Note

Palindrome positions in ternary square-free words

James D. Currie

Department of Mathematics and Statistics, University of Winnipeg, Canada

Received 4 May 2006; received in revised form 14 December 2006; accepted 16 September 2007

Communicated by M. Crochemore

Abstract

We answer a question of Brešar et al. about the structure of non-repetitive words: For any sequence A of positive integers with large enough gaps, there is a ternary non-repetitive word having a length 3 palindrome starting at each position $a \in A$. In fact, we can find ternary non-repetitive words such that for each $a \in A$, the length 3 subword starting at position a is a palindrome or not, as one chooses. This arbitrariness in the positioning of subwords contrasts markedly with the situation for binary overlap-free words.

Keywords: Non-repetitive sequences; Overlap-free sequences; Palindromes

1. Introduction

Counter-examples in many areas, including formal language theory, logic, partial orders, group theory, algebra, and dynamical systems [4,5,9,1,6,8] have been built from infinite non-repetitive ternary sequences, sometimes with additional structure. Brešar et al. [2], studying repetitiveness in trees, pose the following question:

Is there a set A of positive integers with gaps of size at least k, so that whenever S is a non-repetitive sequence over \{1, 2, 3\}, then a length 3 palindrome is guaranteed to occur in S at some position $a \in A$?

A word w is repetitive if it can be factored as $w = uvvz$, where v is a non-empty word. Otherwise, it is non-repetitive. In this note we show that for any set A with large gaps, there are ternary non-repetitive sequences such that, for each $a \in A$, the length 3 subword starting at position a is a palindrome or non-palindrome, just as one chooses. Thus length 3 palindromes may appear or not at any desired locations arbitrarily, as long as the specified locations are not too close together.

The analogous behaviour does not occur for binary overlap-free words: In binary words, the length 2 subwords divide into squares (viz. 00, 11) and non-squares (viz. 01, 10). Let w be a binary overlap-free sequence. It is well known (see [3] for example) that if a length 2 square starts at position $n \geq 3$ in w, then the length 2 subword starting at position $m > n$ is a non-square whenever $m \not\equiv n \pmod{2}$. In the analog of Brešar’s question, one may thus choose $A = \{3, 4 + 2[k/2]\}$. Any overlap-free binary sequence contains a non-square starting at some position $a \in A$.

E-mail address: currie@uwinnipeg.ca.

0304-3975/8 - see front matter © 2008 Published by Elsevier B.V.
doi:10.1016/j.tcs.2007.09.015
We freely use notions of combinatorics on words, as found in [7], for example. For a positive integer \(n \) we say that word \(v \) occurs in position \(n \) in word \(w \) if we can write \(w = uvz \), where \(|u| = n - 1 \). If \(A \) is a set of integers, the gaps of \(A \) are the differences \(\{|a - b| : a, b \in A, a \neq b\} \). A palindrome of length 3 will be called a 3-palindrome; a non-palindrome of length 3 will be called a 3-non-palindrome.

2. Constructing some non-repetitive sequences

Let \(f : \{1, 2, 3\}^* \to \{1, 2, 3\}^* \) be the morphism generated by
\[
\begin{align*}
f(1) &= 123 \\
f(2) &= 13 \\
f(3) &= 2.
\end{align*}
\]
Let \(w = \lim_{n \to \infty} f^n(1) \) be the fixed point of \(f \). It is well known that \(w \) is non-repetitive, and that neither 121 nor 323 is a subword of \(w \). Let \(u = 23213231232 \), \(\bar{u} = 232131232 \). Thus \(u \) is obtained from \(\bar{u} \) by replacing the second occurrence of 3 by 323. Since \(u \) contains 323 as a subword, \(u \) is not a subword of \(w \). On the other hand, \(\bar{u} \) is a subword of \(f^5(1) \), and hence appears in \(w \) infinitely often, with bounded gaps.

Lemma 2.1. Let \(v \) be obtained from \(w \) by replacing some occurrences of \(\bar{u} \) with \(u \). Then \(v \) is non-repetitive.

Proof. We note first that \(v \) cannot contain the specific repetition 123123. Suppose nevertheless that \(v \) is repetitive, and write \(v = pxxs, x \neq \epsilon \). Let \(m \) occurrences of \(u \) overlap this occurrence of \(xx \) in \(v \). Without loss of generality, we may assume that these are the only occurrences of \(u \) in \(v \). Assume further that \(v \) is chosen to make \(m \) as small as possible. Since \(w \) is non-repetitive, we must have \(m \geq 1 \).

Let \(\hat{x} \) be obtained by replacing each occurrence of 323 in \(x \) by 3. If \(\hat{x} \neq x \), then \(\hat{v} = px\hat{x}x \) contains the non-empty square \(\hat{x}\hat{x} \), but is obtained from \(w \) by replacing at most \(m - 2 \) occurrences of \(\bar{u} \) with \(u \). This contradicts our choice of \(v \). We may assume then that \(\hat{x} = x \), and thus that 323 is not a subword of \(x \).

There is a 323 in the center of \(u \), but 323 is not a subword of \(x \); therefore, a copy of \(u \) overlapping \(xx \) must either (i) overlap the beginning of \(xx \), (ii) span the two copies of \(x \), or (iii) overlap the end of \(xx \):

```
       u
      /   \
     x   x
```
or

```
       u
      /   \
     x   x
```
or

```
  x   x
       u
```

Claim 2.2. Either \(x \) starts with 231232 or \(x \) ends in 232132.

Proof of Claim 2.2. Suppose that \(u \) overlaps the beginning of \(xx \) in a suffix \(y \). Suppose that \(|y| \leq 5 \). Write \(v = qryzxs \) where \(u = ry, x = yz \).

```
     g  r  y  z
    /   /   \
   p   x   x
```

Every suffix of \(u \) of length 5 or less is also a suffix of \(\bar{u} \). Thus \(y \) is also a suffix of \(\bar{u} \), so that the word \(q\bar{u}zxs \) also contains \(xx \). However, \(q\bar{u}zxs \) only contains \(m - 1 \) occurrences of \(u \). This contradicts our choice of \(v \). We conclude that \(|y| \geq 6 \).
Any suffix of \(u \) of length 7 or more contains 323, which is not in \(x \). It follows that \(|y| = 6 \); thus \(y = 231232 \).

We have shown that the present claim is true in the case where \(u \) overlaps the beginning of \(xx \). Symmetrically, the claim is true if \(u \) overlaps the end of \(xx \). Suppose then, that \(u \) overlaps neither the beginning nor the end of \(xx \), but spans the two copies of \(x \). Write \(x = qr = yz \) where \(ry = u \).

Since neither \(r \) nor \(y \) can contain 323, we must have either

\[
 r = 23213 \quad \text{and} \quad y = 231232
\]

or

\[
 r = 232132 \quad \text{and} \quad y = 31232.
\]

This establishes the claim. \(\square \)

Suppose \(x \) begins with 231232. Word 1x then begins with 123123, which is not a subword of \(v \). We conclude that every occurrence of \(x \) in \(w \) must be preceded by a 3. Since \(x \) precedes \(x \) in \(xx \), word \(x \) must end in a 3. We may therefore write \(x = 231232y3 \), for some word \(y \), and \(v = q3x|x = q3231232y32312323y3s \) where \(p = q3 \). Relabelling with \(P = q \), \(X = 321232y \), \(S = 3s \), we find \(v = PXXS \), but with 323 a subword of \(X \). As we have seen, this contradicts the minimality of \(m \) in our choice of \(v \). A similar contradiction arises if \(x \) ends in 232132. \(\square \)

3. Putting 3-palindromes in specified positions

Fix \(N_0 \) such that every subword of \(w = \lim_{n \to \infty} f^n(1) \) of length at least \(N_0 \) contains seven or more occurrences of \(\bar{u} = 232131232 \). These occurrences will necessarily be mutually non-overlapping.

Theorem 3.1. Let \(A = \{a_n\} \) be a sequence of positive integers such that \(a_{n+1} - a_n \geq N_0 \) for each \(n \). Let \(\pi : \mathbb{N} \to \{P, N\} \) be a function. There exists a ternary non-repetitive sequence \(v = \{v_i\}, v_i \in \{1, 2, 3\}, \) such that for each \(m, v_{a_m}v_{a_m+1}v_{a_m+2} \) is a 3-palindrome if and only if \(\pi(m) = P \).

Proof. Since \(w \) contains both 3-palindromes and 3-non-palindromes, by deleting a prefix of \(w \) we can obtain a ternary sequence \(u_1 \) which has a 3-palindrome in position \(a_1 \) if and only if \(\pi(1) = P \). We create a sequence of ternary non-repetitive sequences \(u_1, u_2, u_3, \ldots \) such that for each \(n \geq 1 \)

1. each \(u_n \) is obtained by replacing finitely many occurrences of \(\bar{u} \) with \(u \) in \(u_1 \),
2. the only occurrences of subwords 121 or 323 in \(u_n \) are in its prefix of length \(a_n \),
3. for each \(m \leq n, u_n \) contains a 3-palindrome at position \(a_m \) if and only if \(\pi(m) = P \),
4. \(u_n \) and \(u_{n+1} \) are identical on a prefix of length \(a_n \).

Suppose that word \(u_n \) has been obtained. It may already be the case that

\[u_n \text{ contains a 3-palindrome at position } a_{n+1} \text{ if and only if } \pi(n+1) = P. \]

In this case, we specify \(u_{n+1} = u_n \). Otherwise, write \(u_n = pqr \), where \(|p| = a_n, |q| = a_{n+1} - a_n + 2 \). Note that since \(a_{n+1} - a_n \geq N_0 \), word \(q \) contains at least seven occurrences of \(\bar{u} \).

The following claim is easily verified by hand:

Claim 3.2. Let \(q \) be a non-repetitive word over \{1, 2, 3\} of length at least 8, and not containing either of 121 or 323 as a subword.

- There is no \(s \) such that \(q \) has 3-palindromes in positions \(s, s+2 \) and \(s+4 \).
- There is no \(s \) such that \(q \) has 3-non-palindromes in each position \(s+2i, 0 \leq i \leq 7 \).

Remark 3.3. The word \(q = 21312313213231 \) has 3-non-palindromes in each position \(1+2i, 0 \leq i \leq 6 \).
Suppose that $\pi(n + 1) = N$, but that a 3-palindrome occurs at position a_{n+1} in u_n. This means that q contains a 3-palindrome in position $a_{n+1} - a_n$. Alter u_n by replacing the first occurrence of \bar{u} in q with u. Call the resulting sequence u'_n. If u'_n has a 3-non-palindrome in position a_{n+1}, let $u_{n+1} = u'_n$. Otherwise, since $|u| = |\bar{u}| + 2$, q contains a 3-palindrome in position $a_{n+1} - a_n - 2$ also. If this is the case, alter u'_n by now replacing the next occurrence of \bar{u} from q with u. Call the resulting sequence u''_n. This new sequence u''_n will contain a 3-palindrome in position a_{n+1} if and only if q contains a 3-non-palindrome in position $a_{n+1} - a_n - 4$. This would violate our Claim, with $s = a_{n+1} - a_n - 4$. We conclude that u''_n contains a 3-non-palindrome in position a_{n+1}, and we let $u_{n+1} = u''_n$.

The analogous construction is undertaken in the case where $\pi(n + 1) = P$, but a 3-non-palindrome occurs at position a_{n+1} in u_n. In this case, by the Claim, we find the desired u_{n+1} after at most seven replacements of \bar{u} by u.

This completes the construction of the sequences u_n, $n \in \mathbb{N}$. Let the prefix of u_n of length a_n be z_n. The sequence $v = \lim_{n \to \infty} z_n$ is our desired sequence. □

References