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ABSTRACT Prediction of gene expression levels from regulatory sequences is one of the major challenges of genomic biology
today. A particularly promising approach to this problem is that taken by thermodynamics-based models that interpret an
enhancer sequence in a given cellular context specified by transcription factor concentration levels and predict precise ex-
pression levels driven by that enhancer. Such models have so far not accounted for the effect of chromatin accessibility on
interactions between transcription factor and DNA and consequently on gene-expression levels. Here, we extend a thermody-
namics-based model of gene expression, called GEMSTAT (Gene Expression Modeling Based on Statistical Thermodynamics),
to incorporate chromatin accessibility data and quantify its effect on accuracy of expression prediction. In the new model, called
GEMSTAT-A, accessibility at a binding site is assumed to affect the transcription factor’s binding strength at the site, whereas all
other aspects are identical to the GEMSTAT model. We show that this modification results in significantly better fits in a data set
of over 30 enhancers regulating spatial expression patterns in the blastoderm-stage Drosophila embryo. It is important to note
that the improved fits result not from an overall elevated accessibility in active enhancers but from the variation of accessibility
levels within an enhancer. With whole-genome DNA accessibility measurements becoming increasingly popular, our work dem-
onstrates how such data may be useful for sequence-to-expression models. It also calls for future advances in modeling acces-
sibility levels from sequence and the transregulatory context, so as to predict accurately the effect of cis and trans perturbations
on gene expression.
INTRODUCTION
A central challenge in quantitative biology today is to un-
derstand the precise relationship between gene expression
and regulatory sequences, especially enhancers. Enhancers
(1,2), also called cis-regulatory modules in some contexts,
are sequences ~1 kbp long that harbor DNA binding sites
for one or more transcription factors (TFs) that act together
to regulate a gene’s expression pattern (3–6). Recent techno-
logical breakthroughs such as genome-wide chromatin-state
profiling (7,8) and massively parallel reporter assays (9,10)
are leading the way in rapid and effective discovery of
enhancers. The next frontier (1) is to learn to interpret an
enhancer’s sequence and predict the expression level driven
by the enhancer in a given trans-regulatory context, e.g., a
particular tissue or cell type (11–13). Various studies have
attempted to meet this challenge, and a line of attack that
has met with considerable initial success is that of thermo-
dynamics-based models (14–21).

Thermodynamics-based sequence-to-expression models
have proven capable of producing highly accurate fits to
complex gene-expression patterns. The hallmark of these
models is that they are built around molecular interactions
involving TF proteins, DNA, and the basal transcriptional
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machinery, and they use the language of statistical thermo-
dynamics to map combinations of interactions, both strong
and weak, to gene expression levels. Fits of these models
to sequence and expression data capture underlying mecha-
nistic details of gene regulation at a convenient level of
abstraction. For instance, DNA-binding strengths of TFs
and the potency of activation or repression by a DNA-bound
TF appear as free parameters of these models, and their
optimal values learned from data provide quantitative
insights into underlying regulatory mechanisms. One key
aspect missing from the mechanistic view adopted in
today’s thermodynamics-based models is that of chromatin
state.

A significant advance in recent years in the field of regu-
latory genomics is the realization that the chromatin state,
e.g., specific histone modifications and general accessibility
patterns, of cis-regulatory regions strongly correlates with
expression and with regulatory events leading to expression
(22–24). Genome-wide profiling of DNaseI hypersensitive
(DHS) sites, representing regions of relatively accessible
chromatin, or of specific histone modifications such as
H3K27ac, has proven to be a powerful strategy to map reg-
ulatory DNA and pinpoint active enhancers (25–28). For
instance, genome-wide, high-resolution, in vivo mapping
of DHS sites has helped chart the regulatory DNA landscape
of Drosophila early embryo development (29), showing
how chromatin accessibility may influence genome-wide
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overlapping patterns of TF binding during embryogenesis
(22,23,30). In addition, we now know that chromatin state
(e.g., accessibility) of a genomic segment is an effective pre-
dictor of its regulatory activity (26,31,32) and an important
feature in predicting TF occupancy therein (33). In partic-
ular, incorporation of accessibility data has significantly
improved the accuracy of predicting in vivo TF occupancy
over baseline models that used sequence-specific motifs
alone (34,35). These findings naturally raise the question:
does chromatin-state information also improve our ability
to quantitatively predict expression levels driven by an
enhancer? To our knowledge, this question has not yet
been systematically and empirically answered, and it is
the subject of this study.

Based on our knowledge today, we might expect an affir-
mative answer to the above question. Since chromatin
accessibility data improves our ability to predict TF-DNA
binding (23,30,35), and since it is generally accepted that
better prediction of TF-DNA binding should lead to better
expression prediction, it follows that accessibility data
ought to improve sequence-to-expression prediction. How-
ever, testing this hypothesis requires coupling the two
computational aspects mentioned above, i.e., using accessi-
bility data for TF-DNA binding prediction and using bind-
ing prediction for expression prediction, and evaluating
the integrated approach using an appropriate data set. This
was the methodological challenge we faced in this work.

Moreover, it was not clear to us going into this study
whether the resolution of available data and the expressivity
of today’s sequence-to-expression models are adequate to
demonstrate the advantage of incorporating accessibility
data, even if such an advantage exists. Note that our goal
was not to use accessibility data to identify enhancers and
then predict expression from their sequence; rather, we
wanted to test whether variations of accessibility within
known enhancers, at the ~20- to 25-bp resolution (22,29),
can inform sequence-to-expression models in useful ways.
This required that the models be sensitive enough to register
quantitative variations of DNA accessibility at individual
binding sites and that the accessibility data pertain to the
same cell types for which we do have accurate sequence-
to-expression models.

In this work, we build and evaluate a quantitative model
that maps regulatory DNA sequence to the expression of
the regulated gene while integrating DNA accessibility
data. Several studies (18–21,36,37) have proposed quantita-
tive models of the sequence-to-expression relationship. One
such quantitative model is GEMSTAT (Gene Expression
Modeling Based on Statistical Thermodynamics), a statisti-
cal thermodynamics-based model of sequence readout that
we previously showed to successfully model dozens of en-
hancers involved in specification of the anterior-posterior
(A/P) axis in early Drosophila embryos (21). GEMSTAT
is the only available general purpose tool that can be trained
to model the regulatory activities of a set of enhancers with a
Biophysical Journal 108(5) 1257–1267
common assignment of free parameters. Moreover, its ther-
modynamics-based formulation lends itself to incorporation
of accessibility data in an intuitive and semimechanistic
manner, to an extent that one may study how accessibility
of individual binding sites may impact expression. These
considerations, along with our extensive experience with
GEMSTAT, made it a natural choice for the modeling
framework adopted here. The regulatory system we chose
comprises the above-mentioned A/P patterning enhancers
from Drosophila, in part because this system has been the
subject of several modeling studies by us (21,38,39) and
others (16,19,40,41), and also because chromatin accessi-
bility data are available for the developmental stage repre-
sented by this data set. We find strong evidence that
incorporating accessibility data into GEMSTAT improves
fits, confirming the central hypothesis of this work.
MATERIALS AND METHODS

Data collection

We modeled here the same data set used in the original work presenting the

GEMSTAT model (21). The data set comprises 1) 37 experimentally char-

acterized enhancers involved in the regulation of A/P patterning genes in

stage 4–6 Drosophila embryos; 2) quantitative profiles of the gene-expres-

sion pattern driven by each enhancer; 3) DNA-binding motifs (expressed as

position weight matrices (PWMs)) of six TFs, namely bicoid (BCD), caudal

(CAD), hunchback (HB), giant (GT), knirps (KNI), and Kruppel (KR); and

4) a quantitative profile of the concentration of each TF (see Fig. S1 in the

Supporting Material). He et al. (21) collected the sequences from Gallo

et al. (42), TF concentration profiles from Poustelnikova and colleagues

(43,44), gene-expression profiles from Segal and co-workers (19), the

PWM of BCD from Bergman et al. (45), and the PWMs of the other TFs

from Noyes et al. (46). Following He et al., we chose to model gene expres-

sion within 20–80% of the A/P axis.

Chromatin accessibility data from DNaseI hypersensitivity (DHS) assays

in embryonic stage 5 were gathered from Berkeley Drosophila Transcrip-

tion Network Project (BDTNP) Release 5 (22,29). We ranked the

genome-wide DHS scores (at 20 bp resolution), with rank 1 representing

the smallest DHS score. The rank-ordered DHS scores were then divided

by the total number of windows in the genome. These normalized scores

were on the scale of 0 (least accessible) to 1 (most accessible). Rank-based

normalized DHS scores within the 37 enhancers were extracted and used to

compute the accessibility score, Acc(S), of each annotated binding site,

S. (The scheme for annotating binding sites is described below.) Acc(S)

was simply the rank-normalized score of the 20 bp segment that includes

the site, S, or the average of multiple segments if the site overlaps with

multiple segments.
The GEMSTAT model

GEMSTAT (21) is a sequence-to-expression model of transcriptional regu-

lation founded on the statistical thermodynamic framework proposed by

Shea and Ackers (47). In this framework, transcriptional regulation occurs

through the interactions of three major components: 1) enhancer (DNA), 2)

TF molecules, and 3) the basal transcriptional machinery (BTM), i.e., the

molecular complex that assembles at the promoter and initiates transcrip-

tion (Fig. 1 A). All of these interactions (TF-DNA, BTM-DNA, and

TF-BTM) are assumed to happen in thermodynamic equilibrium, and the

equilibrium mRNA level is assumed to be proportional to the fractional

occupancy of the BTM at the promoter. Under standard assumptions of



FIGURE 1 (A) GEMSTAT models the major components of transcrip-

tional regulation and their interactions in thermodynamic equilibrium.

Shown are all possible molecular configurations of a transcriptional system

where the enhancer contains a single binding site for a TF, with the TF

(green) bound or not bound at its site and the BTM (purple) bound or not

bound at the promoter. Arrows indicate TF-DNA and TF-BTM interactions,

represented by the parameters bindingWt and txpEffect, respectively.

GEMSTAT uses the energies associated with these interactions to predict

the level of gene expression in the system. (B) GEMSTAT-A assumes

that the TF-DNA binding energy at a site S changes according to the acces-

sibility of S. Shown is an example with three identical binding sites where

GEMSTAT estimates the same TF-DNA binding energy E0(S). GEMSTAT-

A assigns a local accessibility score, Acc(S), to each site S (bottom, y axis),

and models the TF-DNA binding energy as E0(S) þ kacc(1 � Acc(S)). To

see this figure in color, go online.
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statistical mechanics, GEMSTAT computes this fractional occupancy by

considering all possible configurations of DNA-bound TFs and BTM

(Fig. 1 A) and taking the total equilibrium probability of BTM-bound

configurations. The equilibrium probability, P(s), of a configuration s

is assumed to follow the Boltzmann distribution. Thus, P(s) ¼
exp(� bE(s))/Z, where b ¼ 1/kBT (with kB the Boltzmann constant and T

the temperature), E(s) denotes the energy associated with configuration

s, and Z denotes the partition function. The energy, E(s), is modeled in

GEMSTAT using free parameters that represent energies associated with

interactions in s. Of particular interest are two TF-specific free parameters

that model TF-BTM and TF-DNA interactions, as described below.

1. The parameter txpEffect(f), corresponding to a TF f (Fig. 1 A) represents

the quantity exp(� bE(f $ BTM)), where E(f $ BTM) is the interaction

energy between a molecule of the TF f and the BTM.

2. To model the binding energy E(f $ S) of a molecule of TF f at a cognate

site S, GEMSTAT uses a second TF-specific free parameter, bind-

ingWt(f) (Fig. 1 A), and also makes use of a theory proposed by Berg

and von Hippel (48) as follows. The energy E(f $ S) is modeled in

GEMSTAT as

Eðf $SÞ ¼ E
�
f $Sopt

�þ DE
�
S; Sopt

�
; (1)

where Sopt denotes the optimal binding site for f and DE(S,Sopt) denotes the

mismatch energy of site S with respect to Sopt (49). The free parameter,

bindingWt(f) represents the quantity exp(� bE(f $ Sopt)) at unit concentra-
tion of the TF f. Berg and von Hippel (48) linked DE(S,Sopt) to the log-

likelihood ratio (LLR) scores of sites S and Sopt as

bDE
�
S; Sopt

� ¼ LLR
�
Sopt

�� LLRðSÞ;

where the log-likelihood ratio score LLR(S) for a site S is computed from

the PWM of f and the genomic background distribution. When it is not

important to mention the identity of the TF f, we write Eq. 1 as

EðSÞ ¼ E
�
Sopt

�þ DE
�
S; Sopt

�
: (2)

The GEMSTAT-A model

The new quantitative model for predicting gene expression by taking chro-

matin accessibility data into account, called GEMSTAT with Accessibility

(GEMSTAT-A), is an extension of GEMSTAT. GEMSTAT-A integrates

chromatin accessibility data to explore the interplay between accessibility,

TF-DNA binding strength, and gene expression (Fig. 1 B). We first assigned

a local accessibility score, Acc(S), on a scale of 0–1 (where 0 ¼ inacces-

sible), to each TF binding site S. To model how accessibility of S affects

the energy E(S), GEMSTAT-A redefines E(S) in Eq. 2 by incorporating

Acc(S) as

EðSÞ ¼ E
�
Sopt

�þ DE
�
S; Sopt

�þ kaccð1� AccðSÞÞ; (3)

where kacc > 0 is a free parameter optimized in the course of fitting the data

and is a phenomenological parameter reflecting the effect of accessibility.

Thus, instead of setting a threshold to define accessible and inaccessible TF

binding sites, GEMSTAT-A uses quantitative accessibility scores in calcu-

lating the binding energy. For brevity, we use the notation E0(S) to represent

the term E(Sopt) þ DE(S,Sopt) of Eq. 2, i.e., the energy that GEMSTAT

estimates to be associated with TF binding at S, and rewrite Eq. 3 as

EðSÞ ¼ E0ðSÞ þ kaccð1� AccðSÞÞ: (4)

Model training

The GEMSTAT-A model was trained using the same strategy that was used

for GEMSTAT (21). The inputs for training were the 37 enhancer sequences

with their A/P expression profiles, as well as PWMs and concentration pro-

files of six TFs. For each TF, all PWM matches in an enhancer with LLR

score (defined above) at least 0.4 times the LLR score of the optimal site

were annotated as binding sites. In addition, in GEMSTAT-A, each anno-

tated site S was assigned a local accessibility score, Acc(S), as described

above, in estimating the TF-DNA binding energy at S. Both models con-

sidered self-cooperative DNA binding of BCD as well as KNI and were

used in Direct Interaction mode (see He et al. (21)). The number of free

parameters in GEMSTATwas 15 (the txpEffect and bindingWt parameters

for each TF, one parameter to model the basal level of gene expression, and

one parameter for each TF that we assumed to have self-cooperative

DNA binding; see Table S5 for details.), whereas GEMSTAT-A had one

additional free parameter (the accessibility-effect parameter kacc). Model

parameters were fit to maximize the average wPGP score (explained below)

between model predictions and real expression profiles (see Text S1 in the

Supporting Material for details).
Evaluation of model predictions using weighted
pattern-generating potentials

State of the art quantitative models of gene expression adopt two common

approaches to evaluate their predictions, namely the average correlation

coefficient and the root mean-square error. However, these do not always
Biophysical Journal 108(5) 1257–1267
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capture the salient features of a one-dimensional expression pattern, as

shown in Kazemian et al. (36). To address these issues, a new scoring func-

tion, called weighted pattern-generating potential (wPGP) was presented by

Samee and Sinha (38). This scoring function was designed for two pur-

poses: 1) to be sensitive to both the shape and magnitude of the predicted

expression profiles, and 2) to avoid biases toward or against overly broad

or overly narrow domains of expression (see Text S1 in the Supporting

Material for details).
RESULTS

A thermodynamics-based model that integrates
chromatin accessibility data

The new model, to our knowledge, proposed here, called
GEMSTAT-A (A for accessibility), is an extension of
GEMSTAT (see brief overview of GEMSTAT in Materials
and Methods and Fig. 1 A). To incorporate the effects of
varying local accessibility within an enhancer, we modified
the GEMSTAT model as follows. First, a local accessibility
score, Acc(S), is assigned to each annotated TF binding site
S, based on given accessibility data (e.g., DHS data). The
score is on a scale of 0 to 1 (where 0 ¼ inaccessible).
Next, the TF-DNA binding energy at site S is modulated
by this accessibility score and defined to be

EðSÞ ¼ E0ðSÞ þ kaccð1� AccðSÞÞ;

where E0(S) is the TF-DNA binding energy at S as estimated
by GEMSTAT (cf. Eq. 2) using the TF’s motif, and kacc >
0 is a free parameter.

In GEMSTAT (i.e., the original model), every TF
binding site is considered to be completely accessible,
which is equivalent to setting the local accessibility score
to 1. (Note that setting Acc(S) ¼ 1 implies E(S) ¼ E0(S)
in the above formula.) In reality, if the local accessibility
is low (Acc(S) < 1), GEMSTAT may overestimate the
contribution of the site by ignoring its accessibility score.
GEMSTAT-A increases the binding energy (decreases the
strength) of less accessible sites while maintaining the orig-
inal estimates for sites in highly accessible regions. Other
than this modification of how the binding energy is esti-
mated, GEMSTAT-A is identical to GEMSTAT in how
enhancer sequence and trans context are mapped to the
expression level driven by the enhancer. Note that
GEMSTAT-A has one additional free parameter to be opti-
mized, viz., the accessibility-effect parameter, kacc.
FIGURE 2 Evaluations of expression predictions from GEMSTAT and

GEMSTAT-A. The goodness of fit between predicted and real expression

for each enhancer was assessed by wPGP score, shown here for all 37

enhancers. Dotted lines delineate regions where the difference in wPGP

between the two models is R0.05. A selection of enhancers where

GEMSTAT-A improves fits are labeled and their expression patterns are

shown in Fig. 3.
Chromatin accessibility data improve expression
predictions

We asked whether GEMSTAT-A could fit expression pro-
files of real enhancers better than GEMSTAT by making
use of experimentally measured accessibility variations
within the enhancer. To test this, we resorted to a data set
used in the original GEMSTAT study (21) (see Data collec-
tion for details). Both GEMSTAT and GEMSTAT-Awere fit
Biophysical Journal 108(5) 1257–1267
to this data set, using identical parameter optimization pro-
cedures. In addition, GEMSTAT-Awas made to utilize rank-
normalized chromatin accessibility data in embryonic
development stage 5 (see Materials and Methods). We
also note that although the modeling setup was kept mostly
identical to that of He et al. (21), we made one change, com-
mon to both GEMSTAT and GEMSTAT-A modeling: the
wPGP score was used to measure the goodness of fit
between experimentally observed and model-predicted
enhancer readouts (see Materials and Methods).

Expression predictions from GEMSTAT and GEMSTAT-
A for each enhancer were evaluated using the wPGP
score. These are shown in Fig. 2 and Table S1. Overall,
GEMSTAT-Awas evaluated at a wPGP score of 0.773 (aver-
aged over 37 enhancers), whereas GEMSTAT showed an
average wPGP of 0.745 (average cross-validation wPGP is
0.741 for GEMSTAT-A and 0.679 for GEMSTAT (see Table
1 for details). GEMSTAT-A produced better fits than
GEMSTAT (wPGP score improved by R0.05) on 15 of
37 enhancers (Fig. S2 A), whereas it produced worse fits
than GEMSTAT on 6 of 37 enhancers (Fig. S2 C). (Within
the former group of 15 better-predicted enhancers, the
average wPGP score improved by 0.18.) These 21 cases
included enhancers where one of the models had a wPGP
score %0.5, which in our experience (also see Fig. S2) is
a sign that the model failed completely on that enhancer;



TABLE 1 10-fold cross-validation assessment of GEMSTAT

and GEMSTAT-A

Model No. of parameters Training wPGP CV wPGP (SD)

GEMSTAT-A 16 0.773 0.741 (0.005)

GEMSTAT 15 0.745 0.679 (0.008)

Each model was tested with 10-fold cross-validation, repeated five times

with different (random) definitions of the 10 folds. Shown for each model

are the number of free parameters used, the wPGP score from parameter

optimization over all 37 enhancers (Training wPGP), and the wPGP score

from cross-validation (CV wPGP) averaged (with standard deviation

(SD) in parentheses) over the five repeats.
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the differences in fits on these enhancers are likely not due
to consideration of accessibility data directly but to the
different parameter settings utilized by the two models.
Ignoring these cases, we can identify 11 cases where
GEMSTAT-A fits the data better and four enhancers where
it fits worse than GEMSTAT (Table S1, last column). We
interpret this as strong evidence that incorporating chro-
matin accessibility data improves gene-expression predic-
tions. To better appreciate the nature of the differences
between the two models in their fits and to qualitatively
assess the improvement due to accessibility information,
we plotted the model predictions along with real expression
patterns for a selection of enhancers (Figs. 3 and S2).
FIGURE 3 Expression predictions from GEMSTAT and GEMSTAT-A. The p

(purple lines) are compared to experimentally determined readouts (black lines)

0 to 1 (y axis) and shown for the region between 20% and 80% of the A/P axis of

by GEMSTAT-A (G-A), wPGP by GEMSTAT (G). To see this figure in color, g
We noted that on some enhancers (e.g., those in Fig. 3,
upper row), GEMSTAT-A fits showed refinements of
GEMSTAT predictions, resulting in more accurately defined
boundaries of expression domains. On other enhancers, there
were more qualitative improvements, e.g., GEMSTAT-A
correctly models the posterior domain of gt_(�1), correctly
removes a spurious anterior domain prediction made by
GEMSTAT on the enhancer pdm2_(þ1), and dramatically
improves upon the boundaries of the predicted expression
domain of the enhancer nub_(�2). Interestingly, the change
in GEMSTAT-A’s prediction from the GEMSTAT prediction
is more accurate biologically for some cases, although the
prediction does not match the data. For example, the poste-
rior expression in our predicted readout for eve_37ext_ru is
indeed in those locations along the A/P axis where the
seventh stripe of the eve gene is formed. A detailed compar-
ison of relative successes and failures as well as examples
where one model completely failed to capture the spatial
pattern driven by an enhancer whereas the other model
was successful are shown in Fig. S2.

Thus, our initial observations on model fits over all
enhancers indicated, both quantitatively and qualitatively,
a conspicuous improvement due to chromatin accessibility
data. Rigorously speaking, GEMSTAT-A fits are expected
to be at least as good as GEMSTAT, since the former has
redicted expression profiles of GEMSTAT-A (orange lines) and GEMSTAT

for six selected enhancers. Each expression profile is on a relative scale of

the embryo. The label of each panel is in the format enhancer name, wPGP

o online.
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one extra parameter, the accessibility effect kacc. A common
method of comparing models of varying complexity is to
evaluate their cross-validation accuracy (21). We therefore
performed 10-fold cross-validation with either model,
where each fold uses 33–34 of the 37 enhancers as training
data and the remaining three to four enhancers as the testing
data. Since partitioning of the 37 enhancers into 10 folds is
done at random, we repeated the entire 10-fold cross valida-
tion exercise five times (with different random partitioning
in each repeat) for each model. The average cross-validation
wPGP across all five runs of 10-fold cross-validation was
0.679 and 0.741 for GEMSTAT and GEMSTAT-A, respec-
tively (Table 1). (Detailed results from cross-validation are
shown in Table S3.) This analysis clearly shows the
improved ability of GEMSTAT-A, compared to GEMSTAT,
to predict expression readouts, even after accounting for the
additional free parameter.

To verify the above effect further, we next repeated the
modeling exercise by 1) using accessibility data from em-
bryonic stage 14 instead of from the earlier embryonic stage
5 to which the expression data correspond, 2), using a
randomly shuffled version of the normalized accessibility
scores across the whole genome and extracting local acces-
sibility profiles in the 37 enhancers, or 3) shuffling the
accessibility scores across the 37 enhancers. (The last exer-
cise was motivated by the fact that enhancers are known to
have higher accessibility in general, and genome-wide
permutation of accessibility scores is likely to assign low
accessibility values within enhancers, thus presenting an
unrealistic random control.)

GEMSTAT-A was trained on these three different incor-
rect settings of chromatin accessibility data and then evalu-
ated by the wPGP score (Tables 2 and S4). In all three cases,
the advantage of GEMSTAT-A over GEMSTATwas entirely
lost, and the optimal value of the kacc parameter reported
was weak or close to 0, suggesting that the model found
TABLE 2 Effect of chromatin accessibility data used in

GEMSTAT-A

Model DNA accessibility data wPGP Kacc

GEMSTAT No accessibility data 0.745 N/A

GEMSTAT-A Embryonic stage 5 0.773 17.6

GEMSTAT-A Embryonic stage 14 0.742 4.62

GEMSTAT-A Shuffling across whole genome 0.734 0.91

GEMSTAT-A Shuffling across all enhancers 0.735 0.97

Results from GEMSTAT-A trained with different variations on input chro-

matin accessibility data: data from embryonic developmental stage 5 (stage

matching the modeled expression patterns), embryonic stage 14 (mis-

matched stage), or two different randomly shuffled versions of the stage

5 data (see text). Also shown, in the first row, is the result from GEMSTAT,

which does not use accessibility data. For each variation of input accessi-

bility data, shown are the wPGP score (averaged over 37 enhancers) and

the optimized value of the accessibility effect parameter (kacc). Results in

the last two rows (shuffled versions of stage 5 accessibility data) are

averaged over three different repeats of the assessment (using different

random shuffling).
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no advantage to using the incorrect accessibility data. These
negative controls thus confirmed that the improved fits
found by GEMSTAT-A are mainly due to using chromatin
accessibility data from the appropriate developmental stage.
GEMSTAT-A learns much stronger
thermodynamic parameters

In the process of training sequence-to-expression models,
information about inputs (enhancer sequences and trans-
regulatory context) and output (expression pattern driven
by enhancers) of a regulatory function is used to automati-
cally learn values for the free parameters of the model.
Both GEMSTAT and GEMSTAT-A utilize two free parame-
ters for each TF. One of these TF-specific parameters is
called the DNA binding weight parameter (bindingWt),
which helps estimate the occupancy of the TF at a binding
site. The other is called the transcription effect parameter
(txpEffect), which represents the strength of activation or
repression due to a DNA-bound TF molecule. These param-
eters have intuitive semantics, so their optimal values re-
ported by a trained model are of interest; for example,
these values indicate whether TFs bind their respective
consensus site strongly or weakly, whether one activator is
more effective than another, etc. In other words, the trained
model parameters paint a quantitative picture of the under-
lying regulatory mechanisms. It is natural to ask whether
two models trained on the same data, identical in all respects
except that one is aware of accessibility data and one is not,
suggest similar quantitative views of the underlying mecha-
nistic reality. We examined the optimal values of the bind-
ingWt and txpEffect parameters for each of the six
TFs used in the model, as learned by GEMSTAT and
GEMSTAT-A separately. We were surprised to see that the
same parameters were often trained to very different values:
GEMSTAT-A was found to learn much stronger parameters
(in some cases one to two orders of magnitude stronger)
than GEMSTAT. The bindingWt parameter of both
activators and repressors was assigned a greater value
(stronger binding strengths) by GEMSTAT-A compared to
GEMSTAT (Fig. 4 A and Table S2). The bindingWt param-
eter of HB was around 50-fold greater in GEMSTAT-A,
whereas that of KNI was ~13-fold greater. The txpEffect
parameter describes the regulatory effect of a TF and takes
values>1 for activators and<1 for repressors. We observed
that GEMSTAT-A assigned values to the activator TFs BCD
and CAD that were about twofold greater than values
learned by GEMSTAT (Fig. 4 B and Table S2). Likewise,
for three of the four repressor TFs (GT, KNI, and KR),
GEMSTAT-A assigned lower txpEffect values, reflecting
stronger repression ability, especially in the case of KR,
whose txpEffect was ~20-fold stronger in GEMSTAT-A.

The apparent discrepancy between the optimal para-
meter settings found by GEMSTAT and those found by
GEMSTAT-A may be an artifact of the optimization



FIGURE 4 GEMSTAT-A learns stronger parameter values. Shown are

the bindingWt (A) and txpEffect (B) parameters of each TF learned from

GEMSTAT (x axis) and GEMSTAT-A (y axis). In both A and B, both

axes are on a logarithmic scale. Repressors are represented by triangles

and activators by circles. The txpEffect parameter for an activator is >1,

and higher values indicate stronger activation. This parameter for a

repressor is <1, and lower values indicate stronger repression.
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procedure, with the two models finding two distant local op-
tima in the search space. To address this, we repeated the
optimization procedure for GEMSTAT by initializing the
search at the optimal parameter values found by GEM-
STAT-A. If GEMSTAT can explain the data well with
parameter settings in the neighborhood of this initial point,
then the discrepancy between optimal models noted above is
not real. However, this new optimization produced a wPGP
score of 0.72, which is inferior to that reported by the orig-
inal GEMSTAT optimization, thus suggesting that the two
models do indeed reach their best fits with dramatically
different parameter values. We speculate on the implications
of this observation in the Discussion section.
GEMSTAT-A improves expression prediction by
reducing the contribution of inaccessible binding
sites

We showed above that GEMSTAT-A is able to achieve bet-
ter predictions of enhancer readouts with a simple modifica-
tion of the estimated binding energy of a TF at its sites. This
suggests the existence of TF binding sites in relatively inac-
cessible segments within the enhancer, which GEMSTAT
was forced to incorporate in its predictions but which
GEMSTAT-A could ignore by exploiting accessibility infor-
mation. We investigated this potential explanation of why
GEMSTAT-A produces better fits. For each annotated bind-
ing site within the enhancer (recall that these are identical
between the two models), we removed the accessibility
information for that site only, designating it as completely
accessible (Acc(S) ¼ 1), and recomputed the expression
profile predicted by GEMSTAT-A. The new goodness of
fit (wPGP) was calculated and compared to the original
wPGP score of GEMSTAT-A for that enhancer. The differ-
ence in wPGP values, for the same model with or without
use of accessibility information on that site, was plotted
for each site (DwPGP in Fig. 5 A). We also plotted the
change in estimated binding energy of each site due to incor-
poration of local accessibility values (DDE in Fig. 5 B).
(Parameters were not retrained in this analysis. See Table
S6 for details.)

Fig. 5 shows examples of the above-mentioned explana-
tion of how GEMSTAT-A improves fits by weakening the
estimated binding energy of sites in less accessible regions.
One such example is that of the enhancer gt_(�1), where
both GEMSTAT and GEMSTAT-A correctly predict the
anterior domain, but the posterior domain (~70–80% of
the A/P axis) is not predicted by GEMSTAT and is correctly
predicted by GEMSTAT-A (Fig. 5 C, left). A natural expla-
nation for this difference is that binding sites capable
of repressing expression in the posterior domain are
present in less accessible regions of the enhancer, and
although GEMSTAT-A ignores their potential contribution,
GEMSTAT includes this contribution, leading to the
absence of a posterior domain in its prediction. Indeed,
Fig. 5 A (left) shows that a binding site of the repressor
GT, located at position ~250 in the enhancer, is one such
site: if GEMSTAT-A were to designate this site as acces-
sible, its goodness of fit (wPGP) would diminish by ~0.03.
Fig. 5 B shows that the estimated binding energy of this
GT site was indeed lower due to local accessibility values.
The same figure also shows a KR site (at position ~300)
that is inaccessible, but whose accessibility score is not
relevant to the fits of GEMSTAT-A for this enhancer.

A similar explanation applies to the enhancer
pdm2_(þ1), for which GEMSTAT incorrectly predicted
an anterior domain of expression, whereas GEMSTAT-A
correctly predicted lack of expression in the anterior
(Fig. 5 C, middle). The natural explanation for this
Biophysical Journal 108(5) 1257–1267



FIGURE 5 Accessibility of individual sites is utilized by GEMSTAT-A to improve predictions. Details of GEMSTAT-A modeling on enhancers gt_(�1),

pdm2_(þ1), and cnc_(þ5) are shown in the left, middle, and right columns, respectively. (A) Change in goodness of fit (DwPGP) of GEMSTAT-A predictions

when a binding site’s accessibility score is forced to a value of 1 (maximum accessibility), shown for each site as a function of its location in the enhancer. (B)

Reduction in estimated binding energy (DDE) due to local accessibility is shown for each annotated binding site as a function of the site’s location in the

enhancer sequence. Only sites for a subset of TFs (repressors at left and activators at middle and right) are shown. (C) Predicted expression profiles of

GEMSTAT-A (orange lines) compared to GEMSTAT predictions (purple lines) and experimentally determined readouts (black lines).
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difference is the existence of an activator site capable of
driving anterior expression, whose local inaccessibility
leads GEMSTAT-A to ignore the site but whose inclusion
leads GEMSTAT to predict the spurious anterior expression.
Fig. 5 B (middle) shows that there are several BCD sites in
the enhancer that satisfy this property; BCD is expressed
anteriorly (Fig. S1) and its sites are therefore capable of
causing GEMSTAT to predict anterior expression unless
their effect is ignored based on local chromatin inaccessi-
bility. Thus, these two examples provide deeper insights
into how GEMSTAT-A can use local accessibility to sup-
press the activating or repressive effects of binding sites,
leading to more accurate predictions of enhancer readout.
Biophysical Journal 108(5) 1257–1267
The above analysis also explains why GEMSTAT-A
performed poorly on a few enhancers. One such example
is the enhancer cnc_(þ5), where GEMSTAT-A failed
to predict the anterior expression domain (Fig. 5 C,
right). This enhancer has several BCD sites in relatively
inaccessible locations (Fig. 5 B, right), and by ignoring
or diminishing their potential activating influence,
GEMSTAT-A loses its ability to predict the anterior
domain. Indeed, if it were to ignore the accessibility
scores of these sites (i.e., if it assumed that they are
accessible), its wPGP value would improve, as revealed
by Fig. 5 A (right). Such aberrant cases were rare in
our evaluations, and may be attributed to the spatial
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resolution of accessibility data (see Discussion), among
other possibilities.
DISCUSSION

Quantitative models such as GEMSTAT have been shown to
have the expressive power to capture the complex relation-
ship between regulatory sequence and precise gene-
expression patterns, i.e., the so-called cis-regulatory code
(6,13). Their appeal lies in achieving this expressiveness
within a biophysically motivated framework (so that fit
models can be interpreted more easily) while making sim-
plifications that hide mechanistic details on which little
information is available. One such simplification heretofore
has been to model TF-DNA binding as entirely determined
by the binding site and the PWM, by adopting Berg and von
Hippel’s theory (48,50). The role of local chromatin struc-
ture and epigenetic modifications has been ignored in these
models, understandably so, since appropriate data for
learning this role have been lacking. (Also, the few existing
models for predicting nucleosome occupancy profiles
(51–53) have not reached the level of accuracy necessary
for coupling them to enhancer models (data not shown).)
However, the recent wave of studies profiling the chromatin
landscape, especially DNA accessibility, in specific cell
types (54) or developmental stages (23) has changed this
situation. Our work responds to this exciting new develop-
ment in regulatory genomics by incorporating DNA accessi-
bility data into sequence-to-expression models and asking
whether this may at least partly address the limitations intro-
duced by the simplification mentioned above. We find the
answer to be in the affirmative, at least in the context of
our modeling framework and the data set analyzed here.

We note that the role of chromatin accessibility in
sequence-based models of gene expression has not been pre-
viously studied. There have been several interesting compu-
tational analyses of accessibility data that have shown the
prodigious impact of accessibility on TF-DNA binding pro-
files (23,30,35), as well as the correlation between changing
accessibility and changing expression (29,54,55), but these
studies do not quantify the impact of accessibility data on
sequence-based prediction of precise spatiotemporal expres-
sion patterns. We also note that our answer to the above-
mentioned question did not have to be affirmative. Even
though accessibility clearly shapes expression (24), its influ-
ence might have been simply in making the entire enhancer
available for function; in this case, a modeling study that
already begins the assumption of an open enhancer will
not gain any significant advantage from accessibility data.
Our affirmative answer suggests a more nuanced role, where
variation of accessibility within the enhancer carries infor-
mation useful for the functional interpretation of the binding
sites present in the enhancer.

It is worth noting that GEMSTAT-A is a phenomeno-
logical extension that adds accessibility information to
GEMSTAT. In reality, chromatin accessibility is likely the
result of complex processes involving the nucleosome,
TFs, chromatin remodeling factors, and DNA (sequence)
(56). Future sequence-to-expression models may strive to
incorporate these processes directly at suitable levels of
parameterization, with accessibility being an intermediate
dependent variable predicted from sequence and the cellular
context rather than an independent variable, as is the case in
GEMSTAT-A. One example of such future work is to
model the influence of pioneer factors (57), which exhibit
sequence-specific binding and seem to remodel the accessi-
bility profile locally. The transcription factor ZELDA is a
strong candidate for this special treatment in the context
of our data set, with recent studies recording its widespread
and significant regulatory influence (58,59) on many of the
gene-expression patterns we have modeled here. Computa-
tional (30) and experimental (58) work have strongly sug-
gested that this influence is mediated via accessibility, and
it has been noted that the ZELDA binding motif is highly
enriched in hot spots of multi-TF binding (60). It is expected
that a part of the advantage of using accessibility data will
be observed if GEMSTAT is modified to use ZELDA as a
DNA-binding protein that makes local chromatin more
accessible. We chose not to use ZELDA as one of the regu-
latory inputs in this work, so that we would get a more
accurate view of the role of accessibility variations in
shaping expression readouts of enhancers.

In principle, the data used as input to GEMSTAT-A
should correspond to a cell type—in our case, position along
the A/P axis of the embryo. This is the case for the TF con-
centration profiles used here, with GEMSTAT-A making
separate predictions for each bin along the A/P axis, using
relative TF concentration values for that bin. However,
this is not the case for the accessibility data used, which
correspond to whole embryo measurements. We thus
believe that the advantage observed by us is an underesti-
mate of what cell-type-specific accessibility data, already
available in other contexts (24,54), can confer upon
sequence-to-expression models. For instance, the coarse-
ness of accessibility data might negatively impact the accu-
racy of GEMSTAT-A on an enhancer that functions for a
short period of time (compared to the longer period over
which the accessibility data is aggregated), or an enhancer
driving expression in relatively few cells of the embryo.
This may explain some failures of GEMSTAT-A modeling.
For the enhancer oc_(þ7), for example, we found that sites
for HB (a repressor which presumably limits the gene’s
expression in a narrow anterior domain) are mostly in the
inaccessible regions (data not shown). This might have
caused GEMSTAT-A to predict a broad ectopic expression
pattern for this enhancer (Fig. S2 C). It is also worthwhile
to note that we used the wPGP score to measure the good-
ness of fit. In some cases, wPGP scores do not reflect our
visually perceived quality of fit. The wPGP score has been
found to be a superior choice in comparison to the two
Biophysical Journal 108(5) 1257–1267
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commonly used goodness-of-fit scores, namely, the sum of
squared errors and the correlation coefficient (36,38). Our
experiences from these published studies were convincing
enough for us to choose wPGP as the goodness-of-fit score
here. Future work will continue improving the design of
goodness-of-fit scores for such models.

An interesting observation made during our model com-
parisons (with and without accessibility data) was that the
parameter values learned in GEMSTAT-A fits were stronger
than those learned in GEMSTAT fits. Stronger parameter
values for a TF imply that each binding site of that TF is
regarded as having a greater contribution to the enhancer’s
function. To see why this might be the case, suppose that
an enhancer has two TF binding sites for the same TF,
and that each of these sites has the same binding affinity
and concentration, but one site is accessible and the other
is not. In GEMSTAT, each TF binding site is supposed
to be completely accessible, so the two sites make
equal contributions to the gene expression. However,
GEMSTAT-A is aware that one of the binding sites is inac-
cessible and will therefore attribute greater contribution
to the accessible site to achieve the same level of gene
expression. This will result in GEMSTAT-A using stronger
parameter values.
CONCLUSIONS

In conclusion, we have shown here for the first time, to our
knowledge, how thermodynamic models of enhancer read-
outs may leverage accessibility information to explain the
data with higher accuracy. We have commented above on
the limits of the accessibility data used here, and we expect
that the potential shortcomings of using embryo-wide data
may be alleviated by refined, cell-type-specific data in the
future. This study also makes it more interesting to assess
additional mechanisms of accessibility and the role of his-
tone modifications. These will be subjects of our future
studies. Finally, although we demonstrate the utility of our
modeling for a model organism, the impact of this modeling
framework will be much higher if data on mammalian gene-
expression levels under a large number of different condi-
tions are available, along with experimentally derived
knowledge of the major regulators under those conditions.
Extending this framework to mammalian systems will be
a major direction for future research.
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