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Abstract

Abelian quiver gauge theories provide non-supersymmetric candidates for the conformality approach to physics beyond the standard model.
Written as N = 0, U(N)n gauge theories, however, they have mixed U(1)pU(1)2

q and U(1)pSU(N)2
q triangle anomalies. It is shown how to

construct explicitly a compensatory term �Lcomp which restores gauge invariance of Leff = L+ �Lcomp under U(N)n. It can lead to a negative
contribution to the U(1) β-function and hence to one-loop conformality at high energy for all dimensionless couplings.
© 2006 Elsevier B.V.

1. Introduction

One alternative to supersymmetry and grand unification is to postulate conformality, four-dimensional conformal invariance at
high energy, for the non-gravitational extension of the standard model. Although much less vigorously studied than supersymmetry,
the conformality approach suggested [1] in 1998 has made considerable progress. Models which contain the standard model fields
have been constructed [2] and a model which grand unifies at about 4 TeV [3] has been examined.

Such models are inspired by the AdS/CFT correspondence [4,5] specifically based on compactification of the IIB superstring
on the Abelian orbifold AdS5 × S5/Zn with N coalescing parallel D3 branes. A model is specified by N and by the embedding
Zn ⊂ SU(4) which is characterized by integers Am (m = 1,2,3,4) which specify how the 4 of SU(4) transforms under Zn. Only
three of the Am are independent because of the SU(4) requirement that

∑
m Am = 0 (modn). The number of vanishing Am is the

number N of surviving supersymmetries. Here we focus on the non-supersymmetric N = 0 case.
In [6], the original speculation [1] that such models may be conformal has been refined to exclude models which contain

scalar fields transforming as adjoint representations because only if all scalars are in bifundamentals are there chiral fermions and,
also only if all scalars are in bifundamentals, the one-loop quadratic divergences cancel in the scalar propagator. We regard it as
encouraging that these two desirable properties select the same subset of models.

Another phenomenological encouragement stems from the observation [7] that the standard model representations for the chiral
fermions can all be accommodated in bifundamentals of SU(3)3 and can appear naturally in the conformality approach.

In the present Letter we address the issue of triangle anomalies. Although the purely non-Abelian anomalies involving
SU(N)3 subgroups of the U(N)n gauge group are cancelled, there do survive triangle anomalies of the types U(1)pU(1)2

q and

U(1)pSU(N)2
q . Since the original superstring is anomaly free, one expects such anomalies to be cancelled. This cancellation is

well understood [8] in terms of the closed string axions coupling to FF̃ . Here we shall construct a compensatory term �Lcomp
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which is non-polynomial in the bifundamental scalars and which when added to the gauge Lagrangian L gives rise to an effective
Lagrangian Leff = L+ �Lcomp which is U(N)n gauge invariant.

In the next section, we shall discuss the anomaly cancellation by a compensatory term. The following section explains the explicit
construction. There is then a treatment of the evolution of the U(1) couplings and finally there is some discussion.

2. Anomaly cancellation by a compensatory term

The Lagrangian for the non-supersymmetric Zn theory can be written in a convenient notation which accommodates simultane-
ously both adjoint and bifundamental scalars as

L= −1

4
Fab

μν;r,rF
ba
μν;r,r + iλ̄ab

r+A4,r
γ μDμλba

r,r+A4
+ 2DμΦ

ab†
r+ai ,r

DμΦba
r,r+ai

+ iΨ̄ ab
r+Am,rγ

μDμΨ ba
r,r+Am

− 2ig
[
Ψ̄ ab

r,r+Ai
PLλbc

r+Ai,r+Ai+A4
Φ

†ca
r+Ai+A4,r

− Ψ̄ ab
r,r+Ai

PLΦ
†bc
r+Ai,r−A4

λca
r−A4,r

]
− √

2igεijk

[
Ψ̄ ab

r,r+Ai
PLΨ bc

r+Ai,r+Ai+Aj
Φca

r−Ak−A4,r
− Ψ̄ ab

r,r+Ai
PLΦbc

r+Ai,r+Ai+Ak+A4
Ψ ca

r−Aj ,r

]
− g2(Φab

r,r+ai
Φ

†bc
r+ai ,r

− Φ
†ab
r,r−ai

Φbc
r−ai ,r

)(
Φcd

r,r+aj
Φ

†da
r+aj ,r − Φ

†cd
r,r−aj

Φda
r−aj ,r

)
(1)+ 4g2(Φab

r,r+ai
Φbc

r+ai ,r+ai+aj
Φ

†cd
r+ai+aj ,r+aj

Φ
†da
r+aj ,r − Φab

r,r+ai
Φbc

r+ai ,r+ai+aj
Φ

†cd
r+ai+aj ,r+ai

Φ
†da
r+ai ,r

)
,

where μ,ν = 0,1,2,3 are Lorentz indices; a, b, c, d = 1 to N are U(N)n group labels; r = 1 to n labels the node of the quiver
diagram (when the two node subscripts are equal it is an adjoint plus singlet and the two superscripts are in the same U(N): when
the two node subscripts are unequal it is a bifundamental and the two superscript labels transform under different U(N) groups);
ai (i = {1,2,3}) label the first three of the 6 of SU(4); Am (m = {1,2,3,4}) = (Ai,A4) label the 4 of SU(4). By definition A4
denotes an arbitrarily-chosen fermion (λ) associated with the gauge boson, similarly to the notation in the N = 1 supersymmetric
case. Recall that

∑m=4
m=1 Am = 0 (modn).

As mentioned above we shall restrict attention to models where all scalars are in bifundamentals which requires all ai to be
non-zero. Recall that a1 = A2 + A3, a2 = A3 + A1, a3 = A1 + A2.

The Lagrangian in Eq. (1) is classically U(N)p gauge invariant. There are, however, triangle anomalies of the U(1)pU(1)2
q

and U(1)pSU(N)2
q types. Making gauge transformations under the U(1)r (r = 1,2, . . . , n) with gauge parameters Λr leads to a

variation

(2)δL= − g2

4π2

p=n∑
p=1

ApqF (p)
μν F̃ (p)μνΛq

which defines an n × n matrix Apq which is given by

(3)Apq = Tr
(
QpQ2

q

)
,

where the trace is over all chiral fermion links and Qr is the charge of the bifundamental under U(1)r . We shall adopt the sign
convention that N has Q = +1 and N∗ has Q = −1.

It is straightforward to write Apq in terms of Kronecker deltas because the content of chiral fermions is

(4)
m=4∑
m=1

r=n∑
r=1

(
Nr ,N∗

r+Am

)
.

This implies that the antisymmetric matrix Apq is explicitly

(5)Apq = −Aqp =
m=4∑
m=1

(δp,q−Am − δp,q+Am).

Now we are ready to construct L(1)
comp, the compensatory term. Under the U(1)r gauge tansformations with gauge parameters Λr

we require that

(6)δL(1)
comp = −δL= + g2

4π2

p=n∑
p=1

ApqF (p)
μν F̃ (p)μνΛq.
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To accomplish this property, we construct a compensatory term in the form2

(7)L(1)
comp = g2

4π

p=n∑
p=1

∑
k

Bpk Im Tr ln

(
Φk

v

)
F (p)

μν F̃ (p)μν,

where
∑

k runs over scalar links. We believe this form for the compensatory term to be unique3 because L(1)
comp must be invariant

under SU(N)n. To see that L(1)
comp of Eq. (7) has such invariance rewrite Tr ln ≡ exp det and note that the SU(N) matrices have unit

determinant. It is inconceivable that any other non-trivial function of the bifundamental, other than a closed loop of links in the
quiver diagram, has the full SU(N)n invariance but a closed loop, unlike Eq. (7), is U(N)n invariant.

We note en passant that one cannot take the v → 0 limit in Eq. (7); the chiral anomaly enforces a breaking of conformal
invariance.

Explicit construction of the matrix Bpk will the subject of the subsequent section. But first we investigate the transformation
properties of the “Im Tr ln(Φ/v)” term in Eq. (7). Define a matrix Ckq by

(8)δ

(
p=n∑
p=1

∑
k

Im Tr ln

(
Φk

v

))
=

q=n∑
q=1

CkqΛq

where upon Eq. (6) will be satisfied if the matrix Bpk satisfies A = BC. The inversion B = AC−1 is non-trivial because C is
singular but Ckq can be written in terms of Kronecker deltas by noting that the content of complex scalar fields in the model is

(9)
i=3∑
i=1

r=n∑
r=1

(
Nr ,N∗

r±ai

)
which implies that the matrix Ckq must be of the form

(10)Ckq = 3δkq −
∑

i

δk+ai ,q .

The U(1)pSU(N)2
q triangle anomalies necessitate the addition of a second compensatory term L(2)

comp. The derivation of L(2)
comp is

similar to, but algebraically simpler than, that for L(1)
comp. Under U(1)r with gauge parameter Λr and SU(N)s gauge transformations

the variation in L of Eq. (1) is

(11)δL = − g2

4π2

p=n∑
p=1

Apqi′F (p)βp
μναp F̃

(p)μναp

βp
Λq

which defines an n × n matrix A′
pq which is given by

(12)A′
pq = Tr(Qpnq)

where the trace is over all chiral fermion links, Qr is the charge of the bifundamental under U(1)r and nq is the number of
fundamentals and antifundamentals of SU(N)q corresponding to all fermionic links between nodes p and q . As before, we adopt
the sign convention that N has Q = +1 and N∗ has Q = −1.

It is straightforward to write A′
pq in terms of Kronecker deltas as

(13)A′
pq = −A′

qp =
m=4∑
m=1

(−δp,q−Am + δp,q+Am)

L(2)
comp, the compensatory term for the U(1)pSU(N)2

q triangle anomalies is

(14)L(2)
comp = g2

4π

p=n∑
p=1

∑
k

B ′
pk Im Tr ln

(
Φk

v

)
F

(p)βp
μναp F̃

(p)μναp

βp

where
∑

k runs over scalar links.

2 For a related construction in a different context, see [9].
3 Although the general form is unique, there can be a technical ambiguity in the matrix B to be discussed below.
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Explicit construction of the matrix B ′
pk in L(2)

comp is more straightforward than Bpk in L(1) because when we define a matrix C′
kq

by the variation under mixed Abelian–non-Abelian gauge transformations

(15)δ

(
p=n∑
p=1

∑
k

Im Tr ln

(
Φk

v

))
=

q=n∑
q=1

C′
kqΛq

we find C′
kq = 3δpk so B ′

pk in Eq. (14) is B ′
pq = 1

3A′
pq with A′

pq defined by Eq. (13).

3. Explicit construction of the matrix B in L(1)
comp

Construction of the anomaly compensatory term L(1)
comp of Eq. (7) has been reduced to the explicit construction of the matrix Bpk .

Although B = AC−1 is inadequate because Rank(C) < n, a necessary and sufficient condition for the existence of B is Rank(A) �
Rank(C). Proving this in general would be one approach but the large number of special cases will make the proof lengthy. Of
course, we strongly suspect that the matrix B must exist from indirect string theory arguments [8] but we shall convince the reader
directly by explicit construction of B in two extremes which we call the totally degenerate and the totally non-degenerate cases
respectively.

Given the form of Apq in Eq. (5) and of Ckq in Eq. (10), it is irresistible to make a corresponding ansatz for Bpk

(16)Bpk =
∑
η

Cηδp,k+η

and this ansatz works by setting up recursion relations for the Cη and allows explicit solution for the matrix B in any special case.
Writing a general formula for B will now be demonstrated in two extreme cases.

3.1. Totally degenerate case

We assume Am = (A,A,A,−3A) (modn). In this case, from Eq. (5),

(17)Apq = 3δp,q−A − 3δp,q+A + δp,q+3A − δp,q−3A

and from Eq. (10)

(18)Ckq = 3(δkq − δk+2A,q).

Using Eq. (16) and comparing coefficients gives the series of recursion relations

(19)3C−A − 3CA = 3,

(20)3CA − 3C3A = −3,

(21)3C−3A − 3C−A = −1,

(22)3C3A − 3C5A = +1,

(23)3C−5A − 3C−3A = 0,

(24)3C5A − 3C7A = 0,

and so on, with solution CA = −2/3, C−A = C3A = 1/3 and all other CA = 0. The explicit B matrix is thus

(25)Bpk = 1

3
(−2δp,k+A + δp,k+3A + δp,k−A).

From Eqs. (17), (25), (18) one confirms A = BC.

3.2. Totally non-degenerate case

At an opposite extreme we may assume that

(26)±Am and (ai ± Am) are all non-degenerate integers (modn).

Assumption (26) requires n � 1 and so is not a physical case. In this limit the recursion relations become

(27)3C−Am −
∑

i

Cai−Am = +1,

(28)3CAm −
∑

Cai+Am = −1.
i
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Because the Am enter symmetrically in the model, one can put CAm = x and C−Am = y both independent of m. This yields
Cai+Am = (x + 1

3 ) and Cai−Am = (y − 1
3 ). Comparing coefficients of Kronecker deltas gives x = −2/9 and y = +1/9 and hence

an explicit form for Bpk by substitution in Eq. (16).

3.3. Intermediate cases

When there are some degeneracies which violate assumption (26), there are too many special cases to permit any succinct general
formula. Nevertheless, one can find fairly easily the explicit B matrix for any specific model, as we have done for dozens of cases,
using MATHEMATICA software.

3.4. Technical non-uniqueness

As mentioned in an earlier footnote, although the form of L(1)
comp in Eq. (7) is unique the matrix B can have technical non-

uniqueness which is best illustrated by a specific example.
Take n = 6 and the totally degenerate example Am = (1,1,1,3). Following the analysis given earlier one finds for Ckq

(29)C =

⎛
⎜⎜⎜⎜⎜⎝

3 0 −3 0 0 0
0 3 0 −3 0 0
0 0 3 0 −3 0
0 0 0 3 0 −3

−3 0 0 0 3 0
0 −3 0 0 0 3

⎞
⎟⎟⎟⎟⎟⎠ ,

while for the matrix Bpk

(30)3B =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 1 0 −2
−2 0 1 0 1 0
0 −2 0 1 0 1
1 0 −2 0 1 0
0 1 0 −2 0 1
1 0 1 0 −2 0

⎞
⎟⎟⎟⎟⎟⎠ .

Multiplication of BC gives the required

(31)A =

⎛
⎜⎜⎜⎜⎜⎝

0 3 0 0 0 −3
−3 0 3 0 0 0
0 −3 0 3 0 0
0 0 −3 0 3 0
0 0 0 −3 0 3
3 0 0 0 −3 0

⎞
⎟⎟⎟⎟⎟⎠ .

There is, however, the following matrix B̂

(32)B̂ =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

which has the property that B̂C = 0. This means there is a one parameter family B ′ = B + αB̂ with α a continuous parameter
which can be used in Lcomp. However, this also means that the term

(33)L̂= g2

4π

p=n∑
p=1

∑
k

B̂pk Im Tr ln

(
Φk

v

)
F (p)

μν F̃ (p)μν

is U(N)n invariant and therefore need not be added for purposes of anomaly cancellation.
The non-uniqueness of the matrix B under B → B + αB̂ has no immediate physical interpretation but it may suggest an

undiscovered residual symmetry.
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4. String theory

In [10] the anomaly Apq is written in a factorized form A = T U following from the closed string axion exchange using the
Green–Schwarz mechanism so here we compare the two factorized expressions A = BC and A = T U to become convinced that
there is no connection.

The expression from [10] is

(34)Apq =
l=n∑
l=1

TplUlqVl

where

(35)Tpl = exp

(
2πipl

n

)
, Ulq = exp

(−2πilq

n

)

and

(36)Vl =
i=3∏
i=1

sin

(
πlai

n

)
.

Let us take the example of n = 6 and Am = (1,1,1,3) for which the matrices A, B and C are given above. In Eq. (34) there
is an ambiguity in whether V is accommodated in T or U so let us look at three possibilities: (i) T ′ = T V , (ii) U ′ = V U and
(iii) T ′′ = T

√
V , U ′′ = √

V U . The factorizing matrices are then, up to overall normalization which has no effect on the matrix
textures, as follows. We define α = exp(iπ/3).

(37)A = T ′U =

⎛
⎜⎜⎜⎜⎜⎝

α α2 0 α α2 0
α2 −α 0 −α2 α 0
−1 1 0 −1 1 0
−α α2 0 α −α2 0
−α2 −α 0 −α2 −α 0

1 1 0 −1 −1 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

−α2 −α −1 α2 α 1
−α α2 1 −α α2 1
−1 1 −1 1 −1 1
α2 −α 1 α2 −α 1
α α2 −1 −α −α2 1
1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎠ ,

(38)A = T U ′ =

⎛
⎜⎜⎜⎜⎜⎝

α α2 −1 −α −α2 1
α2 −α 1 α2 −α 1
−1 1 −1 1 −1 1
−α α2 1 −α α2 1
−α2 −α −1 α2 α 1

1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

−α2 −α −1 α2 α 1
−α α2 1 −α α2 1
0 0 0 0 0 0

−α2 α −1 −α2 α −1
−α −α2 1 α α2 −1
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

(39)A = T ′′U ′′ =

⎛
⎜⎜⎜⎜⎜⎝

α α2 0 −iα −iα2 0
α2 −α 0 iα2 −iα 0
−1 1 0 i −i 0
−α α2 0 −iα iα2 0
−α2 −α 0 iα2 iα 0

1 1 0 i i 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

−α2 −α −1 α2 α 1
−α α2 1 −α α2 1
0 0 0 0 0 0

iα2 −iα i iα2 −iα i

iα iα2 −i −iα −iα2 i

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

By comparing the matrix textures in Eqs. (37)–(39) with those for matrices C and B in Eqs. (29), (30) we see that the factor-
ization of the anomaly matrix is not simply related. The factorization in Eqs. (37)–(39) follows from the physical requirement of
factorization at the closed string axion pole in a string tree diagram. There is no similar requirement that mandates our factorization
A = BC but these matrices have simple textures so the factorization is not surprising.

In particular, the field theoretical mechanism of anomaly cancellation discussed here has no connection to the string theoretical
Green–Schwarz mechanism.

5. Evolution of U(1) gauge couplings

In the absence of the compensatory term, the two independent U(N)n gauge couplings gN for SU(N) and g1 for U(1) are taken
to be equal gN(μ0) = g1(μ0) at a chosen scale, e.g. μ0 = 4 TeV [3,11], to enable cancellation of quadratic divergences [6]. Note
that the n SU(N) couplings g

(p)
N are equal by the overall Zn symmetry, as are the n U(1) couplings g

(p)

1 , 1 � p � n.
As one evolves to higher scales μ > μ0, the renormalization group beta function βN for SU(N) vanishes βN = 0 at least at one-

loop level so the gN(μ) can behave independent of the scale as expected by conformality. On the other hand, the beta function β1
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for U(1) is positive definite in the unadorned theory, given at one loop by, in the notation of [12]

(40)b1 = 11N

48π2
,

where N is the number of colors. The corresponding coupling satisfies

(41)
1

α1(μ)
= 1

α1(M)
+ 8πb1 ln

(
M

μ

)
so the Landau pole, putting α(μ) = 0.1 and N = 3, occurs at

(42)
M

μ
= exp

[
20π

11

]
	 302

so for μ = 4 TeV, M ∼ 1200 TeV. The coupling becomes “strong” α(μ) = 1 at

(43)
M

μ
= exp

[
18π

11

]
	 171

or M ∼ 680 TeV.
We may therefore ask whether the new term Lcomp in the Lagrangian, necessary for anomaly cancellation, can solve this problem

for conformality?
Indeed there is the real counterpart of Eq. (7) which has the form

(44)L(1),real
comp = g2

4π

p=n∑
p=1

∑
k

Bpk Re Tr ln

(
Φk

v

)
F (p)

μν F (p)μν

and this contributes to the U(1) gauge propagator and to the U(1) β-function. Using Eq. (25) for Bpk , the one-loop quadratic
divergence for a bifundamental scalar loop cancels because

(45)
∑

k

Bpk = 0

which confirms the cancellation found in [6].
Since the scale v breaks conformal invariance, the matter fields acquire mass, so the one-loop diagram4 has a logarithmic

divergence proportional to

(46)
∫

d4p

v2

[
1

(p2 − m2
k)

− 1

(p2 − m2
k′)

]
∼ −�m2

kk′
v2

ln

(
Λ

v

)

the sign of which depends on δm2
kk′ = (m2

k − m2
k′).

To achieve conformality of U(1), a constraint must be imposed on the mass spectrum of matter bifundamentals, viz.

(47)�m2
kk′ ∝ v2

(
11N

48π2

)
with a proportionality constant of order one which depends on the choice of model, the n of Zn and the values chosen for Am, m =
1,2,3. This signals how conformal invariance must be broken at the TeV scale in order that it can be restored at high energy; it is
interesting that such a constraint arises in connection with an anomaly cancellation mechanism which necessarily breaks conformal
symmetry.

To give an explicit model, consider the case of Z4 and Am = (1,1,1,1) treated earlier for which one finds:

(48)�m2
kk′ = 3

2
v2

(
11N

48π2

)
.

In a more general model, the analog of Eq. (48) involves replacement of 3
2 by a generally different coefficient derivable for each

case from the coefficient Bpk in Eq. (7).
With such a constraint, the one-loop β1 vanishes in addition to βN so that the couplings α1(μ) and αN(μ) can be scale invariant

for μ � μ0.
For such conformal invariance at high energy to be maintained to higher orders of perturbation theory probably requires a global

symmetry, for example the explicit form of misaligned supersymmetry recently suggested in [13].

4 The usual one-loop β-function is of order h2 regarded as an expansion in Planck’s constant: four propagators each ∼ h and two vertices each ∼ h−1 (cf.

Y. Nambu, Phys. Lett. B 26 (1968) 626). The diagram considered is also ∼ h2 since it has three propagators, one quantum vertex ∼ h and an additional h−2

associated with �m2 ′ .
kk
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6. Discussion

It has been shown how a compensatory term Lcomp = L(1)
comp +L(2)

comp can be constructed respectively to cancel the U(1)pU(1)2
q

and U(1)pSU(N)2
q triangle anomalies in the quiver gauge theories with chiral fermions. We have emphasized the uniqueness of the

form of the compensatory term from the requirements of invariance under SU(N)n ⊂ U(N)n.
Such a term can have phenomenological consequences. We expect v to be at the TeV scale as in [3] and Lcomp reveals new

non-linear coupling between the bifundamental scalars and the gauge fields expected to be significant in the TeV energy regime.
Such empirical consequences merit further study.

It has further been shown that the compensatory term Lcomp can lead, with a suitable mass spectrum of bifundamental mat-
ter, to vanishing one-loop β-function for the U(1) gauge group, this raising the possibility of one-loop scale invariance for all
dimensionless couplings which may persist at all higher loops in the presence of a global symmetry.
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