese panel, we
examined the HLA predictive accuracies between the
two algorithms proposed by Li et al. (2011) and Leslie
et al. (2008) and found that the paper reported by Li
et al. (2011) has shown that the HLA predictive accuracies
for the two algorithms were in general comparable using
the British 1958 birth cohort data. We also applied the Li
et al.’s method to HapMap CEU/CEPH data, we compared
the accuracies derived from Li et al.’s method with those
by Leslie et al.’s We built HLA-B and HLA-DQB1 models



Hsieh et al. BMC Genomics 2014, 15:81 Page 10 of 13
http://www.biomedcentral.com/1471-2164/15/81
(the worst and the best performance models, respectively)
using leave-one-out CV adapted by Leslie et al. With a CT
of 0.9, accuracy of HLA-B was 100% from Li et al. and
95% from Leslie et al. For HLA-DQB1, accuracy was 99%
from Li et al. and 99% from Leslie et al. Therefore, we
concluded that the prediction models were generally com-
parable for the two methods.
In this study, the SNP genotype imputation is used as

material preparation for the HLA allele prediction. The
imputation of the SNP genotypes refers to increasing the
SNP density by adding SNPs that originally are not in-
corporated in the array chips but in the HapMap project
data (Chinese Han Beijing (CHB) + Japanese Tokyo (JPT)
in our case). The HapMap project data mainly includes
Chinese Han Beijing (CHB) belonging to northern Chinese
Han subgroup. Imputation was carried out to increase the
diversity of alleles covered in our training data and also
help to boost the accuracy for predicting HLA genotypes.
The missing rate for our HLA data was very low (0.23%),
therefore, no imputation was performed for the HLA geno-
type data. Here we determined whether a denser collection
of SNPs would generate more-accurate HLA allele predic-
tions. The MaCH software, which we used to impute
our chip data sets and thus build greater SNP density, uses
data from the HapMap Project and/or the 1000 Genomes
Project (http://www.1000genomes.org) as references. We
found that prediction model of HLA genes that were built
with imputation typically provided greater prediction accur-
acy, which underscores the positive effect of using a higher
density of SNPs. Therefore, it is possible to devise a new
customized SNP array that includes all of the selected SNPs
consisting those of genotyped or imputed SNPs for the
HLA-prediction model to increase the prediction accuracy.
Additionally, we used our genotype data from Affy 6.0 (the
densest chip data) to build HLA-B and HLA-DQB1 models
(the worst and the best performance models, respectively)
using a 2-fold CV. The imputation was carried out separ-
ately for training and testing data set. We then compared
the results with those obtained by imputation simultan-
eously for the two data sets. The testing accuracy of HLA-B
for separated imputation was 90% and it was 89% for simul-
taneous imputation. For HLA-DQB1, the testing accuracies
for separated imputation and for simultaneous imputation
were both 96%.
By increasing CT to 0.5 or 0.9, levels of prediction ac-

curacy approached 100% in our ethnic-specific predic-
tion model of HLA genes for Han Chinese populations
(Additional file 5). We analyzed the effect, therefore, of
different reference data sets beyond our Affy 6.0 geno-
type data. When using the 1000 Genomes Project as the
reference at CT = 0, we found that testing accuracy con-
cerning the HLA-C gene decreased by 3.02% (down to
90.17%). Similar trends were observed at the other five
HLA loci. Rare SNP variants within data from the 1000
Genomes Project may have increased the number of
mismatched genotypes under imputation.
To generate more-accurate prediction models, we varied

sample sizes for both the training and testing data sets.
We used our genotype data from Affy 6.0 to build predic-
tion model of HLA genes using 2-, 4-, and 10-fold CV.
With CT = 0 (i.e., a call-rate of 100%) we obtained a con-
sistent sample size for the different CVs. To eliminate the
effect of sample size, therefore, we compared effects of
CV at CT = 0. Additional file 9 shows the estimates for the
testing accuracy that was obtained from validation analyses
of prediction models built using 2-, 4-, and 10-fold CV (for
CT = 0). The HLA-DQB1 locus with 10-fold CV had the
best testing accuracy (95.55%), whereas the HLA-B locus
with 2-fold CV had the lowest testing accuracy (76.64%).
At the 2-fold CV, testing accuracies ranged from 76.64%
(HLA-B) to 94.39% (HLA-DQB1). By increasing the CV to
10-fold, testing-accuracy levels approached 95.55% (HLA-
DQB1). For HLA-A, this improvement was most dramatic,
as prediction models trained on the 2-fold CV had an ac-
curacy of 80.84%, whereas training on the 10-fold CV re-
sulted in an 85.29% accuracy. Similar trends were observed
for the other five HLA loci. These trends may reflect the
large size of the sample, which would include a sufficient
number of HLA alleles in the training data set, thereby in-
creasing predictive accuracy. Although the level of CV in-
fluenced the testing accuracy, these changes were minimal.
We conclude, therefore, that our ethnic-specific prediction
model of HLA genes is not affected by different CVs.
For HLA-B alleles, testing accuracies were generally

not as high as others. One of the possible reasons was
that there were large number of HLA-B allele with four
digit and most of them with very low frequency. Hence,
our training data could not sufficiently capture the variabil-
ity. We also compared testing accuracies among predictive
models with and without imputation across different plat-
forms, the results revealed that predictive models built with
imputed SNPs were more accurate than those without
(average accuracies of 89.61% and 88.30%, respectively,
for CT = 0; Figure 2). Therefore, proxy SNPs might im-
prove testing accuracies. To generate more-useful pre-
diction model of HLA genes, therefore, one should take
into account that the distribution of these rare HLA al-
leles varies between the training and testing data sets.
As such, applying the current HLA-predictive method to a
large population that contains relatively rare HLA alleles
in the training data set might improve the performance of
ethnic-specific prediction model of HLA genes.
The common HLA typing experiment is not restricted

to a single HLA allele but to a group of known HLA al-
leles having the same pattern within the common allele.
Therefore, it is hard to determine rare alleles. However,
we feel the prediction model is a useful tool for pre-
screening disease association with common HLA alleles

http://www.1000genomes.org/
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using chip data from GWAS. In the case of any signifi-
cant association by the model predicted common alleles,
it is understood that further HLA testing would be ne-
cessary. The HLA allele assignment was according to the
most common alleles (allele frequency > 0.01) found in
Taiwanese populations and southern Chinese popula-
tions as determined in the population studies of 13th

international histocompatibility workshop.
As mentioned above, we focused on prediction model

of HLA genes that were generated using 214 Han
Chinese samples from Taiwan, each of which were geno-
typed using the Affy 5.0, Affy 6.0, and Illumina 550 K
chips. To assess the effect of the sample size for predict-
ing, we analyzed prediction models generated using 437
Han Chinese samples (which included the original 214
samples) that were genotyped using the Illumina 550 K
chip. Prediction model of HLA genes built from 437
samples (average testing accuracy was 90.36%) per-
formed better than that from the 214-sample (average
testing accuracy was 86.84%) across all HLA loci. As
such, larger sample sizes seem to increase HLA-predictive
accuracy. The sample size effects was confirmed by the
previous finding from Jia et al. [11]. In our previous study
[17], the profiles of haplotype blocks for the Caucasian
and Taiwanese populations were apparently different
in LD structure. Our HLA typing experiment assignment
was according to the most common alleles (allele fre-
quency > 0.01), but the Caucasian HLA data (Li et al. [13])
did not filter rare alleles. Inaccurate predictions might
have resulted from rare HLA alleles, which were defined as
those appeared less than three times in the training data
set [13]. These rare HLA alleles might affect the first
procedure of HLA-predictive methodology [13]. Hence,
sample size, LD and configuration of allelic repertoire
might be all possible reasons for the difference in the size
of optimal flanking region for our Han Chinese and the
Caucasian data.
We offer a web-based service on the HLA predictive

models using Li’s algorithm to help other researchers to
predict the HLA allele types and the corresponding
probabilities of their subjects if the researchers provide
the SNPs information files on the HLA region to us. The
link is at the following (http://www.csjfann.ibms.sinica.
edu.tw/eag/programlist/program_list.html).

Conclusions
After a decade of research, many HLA genes are known
to have specific immunological functions. Experimental
methodologies that link SNPs to HLA alleles offer con-
siderable savings (both in time and expense) over direct
HLA-typing technologies and make large-scale investiga-
tions into HLA variation feasible. Although HLA allelic
distributions differ among human populations, the ma-
jority of existing prediction model of HLA genes is based
on Caucasian samples. By genotyping a large number of
Han Chinese samples, we have uncovered many HLA
alleles that are unique to this population and have built
ethnic-specific prediction model of HLA genes. Our
training data set covers many uncommon and ethnic-
specific alleles within HLA loci, substantially raising pre-
dictive accuracies concerning the testing of data sets.
Specific methodological parameters investigated in this

study (e.g., sample size, SNP density, and imputation) each
were factors in generating prediction model of HLA genes
that were specific for a Han Chinese population. We
achieved good predictive accuracy for the HLA-A, -B, -C,
-DRB1, -DQB1, and -DPB1 genes within our Han Chinese
samples. Using SNP data from the Affymetrix Genome-
Wide Human SNP Array 5.0, the Affymetrix Genome-
Wide Human SNP Array 6.0, the Illumina HumanHap550
BeadChip, or a union of these three technological plat-
forms, we generated efficient prediction model of HLA
genes for determining HLA alleles within a Han Chinese
population. Our novel predictive tools may help identify
genetic risk factors for immune-related diseases. Further-
more, these findings will enable researchers to investigate
HLA allelic variations among a broader range of human
populations.
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