
doi: 10.1016/j.procs.2016.05.433 

Best practices in debugging Kepler workflows
Michał Owsiak1, Marcin Płóciennik1, Bartek Palak1, Tomasz Zok1

, and Olivier Hoenen2

1 Poznań Supercomputing and Networking Center IBCh PAS, Poznan, Poland
michalo@man.poznan.pl, marcinp@man.poznan.pl, bartek@man.poznan.pl, tzok@man.poznan.pl

2 Max-Planck-Institut für Plasmaphysik, Garching, Germany
olivier.hoenen@ipp.mpg.de

Abstract
In this paper we present various techniques related to Kepler development, debugging, and
JVM customisation. We highlight some aspects of development process that may help people
to perform better while working with Kepler (especially in case they develop new components
for the Kepler platform). We present knowledge and ideas that were gained over the time while
working with Kepler tools throughout various projects and different applications of Kepler into
existing environments. These ideas are presented for the sake of saving time and effort by other
people who just start their experience with Kepler project.

Keywords: Kepler, debugging, development, DevOps

1 Introduction
Development in Kepler platform may be challenging at some aspects - especially when you
develop for variety of legacy code and combine numerous components within workflows [3].
Our experience comes from many projects like PLGridPlus, EUFORIA or EUROFusion[2]12,
with many complex scenarios orchestrated by Kepler.

In our research we work at the edges of various technologies that overlap just partially. Very
often we have to develop components that has no precedence and make numerous languages
(like Fortran, C, C++, Python, Java) and technologies work together. In addition to that, we
have to combine them within a workflow platform - Kepler.

This paper is divided into three main sections, each describing different aspects of Kepler
related developments. The first section focuses on workflow level, the second section puts actors
into focus, and the last one describes JVM internals that helps to debug Kepler. Each section

1Part of this work has been carried out within the framework of the EUROfusion Consortium and has
received funding from the Euratom research and training programme 2014-2018 under grant agreement No
633053.

2Part of this work has been co-funded by the Horizon 2020 Framework Programme through the INDIGO-
DataCloud Project, RIA-653549.

Procedia Computer Science

Volume 80, 2016, Pages 2332–2337

ICCS 2016. The International Conference on Computational
Science

2332 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2016
c© The Authors. Published by Elsevier B.V.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81191828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.433&domain=pdf


is independent and highlights just part of a process. Of course, we just cover a small fraction
of what can be done with Kepler and its ecosystem.

2 Workflows
Sometimes the workflow just stops and the perception of what has been called first is lost. You
can encounter this issue while working with DDF based workflows. Quite often this is related
to data stream draining. It means that data are produced at one place, but are not properly
consumed somewhere else.

2.1 Looking for floating tokens
You can always find floating data by using ptolemy.vergil.actor.lib.MonitorReceiverContents.
This way, you can spot all the tokens that are still pending. They have not been consumed
by actors, yet. If you add ptolemy.vergil.actor.lib.MonitorReceiverContents into the canvas and
run workflow, you can easily spot the place where data are not transferred correctly3.

2.2 Checkpoints
If you are developing large workflow, with lots of parallel components, you should pay attention
to proper handling of data flow. Sometimes you want to stream data in a particular way. We
find Expression or Constant actors really helpful in this case. To stream data flow we simply
connect all outputs of actors that have to finish their job before we can proceed and, after all
inputs are ready, we simply pass data to other part of the workflow4.

2.3 Using Multiple Tab Display to control text output
The simple Display actor has one disadvantage - it can not be plugged into workflow in a
synchronised way. It means it is hard to tell whether it fired before or after particular actor.
This can lead to incorrect interpretation of results. You can easily solve that by replacing the
Display by a Multiple Tab Display. Just put it somewhere in the workflow, where you want to
check output, and connect it with following actor5.

3 Actors

3.1 Prototyping with Groovy
In case you want to test some ideas for an actor and develop it quickly, there is a great, new
actor in Kepler 2.5 - Groovy. It allows you to embed Groovy code directly in the Kepler actor.6

3.2 Prototyping with Jython
Python is widely used within scientific projects. A few possibilities exist in order to execute
a Python script from a Kepler workflow. By default, you can use Jython implementation of

3https://raw.githubusercontent.com/mkopsnc/keplerhacks/master/workflows/lock.kar
4https://raw.githubusercontent.com/mkopsnc/keplerhacks/master/workflows/synchronize.kar
5https://raw.githubusercontent.com/mkopsnc/keplerhacks/master/workflows/mtd.kar
6https://raw.githubusercontent.com/mkopsnc/keplerhacks/master/workflows/Groovy.kar

Best practices in debugging Kepler workflows Owsiak, P�lóciennik, Palak, Żok, Hoenen

2333



Python in Kepler. This approach is quite efficient when it comes to simple activities that do
not require access to JVM data (e.g. shared libraries). However, while using this approach, we
have faced numerous compatibility issues and we had to develop different approach for handling
Python based scripts. Issues were related to accessing native code via the cython based bridge.
Incompatibilities and lack of support for cython7 based types lead to developing solution based
on running Python as external process.

3.3 Prototyping with Python
If you want to overcome Jython limitations, you can always call Python directly from Kepler
via java.lang.ProcessBuilder. This way, you can run everything as if you run it directly in
Python. However, there are few limitations in this solution. First of all, you are running your
code in separate process. If are using shared libraries then they all will be duplicated, which
may have increase memory consumption. In addition, they will not be shared between the JVM
and Python - this might be the issue in case you want to share some low level components from
shared libraries. Another issue with invoking Python as an external process is the startup time
of Python. Each time you start new Python process, you have to load Python environment and
all the modules that are used by your code. This might have huge impact on execution time.
Running workflow that contains code invoking Python triggers huge performance issues. This
affects mostly parallel executions. For a simple Python code dealing with NumPy based data
types, we have observed execution times as presented in Table 1. These kind of results were
not acceptable. In order to reduce times, we had to developed different approach for Kepler
based executions. We have decided to run Python via direct JNI [7] calls to Python library.

In Table 1 we present some timing tests executed for exactly the same Python script, how-
ever, this time we call it directly from the JVM via a call to the Python shared library. To call
Python library we use JNI mechanism. However, it is also possible to use JNA for the same pur-
pose. JNA library has slightly different approach in terms of calling shared libraries. You can
check the differences by looking at sample code implementing simple Ḧello worldäpplication8.

In the first case (first column), we have executed the Python script as an external process
(as shown in previous section) for various numbers of CPUs being used. The second column
shows results for the same Python script called via JNI call, the third column shows results
that are based on JNI and, in addition, benefit from internal caching mechanism of one of the
libraries. Thanks to running Python in exactly the same process space as Java process we could
benefit from optimisations done at shared library level. Its internal cache was fully accessible
for the Python script as it was executed in the same process space as JVM itself. In this case,
the gain is huge and we benefit from some internals that are project specific[1]. Of course, this
is not the solution for all Python based cases9.

CPUs Python process [s] JNI open [s] JNI cache [s]
1 385 186 13
2 415 200 16
4 564 235 14
8 1365 902 21
16 6557 3800 50

Table 1: Different execution times for python code extracted from SYCOMORE workflow

7http://www.jython.org/archive/22/userfaq.html
8JNI vs. JNA - https://github.com/mkopsnc/keplerhacks/tree/master/jnijna
9Sample code - https://github.com/mkopsnc/keplerhacks/tree/master/python

Best practices in debugging Kepler workflows Owsiak, P�lóciennik, Palak, Żok, Hoenen

2334



While calling native code via JNI or JNA one must pay attention to segmentation faults in
the native code. They will have impact on JVM. We are discussing this topic later in the text,
in section 4.5.

3.4 Embedding multiple versions of a native library
When a native code (Fortran or C++ in our case) is turned into a library and executed as
an actor through JNI, developers might want to switch easily between different versions of the
native library. One of such use case is to switch from an optimised version of the library to a
more verbose version when debugging is required directly from the workflow. As Java does not
bring the capability to safely unload such native library, we need to use the dynamic linking
loader C API (dlfcn.h).

In the actor Java class, a simple boolean parameter or a multiple choice string parameter
can be added to allow different versions of the native library to be selected. In the JNI code,
additional steps consist of: loading the specific dynamic library (exact path/name is required,
depending on choice made in actor’s parameter), getting the address of the targeted symbol
in memory (pointer on function to be executed), unloading the dynamic library (when its
reference count drops to zero). Of course this flexibility comes with a small overhead, but in
the development phase much time can be saved by allowing such run-time choice.

4 Working close to the JVM
When working with native code, especially legacy code, you can experience various issues that
may impact workflow execution: calls to exit(), segmentation faults, runtime errors and bugs in
the native code. These issues are hard to handle as they are embedded (typically) inside code
you cannot access or require debugging of the code outside JVM. However, there are ways to
overcome these issues.

4.1 Customising startup parameters
The startup procedure of Kepler consists of two steps. In the first step you run a startup class,
then it creates a new JVM instance and starts it with the specified parameters. Unfortunately,
not all the parameters can be passed to the second instance as its creation process is statically.
However, there is a way to pass separate and highly customised parameters for the JVM via the

JAVA OPTIONS environment variable10. Let us say we want to quickly set some properties
for JVM, e.g. we want to customize memory settings. It is as easy as exporting an environment
variable with proper settings, just before running Kepler.
export _JAVA_OPTIONS="−Xmx2G −Xms1G −Dmy_propert=’some value ’ "

In addition, you can specify separate settings for the startup process and for the the main
Kepler module. By altering the environment.txt11 file inside your main module it is possible to
specify custom settings for the JAVA OPTIONS environment variable. It can be quite useful
in case you want to attach a debugger to your JVM before Kepler starts. You can also fine tune
memory settings or diagnostic related information provided by JVM (e.g. JNI being verbose).

10This environment variable is not mentioned by official JVM documentation
11Each module can have separate environment.txt file that defines system variables

Best practices in debugging Kepler workflows Owsiak, P�lóciennik, Palak, Żok, Hoenen

2335



4.2 Debugging Kepler in Eclipse without projects
Debugging Kepler in Eclipse might be a quite time consuming process especially in case we
want to make quick checks on some actors. It can get even worse if you have number of Kepler
versions being used at the same time. There is, however, a way that can save you lots of time
while working with Kepler sources.

Instead of building Eclipse projects (based on description in Generating Project Files for
Your Favorite IDE12)
cd bui ld−area ; ant e c l i p s e

and importing them into Eclipse (with all the necessary configurations, e.g. adding external
jars, etc.) you can do a dirty debugging by creating empty project in Eclipse, adding source
path with Java classes, you want to debug, and attaching Eclipse to already running process.
This way, you can quickly and easily make some tests in your code without building proper,
Eclipse based, environment for Kepler. All you have to do is to export JAVA OPTIONS
variable
export _JAVA_OPTIONS="−ag en t l i b : jdwp=transpor t=dt_socket , \

s e r v e r=y , suspend=y , address =8000"

before running Kepler and then, attach to already running Java process from Eclipse Run >
Debug Configurations > Remote Java Application. This way, you can focus on the source code
in which you are interested.

4.3 Debugging Kepler in gdb
Debugging Kepler under gdb[5] can be very useful in case you want to debug some native code
that is used by Kepler (e.g. shared library, JNI code). You can easily attach gdb to running
Kepler session by attaching JVM that runs Kepler. You have to make sure to connect to
correct Java process. To get its PID you should examine process tree. It is possible to get this
information either with pstree or with ps f.
s h e l l > jps
17220 Jps
9502 Kepler
9468 Kepler
sh e l l > ps f
5636 pts /5 Ss 0 :00 −bin / tcsh
9462 pts /5 S+ 0:00 \_ /bin /bash
9468 pts /5 Sl+ 0:01 \_ java
9502 pts /5 Sl+ 0:24 \_ java

As you can see, process 9502 is a child of process 9468 (startup process). Process 9502 is
the one that will actually run workflows. Once you know it, you can attach debugger to Kepler
by running gdb.
> gdb /proc /9502/ exe 9502

This way, you can debug the whole JVM together with all loaded shared libraries.

4.4 Handling exit calls
Handling exit calls can be done using atexit [4] function. It is possible to combine atexit,
siglongjmp and sigsetjmp to simulate try/catch approach inside JNI code. This way, legacy
code will not terminate JVM. Sometimes it might be very useful, especially in case we do not
have access to source code of the library that calls exit() function. All we have to do is: define

12https://kepler-project.org/developers/teams/build/documentation/build-system-instructions

Best practices in debugging Kepler workflows Owsiak, P�lóciennik, Palak, Żok, Hoenen

2336



a method to call when exit function is called, set handler for the exit call via atexit and then
use sigsetjmp to handle incorrect call to exit()13.

Another approach to handle exit() calls is to set custom handler via -Dexit=new handler
option for the compiler: each call to exit() function is replaced by the new handler code. This
solution is even better as it allows the setting of different exit handlers for different libraries.
However, it requires an access to legacy code source. The main difference, comparing to solution
based on atexit is the way code is compiled and the way we define the handler for exit call14.

4.5 Handling SIGSEGV
Segmentation faults generated by native code cause the JVM process to exit prematurely[6].
In case JVM encounters SIGSEGV it produces fatal error log and terminates. Sometimes you
would like to avoid this kind of behavior. You would like to produce informative message and
use some better means of informing user that something went wrong. In the case of SIGSEGV
you can apply a similar technique as described above. This way, you can handle Segmentation
Faults and proceed with JVM execution. In order to set the handler one must do following:
define signal handler for signal SIGSEGV, setup new signal handler in the code, use sigsetjmp
to handle incorrect call to exit, and eventually bring back original signal handler15.

5 Conclusions
We have shown various techniques that can help people speed up and ease up Kepler based
developments. All these techniques can be applied without too much effort but, at the same
time, may lead to better understanding of problems that occur during development process. Of
course, we presented just a small subset of various debugging techniques choosing solutions we
find most useful and tightly related to Kepler based development.

References
[1] L. Di Gallo and C. Reux et al. “Coupling between a multiphysics workflow engine and an opti-

mization framework”. Computer Physics Communications 00. 2015, pp. 1–19.

[2] M. Płóciennik et al. “Tools, Methods and Services Enhancing the Usage of the Kepler-based
Scientific Workflow Framework”. Procedia Computer Science, Volume 29. 2014, pp. 1733–1744.

[3] M. Płóciennik et al. “Approaches to Distributed Execution of Scientific Workflows in Kepler”.
Fundamenta Informaticae 128. 2013, pp. 1–22.

[4] “The Open Group Base Specifications Issue 7”. http://pubs.opengroup.org/onlinepubs/
9699919799/nframe.html. 2013.

[5] “8 gdb tricks you should know”. https://blogs.oracle.com/ksplice/entry/8_gdb_tricks_
you_should. 2011.

[6] “Troubleshooting Guide for Java SE 6 with HotSpot VM”. http://www.oracle.com/technetwork/
java/javase/crashes-137240.html. 2010.

[7] Sheng Liang. The Java Native Interface: Programmer’s Guide and Specification. 1999.

13atexit sample - https://github.com/mkopsnc/keplerhacks/tree/master/atexit
14dexit sample - https://github.com/mkopsnc/keplerhacks/tree/master/dexit
15SIGSEGV handler sample - https://github.com/mkopsnc/keplerhacks/tree/master/sigsegv

Best practices in debugging Kepler workflows Owsiak, P�lóciennik, Palak, Żok, Hoenen

2337


