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Abstract

In this paper we introduce a new approach to formalizing certain type operations in type theory. Tradi-
tionally, many type constructors in type theory are independently axiomatized and the correctness of these
axioms is argued semantically. In this paper we introduce a notion of an “image” of a given type under
a mapping that captures the spirit of many of such semantical arguments. This allows us to use the new
“image” type to formalize within the type theory a large range of type constructors that were traditionally
formalized via postulated axioms.
We demonstrate the ability of the “image” constructor to express “forgetful” types by using it to formalize
the “squash” and “set” type constructors. We also demonstrate its ability to handle types with non-trivial
equality relations by using it to formalize the union type operator. We demonstrate the ability of the
“image” constructor to express certain inductive types by showing how the type of lists and a higher-order
abstract syntax type can be naturally formalized using the new type constructor.
The work presented in this paper have been implemented in the MetaPRL proof assistant and all the
derivations checked by MetaPRL.
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1 Introduction

1.1 Type Theory

The work presented here focuses on the NuPRL type theory [7] and its variations,

including the MetaPRL implementation [12] of the NuPRL type theory. NuPRL

type theory in an extension of the Martin-Löf’s type theory [15, 16], which differs

from many other type theories in its treatment of equality. In Coq’s Calculus of

Constructions, for example, there is a single global equality relation which is not

the desired one for many types (e.g. function types). The desired equalities have to

be handled explicitly, which can be quite burdensome. In Martin-Löf type theory

each type comes with its own equality relation (the extensional one in the case

of functions), and the typing rules guarantee that well–typed terms respect these

equalities.
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Martin-Löf’s type theory has the following judgments:

AType A is a well-formed type

A = B A and B are (intentionally) equal types (presupposes AType and

B Type)

a ∈ A a has type A (presupposes AType)

a = b ∈ A a and b are equal as elements of type A (presupposes a ∈ A and

b ∈ B).

Martin-Löf’s type theory allows dependent types. This means that type expres-

sion may contain free variables ranging over arbitrary types. For example, we can

form a family of types T [x] = [0..x] which represents an initial sequent of natural

numbers. This family is well-formed when x ranges over N.

Martin-Löf’s type theory includes type constructors such as disjoint unions A+B

(that is inhabited by elements of the form inl(a) for a ∈ A as well as inr(b) for

b ∈ B) and dependent products x : A×P [x] (that contains pairs 〈a, p〉, where a ∈ A

and p ∈ P [a]).

The NuPRL type theory also has subtyping relation. Although it is not essential

for our work, we should mention that membership and subtyping in NuPRL are

extensional. For example, A ⊆ B does not say anything about structure of these

types, but only means that t1 = t2 ∈ A implies t1 = t2 ∈ B. As a result the type

checking and subtyping are undecidable. On the other hand, type equality (A = B)

is intensional.

1.2 Notation

We will write f [x1, . . . , xn] for a term that may contain free occurrences of variables

x1, . . . , xn, and f [t1, . . . , tn] for the substitution of terms ti’s for all of the free

occurrences of xi’s in f [x1, . . . , xn].

We will be presenting the axioms and rules of type theory in the form of Gentzen-

style single-conclusion calculus. When referring to sequents, it is often more con-

venient to reason about the sequences of hypotheses as a whole instead of con-

centration on individual hypotheses. We will write γ : Γ � C[γ] for a sequent

x1 : A1; x2 : A2[x1]; . . . ; xn : An[x1; . . . ;xn−1] � C[x1; . . . ;xn]. Then if γ is a list of

terms t1; . . . ; tn then we will use C[γ] for C[t1; . . . ; tn]. We will also write “∀γ ∈ Γ”

as an abbreviation for “for all list of terms γ = t1; . . . ; tn, s.t. for all i = 1..n,

ti ∈ Ai[t1; . . . ; ti−1]”.

We will also write “u = v ∈ A = B” as an abbreviation for “A = B and

u = v ∈ A” and “∀γ = γ′ ∈ Γ = Γ′” as an abbreviation for “for all list of

terms γ = t1 . . . ; tn and for all list of terms γ′ = t′1 . . . ; t′n s.t. for all i = 1..n,

ti = t′i ∈ Ai[t1; . . . ; ti−1] = A′
i[t

′
1; . . . ; t

′
i−1]”.
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1.3 PER Models of Type Theory

The most commonly used semantics of the NuPRL type theory (and some other type

theories as well) is the PER (partial equivalence relations) semantics [21, 2, 1]. In

PER semantics each type is identified with a set of objects (often — a set of closed

terms) together with an equivalence relation on that set that serves as an equality

relation for objects (closed terms) of that type. This causes the equality predicate

to be three–place: “a = b ∈ C” stands for “a and b are equal elements of type C”,

or, semantically, “a and b are related by the equality relation of type C”.

Remark 1.1 Note that in this approach an objects is an element of a type iff it is

equal to itself in that type. This allows us to identify a ∈ A with a = a ∈ A.

According to PER approach, whenever something ranges over a certain type, it

not only has to span the whole type, it also has to respect the equality of that type.

Example 1.2 In order for a function f to be considered a function from type A to

type B, not only for every a ∈ A, f(a) has to be in B, but also whenever a and a′

are equal in the type A, f(a) should be equal to f(a′) in the type B. Note that in

this example the second condition is sufficient since it actually implies the first one.

However it is often useful to consider the first condition separately.

Since the type theory contains dependent types, the notion of a “well-formed

family of types” plays an important role in defining well-formedness of dependent

types. In PER approach, in order for the family of types T [x] over type A to be

considered well-formed, not only for every a ∈ A, T [a] has to be a well-formed type,

but also for every a1 = a2 ∈ A, the types T [a1] and T [a2] have to be equal.

Example 1.3 Consider a set type T := {x : A | B[x]} ( cf. Section 3.2) or a

dependent product type T := x : A×B[x]. Similarly to Example 1.2 above, in order

for T to be a well–formed type, not only B[a] has to be a well–formed type for any

a ∈ A, but also for any a = a′ ∈ A it should be the case that B[a] and B[a′] are

equal types.

The meaning of sequent judgments is defined in the same fashion as well. In

order for a sequent γ : Γ � C[γ] to be considered valid, not only it has to be the case

that ∀γ ∈ Γ. C[γ], but also t and C has to respect all equalities that are respected

by Γ. That is, ∀γ1 = γ2 ∈ Γ[γ1] = Γ[γ2]. C[γ1] = C[γ2].

Example 1.4 Provided A is a well-formed type, the sequents “� λx.t ∈ A → B”

and “x : A � t ∈ B” are equivalent. In other words, the definition of the meaning

of sequents corresponds exactly to the other functionality requirements, such as the

one for functions that we gave in Example 1.2.

1.4 Propositions-as-Types and Computational Type Theory

Martin-Löf’s type type theory adheres to the propositions–as–types principle. This

principle means that a proposition is identified with the type of all its witnesses. A

proposition is considered true if the corresponding type is inhabited and is consid-

ered false otherwise. Similarly a sequent Γ � C is considered valid iff Γ � t ∈ C
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is valid for some t.

In this paper we will use words “type” and “proposition” interchangeably; same

with “witness” and “member”. However it is important to note that the notion of

“witness” is not the same as the notion of “proof”. For example, the membership

type t ∈ T contains a single canonical element • 1 .

Because the NuPRL type theory is often interpreted computationally, the mem-

bers of a type are also sometimes called the “computational content” of that type.

In fact, NuPRL type theory is sometimes called a computational type theory and the

notion of computation is a very basic one in it. In addition to the four judgments

of the Martin-Löf theory listed in Section 1.1, the NuPRL type theory also includes

the following one:

a ∼ b a and b are computationally equal

This computational equality [14] is a transitive symmetric closure of a relation that

includes both purely computational relations (such as beta reduction) and defini-

tional equalities. In NuPRL type theory a term may be replaced with a computa-

tionally equal one in any context [14].

1.5 Motivation and Overview

At first glance, it might seem that the image type constructor would be trivial

to define — at least semantically. Given a type A and a function λx.f [x], the

type Img{A;x.f [x]} would be a type containing all the elements f [a], for a ∈ A.

However, this näıve definition fails to account for equalities. In order to make it

work, one would have to specify not only the members of the type Img{A;x.f [x]},

but also its equality relation.

Another obstacle is that one would also have to specify when two Img{} types

are equal. Normally two types are considered equal if they are constructed from the

equal parts. For example, two product types A1 × B1 and A2 × B2 are considered

equal when A1 = A2 and B1 = B2. However in case of the image type we can not

follow the same model and state that Img{A1;x.f1[x]} = Img{A2;x.f2[x]} when

A1 = A2 and for all x ∈ A f1[x] = f2[x] ∈ B, since that would require knowing the

image B of functions fi, which is what we were trying to define in the first place.

As we will see in this paper, these problems can be solved. And once these

problems are solved and the “Image” type is defined, it turns out this constructor

allows capturing an essential feature of the PER semantics for the type theory. It is

well known [3, 4, 5] that there is a common theme to the standard type constructors

and their axiomatization in type theory. When a new type constructor is added to

the theory, there is usually a standard pattern to defining its semantics, formulating

axioms and arguing (semantically) that the new axioms are consistent with the

canonical PER model of the theory. As it turns out, the “Image” type constructor

allows capturing this pattern within the theory itself. And now many standard type

constructors can be defined using the “Image” constructor and the corresponding

1 This canonical element is sometimes denoted as the unit element (), sometimes called “it” (MetaPRL),
ax (NuPRL), or Triv.
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rules can now be formally derived instead of having to add them as axioms and

justify them semantically.

This distinction between the in-theory derivation and a semantical argument

is especially important in context of an automated theorem proving environment,

where the in-theory derivation are formal and can be automatically checked, while

the semantical arguments are informal, written on paper, and can only be checked

manually. The work presented in this paper has been implemented in the MetaPRL

proof assistant [10, 11, 13] and all the derivations were checked by MetaPRL.

This paper is structured as follows. In Section 2 we will introduce the “Image”

type constructor, define its meaning in the PER semantics, present the inference

rules and establish their validity in PER semantics. Next, in Section 3 we will show

how some very basic type operations that are traditionally formalized in NuPRL-

style type theories by postulated axioms can now be derived using the new type

constructor. Finally, in Section 4 we show how the new type constructor can be

used to formalized some inductive types, including one that have been previously

considered impossible to adequately formalize.

2 The Image Type

We will introduce a new type constructor Img{A;x.f [x]}. As expected, the elements

of the type Img{A;x.f [x]} are all expressions of the form f [a], where a ∈ A.

Example 2.1 We can define a singleton type as {a} := Img{Unit;x.a} (where

any non-empty type may be used instead of Unit). This type contains only one

element a.

In PER approach, when defining semantics for a new type constructor we are

required to define its equality relation. It is clear that whenever a1 = a2 ∈ A, it

ought to be the case that f [a1] = f [a2] ∈ Img{A;x.f [x]}. Therefore we will define

the equality on the image type as the transitive closure of the equality induced by

the equality relation on A (together with the computational equality ∼ that all the

equality relations in NuPRL’s PER models are required to respect).

As we have briefly mentioned in Section 1.5, defining the equality on Img{}

types can be tricky. Consider, for example, the singleton type constructor from

Example 2.1 above. It is easy to see that type families involving this constructor

will not always be well-formed. Consider a type that has two distinct elements equal

in it. For example, the type B//True 2 that has tt = ff ∈ B//True. It is clear

that {a} is not a well-formed type family over a ∈ B//True. Indeed, {tt} and {ff}

are clearly different types, so {a} does not respect the equality tt = ff ∈ B//True.

This demonstrates that the following näıve well-formedness rule

Γ � AType

Γ � Img{A;x.f [x]}Type

2
B is a type of booleans that contains only two elements: tt and ff. B//True is the B type quotiented

over a constant relations so that all the elements of the quotient become equal.
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is invalid. Instead, we will state that Img{A;x.f [x]} is well-formed when f does

not have any parameters, i.e., f [x] has only x as a free variable.

2.1 Inference Rules

We add the following axioms to our type theory:

Well-formedness rule:
Γ � AType

Γ � Img{A;x.f〈〉[x]}Type

Introduction rule: Γ � a ∈ A
Γ � f [a] ∈ Img{A;x.f〈〉[x]}

Elimination rule:
Γ; x : A � t ∈ T [f [x]]

Γ; y : Img{A;x.f〈〉[x]} � t ∈ T [y]

where f〈〉[x] is a sequent schema [18] notation prohibiting f from containing free

occurrences of variables other than x.

Remark 2.2 Note that the elimination rule requires the conclusion to be an equal-

ity. This has to do with the computational nature of the theory. As we have men-

tioned in Section 1.4, Γ; x : A � C[f [x]] is valid only when Γ; x : A � t[x] ∈

C[f [x]] for some t. And since in general we can not compute x from y such that

y = f [x], in general there is no way to construct a witness t′ such that Γ; y :

Img{A;x.f〈〉[x]}; Δ[y] � t′[y] ∈ C[y]. Therefore validity of Γ; x : A � C[f [x]]

would not always imply validity of Γ; y : Img{A;x.f〈〉[x]}; Δ[y] � t′[y] ∈ C[y].

On the other hand, as we have stated in Section 1.4, the equalities in our type the-

ory always have a canonical witness, so this problem does not occur when C is an

equality.

Also note that while the elimination rule is stated with t not depending on x or

y, this is not essential — a more general form of this rule can be derived from the

simpler one.

2.2 Formal Semantics

According to [2], to give the semantics for a type expression E we need to determine

when this expression is a well-formed type, describe when two such types are equal,

and specify the partial equivalence relation that would act as an equality relations

for this type (a = b ∈ E).

We define the semantics of the Img{} constructor as follows:

• The closed term Img{A;x.f [x]} is a well-formed type if and only if A is a type.

• Img{A1;x.f1[x]} = Img{A2;x.f2[x]} iff A1 = A2 and λx.f1[x] ∼ λx.f2[x].

• The equality relation on Img{A;x.f [x]} is the smallest PER such that f [a] =

f [b] ∈ Img{A;x.f〈〉[x]} whenever a = b ∈ A that respects the ∼ relation. (In

particular, this means that t ∈ Img{A;x.f〈〉[x]} iff t ∼ f [a] for some a ∈ A.)

Theorem 2.3 The rules of Section 2.1 are valid under this semantics.
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Proof.

Well-formedness rule. Suppose γ : Γ � A[γ] Type is a true judgment. That is,

∀γ1 = γ2 ∈ Γ.A[γ1] = A[γ2]

Since f〈〉[x] is a closed term that can not depend on γ, we immediately get that

Img{A[γ1];x.f [x]} = Img{A[γ2];x.f [x]} and therefore

∀γ1 = γ2 ∈ Γ.Img{A[γ1];x.f [x]} = Img{A[γ2];x.f [x]}

This means that γ : Γ � Img{A[γ];x.f [x]}Type is a true judgment.

Introduction rule. Suppose γ : Γ � a[γ] ∈ A[γ] is a true judgment. That is,

∀γ1 = γ2 ∈ Γ.a[γ1] = a[γ2] ∈ A[γ1] = A[γ2]

Then by the definition of the image type,

∀γ1 = γ2 ∈ Γ.f [a[γ1]] = f [a[γ2]] ∈ Img{A[γ1];x.f [x]} = Img{A[γ2];x.f [x]}

Therefore, γ : Γ � f [a[γ]] ∈ Img{A[γ];x.f [x]} is a true judgment.

Elimination rule. Suppose

γ : Γ;x : A[γ] � t[γ] ∈ T [γ; f [x]] (2.I)

is a true judgment. We need to show that γ : Γ; y : Img{A[γ];x.f [x]} � t[γ] ∈

T [γ; y] holds. That is, assuming

γ1 = γ2 ∈ Γ and y1 = y2 ∈ Img{A[γ1];x.f [x]} = Img{A[γ2];x.f [x]},

we need to show the witness of t[γ1] ∈ T [γ1; y1] and prove that

(t[γ1] ∈ T [γ1; y1]) = (t[γ2] ∈ T [γ2; y2]). (2.II)

First, if y1 ∈ Img{A[γ1];x.f [x]} then there is x1 ∈ A, such that y1 ∼ f [x1]. Then

because γ1 = γ2 ∈ Γ and x1 = x1 ∈ A[γ1], we can use (2.I) to conclude that

t[γ1] ∈ T [γ1; f [x1]] and (t[γ1] ∈ T [γ1; f [x1]]) = (t[γ2] ∈ T [γ2; f [x1]]). Since all

judgements are congruent w.r.t. ∼ relation, we can say that t[γ1] ∈ T [γ1; y1] and

(t[γ1] ∈ T [γ1; y1]) = (t[γ2] ∈ T [γ2; y1]). (2.III)

By the definition, the true membership also has a witness •. So we have the witness

of t[γ1] ∈ T [γ1; y1].

Let R be the relation on Img{A[γ];x.f [x]} induced by A[γ2]. That is y1Ry2 iff

there are x1 and x2 such that x1 = x2 ∈ A[γ2] and y1 ∼ f [x1] and y2 ∼ f [x2]. We

are going to show that then

(t[γ2] ∈ T [γ2; y1]) = (t[γ2] ∈ T [γ2; y2]). (2.IV)
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Because γ2 = γ2 ∈ Γ and x1 = x2 ∈ A[γ1] = A[γ2], we can use (2.I) to conclude

that (t[γ2] ∈ T [γ2; f [x1]]) = (t[γ2] ∈ T [γ1; f [x2]]). Then (2.IV) holds.

Since equality on Img{A[γ2];x.f [x]} is the transitive closure of R, (2.IV) holds

for any y1 = y2 ∈ Img{A[γ2];x.f [x]}. Now (2.II) follows from (2.III) and (2.IV). �

3 Deriving Simple Type Constructors

It turns out that some very basic type operations that are traditionally formalized

in NuPRL-style type theories by postulated axioms can now be derived using the

new type constructor.

3.1 Deriving the Squash Type Constructor

Our type theory used to contain a primitive type constructor called squash [7, 17].

The squash type [A] “forgets” the witnesses of A. For any type A, the type [A]
(“squashed A” or “hidden A”) is empty if and only if A is empty and contains a

single canonical element • when A is inhabited. Informally one can think of [A] as

a proposition that says that A is a non-empty type, but “squashes down to a point”

all the information on why A is non-empty.

Using the Image type we can now define squash type as simple as

[A] := Img{A; x.•}

Using this definition, all the rules that are normally postulated for this type [17]

can be derived. As all the other derivations in this paper, these derivations were

performed in and checked by the MetaPRL proof assistant.

3.2 Deriving the Set Type Constructor

The set type type {x : A|P [x]} is a type that contains all elements of the type A

for which the condition P [x] holds, hiding the information on why it holds.

Using the image type constructor, we can define the set type operator as

{x : A|P [x]} := Img{x : A × P [x]; x.π1(x)}

where π1 is the first element projection. From this definition we were able to derive

all the rules that are traditionally postulated with this type constructor.

3.3 Deriving the Union Type Constructor

The union type [20], denoted
⋃
x:A

B[x], is the least common supertype of B[x]’s for

x ∈ A. It contains all elements of types B[x]. The equivalence relation of the⋃
x:A

B[x] is the transitive closure of the union of the equivalence relations of types

B[x]. The inference rules for the union type are presented in Table 1.
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Γ � AType Γ; x : A � B[x] Type

Γ � (
⋃

x:A

B[x]) Type

Γ � a ∈ A Γ � b ∈ B[a] Γ; x : A � B[x] Type

Γ � b ∈
⋃

x:A

B[x]

Γ; x : A; y : B[x] � [C[y]]

Γ; y :
⋃

x:A

B[x] � [C[y]]

Table 1
Inference rules for the union type

Γ � {a 〈〉}Type

Γ � a ∼ b

Γ � b ∈ {a 〈〉}

Γ; Δ[a] � C[a]

Γ; x : {a 〈〉};Δ[x] � C[x]

Table 2
Inference rules for the singleton type

We can define the union type constructor as follows:

⋃

x:A

B[x] := Img{x : A × B[x]; x.π2(x)}

where π2 is the second element projection. All the rules in Table 1 can be derived

from this definition.

3.4 Deriving the Singleton Type Constructor

It is possible in the type theory without the Image type to define a singleton subtype

of a given type. That is, for a given type A and given element a of type A we can

define a subtype of A that contains only a:

{a}A := {x : A|x = a ∈ A}.

This type actually contains not only a but other elements that are not distinguish-

able from a by A. To define singleton type of the element a we need to provide a

“host” type A that contains a.

However, as we saw in Example 2.1, using Image type we can define singleton

type {a} without knowing the type where a comes from:

{a} := Img{Unit;x.a}

Table 2 shows the inference rule for this type derived in MetaPRL. Note that the

type {a} contains only one element a with respect to squiggle equality ∼. Thus

we can derive a more powerful elimination rule for this type than for {a}A. As we

mentioned earlier this type has a restriction that a should be a constant. (Remember

that a 〈〉 means that a could not contain free variables).
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4 Implementing Inductive Types

It turns out that the image type constructor allows formalizing some interesting

inductive types. We will start with a simple example of the type of finite lists.

This type constructor is defined in Martin-Löf’s type theory using W -type [16]. We

will see the list type can also be implemented using just disjoint unions, products,

natural numbers and unions. Here the “contribution” of the image type constructor

is limited to allowing us to derive the union type constructor instead of having to use

the postulated one, however it introduces an approach that we will use to implement

a higher-order abstract syntax type that was previously considered impossible to

adequately formalize in a NuPRL-style type theory (and a number of other type

theories as well). The latter implementation is a much more involved one, and we

will only give a brief overview. See [19] for a detailed description and extensive

discussion of using the image type constructor for reasoning about syntax.

4.1 Example: The List Type

The AList type is the type of all the finite lists of the form a1 :: a2 :: · · · an :: []

where ai ∈ A, :: is a binary cons operator that concatenates an item to a list, and

[] is the empty list (“nil”) that is common to all the list types.

Using the disjoint union type (cf. Section 1.1), we can recursively define the

types of lists of concrete length as follows:

AList0 := Void + Unit

AListi+1 := (A × AListi) + Void

where Void is the empty type, [] is implemented as inr(•) and h :: t is implemented

as inl(〈h, t〉).

Now the type of arbitrary finite lists can be defined by simply taking the union

of all the concrete-length list types:

AList :=
⋃

i:N

AListi .

All the standard rules for the list type [12] can be derived from this definition.

4.2 Example: Higher Order Abstract Syntax

Suppose we want to define a type of λ-expressions where variables are handled

abstractly and in an alpha-invariant way. Namely, for some type var, we want to

define Term recursively as

Term := Var of var

Apply of Term× Term

Lambda of Term → Term
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where the function space in the Lambda case is restricted to only substitution func-

tions — i.e. functions that treat their argument as a “black box”, only applying

Term constructors to it and never applying destructors. The traditional approaches

to formalizing such Higher-Order Abstract Syntax types would either result in types

where some “exotic” terms are left in the type (for example, [8] defines an approach

where most exotic terms are eliminated, but those that are extensionally equal to the

real ones remain) or would require special modalities that would allow expressing

restricted function spaces [9].

With the image type constructor, however, it is possible to define the Term type

so that there are no “exotic” terms in it. It turns out that if one formalizes the

deBruijn representation of the λ-expressions and the easily definable function that

transforms from deBruijn representation into the Term one, then the image of that

type under the translation function is exactly the Term type, sans exotic terms.
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