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Abstract 

Massive datasets are becoming more prevalent. In this paper, we propose an algorithm to process a large symmetric 

matrix of billion scale graph in order to extract knowledge from graph dataset. For example, interesting patterns like 

the people who frequently visit your page and the most  number of participating triangles can be obtained using the 

algorithm. These  interesting patterns are discovered by computation  of several eigen values and eigen vectors. The 

main challenge in analyzing the graph data are simplifying the graph, counting the triangles, finding trusses. These 

challenges are addressed in the proposed algorithm by using orthogonalization, parallelization and blocking 

techniques. The proposed algorithm is able to run on highly scalable MapReduce environment. we use a social 

network dataset (facebook approximately 2 to 7 TB of data) to evaluate the algorithm. we also show experimental 

results to prove that the proposed algorithm scale well and efficiently process the billion scale graph. 

Keywords:Big data;  Graph Mining; Social Network Analysis. 

1. Introduction 

The Internet, the World Wide Web (WWW), social networks, protein interaction networks and many structures are 

modeled as graph. Graph is a representation of relationship collection which provide the human interpretation and 
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simple mechanical analysis. Graphs with billions of nodes and edges are more common, for example social network 

like Facebook , Twitter are having billions of active users in a large countries. Given a billion scale graph , finding 

interesting pattern[1] is a more challenging task. The interesting patterns in the graph are discovered by the 

computation of several eigen value and eigen vector. The main challenge[2] in analyzing the graph data are  

 Simplifying the graph 

 Counting the triangles 

 Finding Trusses 

 The proposed algorithm called Multi-Dimensional Parallel Eigen Solver(MPES) addresses these challenges and 

able to run on highly scalable MapReduce environment. 

 

1.1 Simplifying the graph 

The analysis of graph starts from simplifying the graph that means removing duplicate edges and loops. For example 

,In an undirected graph the edge (A,B) duplicates (B,A). A single MapReduce job is enough to simplify the graphs. 

First step is removing the loops and the MapReduce function finds the duplicate edges.  

1.2 Counting triangle 

The basis for analyzing the graph and subgraph is locating triangle in the graph. Triangles are very important in 

analyzing the complex network and also play a significant role in graph mining applications. Triangles are most 

basic and non-trivial subgraph. for example, In facebook friend of friend tend to become friend themselves and 

forms a triangle. This phenomenon is also observed in other types of networks such as biological and online network 

etc. The problem of counting the triangle [3],[4],[5] is addressed in the proposed algorithm. 

1.3 Finding trusses 

Trusses are subgraphs with high connectivity. Cliques and triangles are captures by identifying the trusses. If k-

trusses are in the graph then it is proved that there should k-member cliques and k-1 triangles. Simplifying the graph 

is the first step to find trusses, triangles etc. To discover all these pattern, a promising tool is parallelism and more 

specifically MapReduce[6].  

2. Related work  

The related work forms two groups. 

 Graph Mining 

 MapReduce 
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2.1 Graph mining: 

There are enormous number of graph mining algorithm are there to compute the eigen value and eigen vector and to 

find many interesting patterns. The tasks performed by graph mining algorithms are computation of communities(eg 

[7],[8]),subgraph discovery(eg [9],[10]), identifying a single node(eg PageRank[11]),counting number of 

triangle[12] and too-many. Most of the algorithm do not scale with billions of nodes and edges. There are several 

algorithms for connected components like Breadth-First search, Depth First Search and Random search. These 

algorithms are limited with shared memory model. The base for all algorithms are finding several eigen value and 

eigen vector. 

2.2 Mapreduce: 

MapReduce is programming paradigm for processing enormous amount of unstructured, semi structured data in 

parallel[13],[14]. The advantages of MapReduce are the concepts is familiar and data distribution, replication , load 

balancing are handled automatically. There are only two functions map and reduce need to be defined. 

 the map stage reads the input and produces the (key, value) pairs 

 the shuffling stage sorts the output and sends it to reduce stage 

 the reduce stage processes the (key, value) pairs and produces single (key, value) pairs as a final output. 

3.  Proposed method  

The main aim is to design a eigen solver that finds the top-k eigen values of large symmetric matrix formed from 

billion scale graph in a parallel environment. The successful parallel environment for processing the web scale graph 

is HADOOP([15],[16],[17]). The design of eigen solver needs careful attention in choosing the algorithm. We 

choose the sequential method and design it in such a way that it will run in parallel. Orthogonalization[18] [19], 

parallelization and blocking techniques are incorporated in the eigen solver to scale well. The proposed system 

architecture is shown in Figure 1. 
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Figure 1: Architecture of Hadoop Eigen Solver. 

3.1 Orthogonalization 

Orthogonalization of vectors gives good approximation to find the top several eigen value and eigen vectors. The 

main idea of orthogonalization is as follows: The first step is choosing a random basis vector a. In each iteration new 

basis vector is computed and that is orthogonalized with the previous vector. Let y be the number of iteration, Xy be 

the  x × y matrix and A be the matrix whose eigenvalues we need to compute. The proposed algorithm(MPES) is 

shown in Algorithm 1. 

 

Algorithm 1.Multi-Dimensional Parallel Eigen Solver 

Input: Matrix Ax×x, vector a, 

 Number of iteration y, 

 Number of eigen values n 

Output: n eigenvalues λ1...n, 

 Eigen Vector.  

1: α0 ← 0, v0 ← 0, v1 ← a; 

2: for i = 1, ..y do 

3: v ← Avi; 

4: αi ← vi
Tv 

5: v ← v − αi−1vi−1 − αivi; //Orthogonalization 

6: αi ← ||v||; 

7: if αi = 0 then 

8: break for loop; 

9: end if 

10: vi+1 ← v/αi; 

11:end for 

12: λ1::n  top n diagonal elements of the Matrix// Eigenvalues 

13:Av=λv // Eigenvector 

3.2 Parallelization: 

Parallelization is achieved by processing the graph using the proposed algorithm in MapReduce environment. 

Parallelization means running all the operations  on multiple machines in parallel. Parallelizing the operations is 

shown in Algorithm 2. 

 

Algorithm 2: Parallelization 

Input: Matrix M = {(src, (dst,val))}, 

 vector vi = {(id, vval)} 
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Output: vector x 

1: Map(key k, value v, Vector y):  

2: src ← k; 

3: (dst,val) ← v; 

4: Output(src, (val × x[dst]));  

5: Reduce(key k, values V []):  

7: s← 0; 

8: for v  V do 

9: s ← s + v; 

10: end for 

11: Output(k, s); // Output a vector element 

3.3 Blocking 

Blocking is used to minimize the network traffic by reducing the volume of information exchanged between the 

nodes. In HADOOP, each line of input  is assumed as a single map function. We divide the large matrix in to blocks 

, one key value of each block is single line of map function. Likewise, each blocks are assigned with map function 

and run in parallel. The processing of individual elements takes time than running it in blocks. So, the blocks are 

processed more faster and more efficiently. 

4. Conclusion: 

We have presented an efficient algorithm to process a billion scale graph and to analyze a real world graph to 

identify important patterns. Our approach that is Multi-Dimensional Parallel Eigen solver(MPES)  is applicable in 

large dataset with relationship connectivity. The main contribution is to improve the scalability, flexibility and 

efficiency compared to other eigen solver. In Future, we can extend our analysis with multiple relationships of the 

participating node that is tensor based analysis. 
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