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a b s t r a c t

Uniform resampling is the easiest to apply and is a general recipe for all problems, but it
may require a large replication size B. To save computational effort in uniform resampling,
balanced bootstrap resampling is proposed to change the bootstrap resampling plan. This
resampling plan is effective for approximating the center of the bootstrap distribution.
Therefore, this paper applies it to neural model selection. Numerical experiments indicate
that it is possible to considerably reduce the replication size B. Moreover, the efficiency of
balanced bootstrap resampling is also discussed in this paper.

Crown Copyright© 2011 Published by Elsevier Ltd. All rights reserved.

1. Introduction

It is well-known that backpropagation multilayer perceptrons (MLPs) are often used to describe neural network
structures. Their applications are in a wide range of areas, such as pattern recognition, signal processing, data compression,
and automatic control. A backpropagationMLP is an adaptive networkwhose nodes (or neurons) perform the same function
on incoming signals; and this node function is usually a composite of theweight sumand adifferentiable nonlinear activation
function. Three activation functions are themost commonly used in backpropagationMLPs: logistic, hyperbolic tangent and
identity functions. In this paper, for simplicity, we assume that the logistic function is used in backpropagation MLP.

Let (x1, x2, . . . , xp) be a a set of p explanatory variables to explain a continuous variable y. An MLP with p inputs, one
hidden layer with H hidden units and one output layer is used to model these data as follows:

y = w0 +

H
h=1

whφ


bh +

p
j=1

wjhxj


+ ϵ, (1)

where ϵ is the residual term, with zero mean, variance σ 2 (with normal distribution or not), and φ is the logistic function.
Let y(x; θ) be the computed value for an input x = (x1, . . . , xp) and a parameter θ = (w0, w1, . . . , wH , w11, . . . , wpH).
For MLPs, the choice of an appropriate mode is an important problem. Kallel et al. [1] applied the bootstrap method [2]
for neural model selection, since it is more effective than the leave-one-out method. To reduce the bootstrap method’s
computational load, Lendasse et al. [3] proposed a fast bootstrap (FB)methodology for regressionmodel selection. According
to their numerical experiments on multi-layer perceptrons, radial-basis function networks and least-square support vector
machines, the FB can reduce the bootstrap replication size. However, they do not discuss the asymptotic efficiency of FB
relative uniform resampling (i.e., the original bootstrap method). Recently, Chuang et al. [4] proposed a weighted bootstrap
to selection model for MLPs. Based on their numerical results, the performance of the weighted bootstrap is better than
the bootstrap method. However, there is a problem in Chuang et al. [4]: How to select the optimal weight in the weighted
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bootstrap? To solve this problem, we apply the balanced bootstrap resampling, which is not necessary to select the weight,
to selection model for MLPs.

The remaining of this paper is organized as follows. In Section 2 we apply an efficient bootstrap-balanced resampling-to
selection model for MLPs. The balanced resampling scheme ensures that each data appears the same number of times in all
the resamples. Furthermore, the asymptotic efficiency of balanced resampling relative uniform resampling is considered in
Section 3. Some numerical results are given in Section 4 and conclusions are given in the last section.

2. Balanced resampling in selection model for MLPS

While the bootstrap is based on the principle of substitution and mimicking sampling behavior, its application is carried
out with data resampling, the Monte Carlo method is required for computing the bootstrap estimators. The robustness
property of the bootstrap provides a strong motivation for the use of this data-resampling method. Although the simple
Monte Carlo method is easy to use, the cost and time of the computations may be a burden. Therefore, it is necessary to
develop some bootstrap computational methods that are more efficient than the simpleMonte Carlo method so that we can
reduce the number of computations.

By viewing the bootstrap sampling as aMonte Carlo estimate, Davison et al. [5] and Davison [6] introduced the technique
of balanced resampling to reduce the computation effort. The balanced resampling plan is similar to a balanced randomized
block design. An algorithm for performing balanced resampling has been described by Gleason [7]. Hall [8] discussed
the asymptotic efficiency of balanced resampling relative to uniform resampling, in problems of distribution function
and quantile estimations. It turns out that the balanced resampling is considerably more efficient compared to uniform
resampling in estimating the central probabilities.

Let B0 be a data set of size n,
B0 = {(x1; y1), . . . , (xn; yn)},

where xi is the ith value of a p-vector of explanatory variables and yi is the response to xi. First, we use the data set B0 to
estimate the parameter θ of the model (1) and the resulting least-squares estimator of θ is denoted by θ̂ . Thus, the residual
for the ith observation is denoted by ei and is defined as follows:

ei = yi − y(xi; θ̂ ),

and the sum of squares, denoted by SSE, is:

SSE =

n
i=1


yi − y(xi; θ̂ )

2
=

n
i=1

e2i ,

where SSE stands for the error sum of squares or residual sum of squares. Hence, the appropriate mean square error, denoted
by MSE, is:

MSE =
SSE
n

=

n
i=1

e2i

n
,

where MSE stands for error mean square or residual mean square.
The standard deviation σ of the residual term ϵ in model (1) needs to be estimated for indicating the variability of the

probability distributions of y. In this study, we use
√
MSE to estimate σ . For convenient,

√
MSE is denoted by σ̂ . It is natural

to pose the basic question: ‘‘How accurate is σ̂?’’. If we know the distribution of
√
n(σ̂ − σ), that is,

F(x) = P
√

n(σ̂ − σ) ≤ x

,

then we automatically solve this problem. Following the recipe for obtaining bootstrap variance estimators, we can
immediately obtain the bootstrap estimator of F(x). In general, the bootstrap estimator of F(x) does not have an explicit
form. However, we may use a Monte Carlo method to approximate the bootstrap estimator of F(x).

For the bootstrap approximation of the distribution of
√
n(σ̂ − σ), based on B0. Instead of drawing B random samples

(with replacement) uniformly from the original data set, B0 = {(x1; y1), . . . , (xn; yn)}, we apply the balanced resampling
technique to obtain the bootstrap samples in the Monte Carlo simulation procedure. The idea of drawing resamples in a
balancedmanner is to ensure that each data appears the same number of times in all the resamples. The scheme of balanced
resamplingwith B bootstrap resamples each of size n in estimating the distribution of

√
n(σ̂ −σ) under balanced resampling

is performed by the following steps:
Step 1. Repeatedly list each data B times, so that there are totally Bn data as the following:

(x1, y1), . . . , (x1, y1)  
B times

, (x2, y2), . . . , (x2, y2)  
B times

, . . . , (xn, yn), . . . , (xn, yn)  
B times

.

Step 2. Permute the above string of length Bn randomly, then group every n data to obtain B balanced resamples:

(xĎ11, y
Ď
11), . . . , (x

Ď
1n, y

Ď
1n)  

B
Ď
1

, (xĎ21, y
Ď
21), . . . , (x

Ď
2n, y

Ď
2n)  

B
Ď
2

, . . . , (xĎB1, y
Ď
B1), . . . , (x

Ď
Bn, y

Ď
Bn)  

B
Ď
B

.
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Step 3. The resulting balanced resamples are denoted by

B
Ď
b =


(xĎb1, y

Ď
b1), . . . , (x

Ď
bn, y

Ď
bn)


, b = 1, . . . , B.

For each balanced resample, BĎ
b , b = 1, . . . , B, the bootstrap estimate of θ by minimizing

n
i=1


yĎbi − y(xĎbi; θ)

2
, we get θ̂Ď

b .

Then we have bootstrap estimate of σ̂ is:

σ̂
Ď
b =

1
n

n
i=1


yĎbi − y(xĎbi; θ̂

Ď
b )
2

.

The distribution of
√
n(σ̂ − σ) can therefore be approximated by the empirical distribution of

√
n(σ̂ Ď

b − σ̂ ), b = 1, . . . , B.
Let ξ̂1, ξ̂2, ξ̂3 be the first, second and third quartiles of the empirical distribution of

√
n(σ̂ Ď

b − σ̂ ), b = 1, . . . , B. The
difference between the third and first quartiles is called the interquartile range, IQR. The two values, ξ̂2 and IQR, measure
the standard deviation of the model error term ϵ and the stability of the parameter estimation and they have the virtue
of being robustness property. To choose between several models M1,M2, . . . , these computations are repeated for each of
them, and the best one will be the one that has the best compromise to simultaneously minimize ξ̂2 and IQR.

3. Asymptotic relative efficiency

To estimate the distribution function F of T =
√
n(σ̂ − σ)/


Σ̂ , Σ̂ being the estimated variance of σ̂ , let B∗

=

{(x∗

1, y
∗

1), . . . , (x
∗
n, y

∗
n)} denote a resample draw randomly from B0 = {(x1, y1), . . . , (xn, yn)} with replacement. Write

σ̂ ∗ (computed based on B∗) for the version of σ̂ . Then the bootstrap estimate of F is F̂(x) = P(T ∗
≤ x | B0), where

T ∗
=

√
n(σ̂ ∗

− σ)/


Σ̂∗, where Σ̂∗ denote the version of Σ̂ computed from B∗. Since the Monte-Carlo simulation of F̂
based on uniformly resampling (i.e., the original bootstrap method) is conditional on B0, draw B independent resamples
B∗

1 , . . . , B∗

B by resampling uniformly from B0, and let T ∗

b denote the version of T computed in B∗

b . Then the uniformly
resampling approximation of F̂ is

F̂u(x) =
1
B

B
b=1

I(T ∗

b ≤ x),

where I(·) is the indicator function. By the strong law large numbers, conditional on B0, F̂u → F̂ with probability 1 as
B → ∞ and that E(F̂u | B0) = F̂ and Var(F̂u | B0) = B−1F̂(1 − F̂). Furthermore, by Glivenko–Cantelli’s theorem, we have
with probability 1, as n → ∞,

sup
−∞<x<∞

|F̂(x) − Φ(x)| → 0,

where Φ(x) is the distribution function of the standard normal distribution. Therefore, with probability 1, as n → ∞,

sup
−∞<x<∞

|BVar(F̂u(x) | B0) − [1 − Φ(x)]Φ(x)| → 0, as B → ∞. (2)

To construct a balanced resampling approximation of F̂ , we draw B balanced resamples B
Ď
b , b = 1, . . . , B (see Section 2).

Let σ̂
Ď
b denote the version of σ̂ computed from B

Ď
b . Then the balanced resampling approximation of F̂ is

F̂b(x) =
1
B

B
b=1

I(T Ď
b ≤ x),

where T Ď
b =

√
n(σ̂ Ď

b −σ̂ ). To obtain the asymptotic efficiency of F̂b relative to F̂u, we need to calculate the asymptotic variance
of F̂b. By theorem of Hall [8], we have, with probability 1, as n → ∞, B → ∞

sup
−∞<x<∞

|BVar(F̂b(x) | B0) − A(x)| → 0, (3)

where A(x) = [1 − Φ(x)]Φ(x) − φ(x)2, φ(x) = Φ ′(x).
Comparing results of Eqs. (2) and (3), we get the relative efficiency of bootstrap estimate under uniformly resampling

and balanced resampling, as n → ∞,

r(x) =
variance of F̂u(x)

variance of F̂b(x)

∼
Φ(x)[1 − Φ(x)]

Φ(x)[1 − Φ(x)] − φ(x)2
.
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Table 1
Comparison results of OB, WB and BR algorithms with different bootstrap replications B.

B M1 M2 M3

ξ̂2 IQR ξ̂2 IQR ξ̂2 IQR

WB 25 21.360 2.480 1.103 0.076 1.087 0.074
50 21.329 2.419 1.090 0.075 1.070 0.070

BR 20 21.125 2.453 1.091 0.075 1.075 0.073
40 20.796 2.359 1.063 0.073 1.043 0.068

OB 50 22.430 2.823 1.111 0.113 1.129 0.113
100 22.325 2.531 1.103 0.107 1.114 0.109

Note that the second quartile ξ̂2 is corresponding to x = 0, i.e., Φ(x) = 0.5. Thus the asymptotic relative efficiency is
r(0) = 2.752 for ξ̂2.

4. Numerical experiments

To compare the original bootstrap (OB),weighted bootstrap (WB) and balanced resampling (BR),we borrow the examples
from Chuang et al. [4] and Kallel et al. [1]. Based on Efron and Tibshirani’s [9] experience, there are two rules of thumb to
evaluate how large B is suitable: (i) Even a small number of bootstrap replications, say B = 25, is usually informative, while
B = 50 is often enough to use; (ii) only very seldom are more than B = 200 replications needed. Therefore, we consider
B = 50 and 100 for OB algorithm. In Chuang et al. [4], they consider B = 25 and 50 in the WB algorithm. Davison et al. [5]
used the BR with B = 19 to approximate the bootstrap bias estimator of the sample variance. Hence, in this section, we
consider B = 20 and 40 in the BR algorithm.

Example 1 (cf. Chuang et al. [4]). Consider the problem of fitting a polynomial model:

y = θ0 + θ1x + θ2x2 + · · · + θpxp + ϵ.

A data set B0 is generated by putting

xi = i1/3, yi = 4 + xi + 2x2i + 3x3i + ϵi, i = 1, . . . , 500,

where ϵi is a random error term which has the standard normal distribution. We consider three models

ModelM1: y = θ0 + θ1x + ϵ.
ModelM2: y = θ0 + θ1x + θ2x2 + ϵ.
ModelM3: y = θ0 + θ1x + θ2x2 + θ3x3 + ϵ, (true model).

For each model, we compute ξ̂2 and IQR based on OB, WB and BR algorithms. The results are listed in Table 1, indicating
that the best model for WB and BR algorithms is M3 with B = 25, 50, 20 and 40, respectively. It is natural to pose the
question: ‘‘Which one is appropriate?’’. Since the difference between 1.087 and 1.070((1.087 − 1.070)/1.070 = 1.6%) is
negligible, we choose B = 25 for the WB algorithm. By the same reason, we also choose B = 20 for the BR algorithm.
However, the best model for the OB algorithm isM2, and the difference between 1.111 and 1.103((1.111−1.103)/1.103 =

0.73%) is also negligible. Thus, we choose B = 50 for the OB algorithm. But M2 is not a true model. Therefore, the WB and
BR algorithms not only permit a reduction in replication size but also select the correct model. However the advantage of
BR is not necessary to select the weight in resampling.

Example 2. Kallel et al. [1] used Eq. (1) with sigmoid transfer function φ to simulate a data set

B0 = (x(i)
1 , x(i)

2 , yi), i = 1, . . . , 500

by computing yi as a noisy output of a multilayer perceptron, defined by p = 2 input variables, x1 ∼ N(0.2, 4), x2 ∼

N(−0.1, 0.25), there are one hidden layer and 4 neurons on the hidden layer, θ = (0.5, −0.1, 0.2, 0.5, −0.4, 0.2, 0.1, 3,
0.3, 2, 0.5, 0.1, 0.2, 2, 0.2, 3, 0.1), as defined in Section 1, ϵ ∼ N(0, 0.04). They considered three models:

ModelM2: two inputs, one hidden layer with 2 hidden neurons.
ModelM4: two inputs, one hidden layer with 4 hidden neurons: true model.
ModelM6: two inputs, one hidden layer with 6 hidden neurons.

For each model, we compute ξ̂2 and IQR based on OB, WB and BR algorithms. Table 2 shows that the best model for WB
and OB algorithms is M2. The number of bootstrap replications B equals 50 for OB algorithm, the WB algorithms only need
B = 25. But M2 is not true model. However, the BR algorithm with B = 20 select M4 to be the best and it is a true model.
This illustrates that the BR algorithm can overcome the overparameterized problem in the multilayer perceptrons.

Example 3. Chuang et al. [4] discussed a real data set from p. 296 in Draper and Smith [10]. A proposed model for this data
set, based on theoretical considerations, is log10 Y = log10 α + β log10 X1 + γ log10 X2 + δ log10 X3 + ϵ, where α = 0.05.
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Table 2
Comparison results of OB, WB and BR algorithms with different bootstrap replications B.

B M2 M4 M6

ξ̂2 IQR ξ̂2 IQR ξ̂2 IQR

WB 25 0.042 0.004 0.043 0.004 0.044 0.004
50 0.042 0.004 0.042 0.004 0.043 0.004

BR 20 0.043 0.004 0.042 0.004 0.044 0.004
40 0.041 0.004 0.041 0.004 0.042 0.004

OB 50 0.043 0.004 0.044 0.004 0.045 0.004
100 0.043 0.004 0.044 0.004 0.045 0.004

Table 3
Comparison results of OB, WB and BR algorithms with different bootstrap replications B.

B M123 M12 M13 M23

ξ̂2 IQR ξ̂2 IQR ξ̂2 IQR ξ̂2 IQR

WB 25 0.024 0.007 0.028 0.008 0.307 0.071 0.029 0.007
50 0.024 0.005 0.027 0.007 0.305 0.066 0.028 0.007

BR 20 0.024 0.007 0.028 0.008 0.306 0.071 0.029 0.007
40 0.024 0.005 0.027 0.007 0.301 0.065 0.028 0.007

OB 50 0.025 0.007 0.028 0.009 0.319 0.079 0.029 0.008
100 0.024 0.007 0.027 0.008 0.310 0.074 0.028 0.007

Table 4
Comparison results of OB, WB and BR algorithms with different bootstrap replications B.

B M30 M35 M40

ξ̂2 IQR ξ̂2 IQR ξ̂2 IQR

WB 25 0.046 0.007 0.059 0.009 0.048 0.007
50 0.046 0.007 0.058 0.009 0.047 0.006

BR 20 0.049 0.007 0.062 0.009 0.050 0.007
40 0.047 0.005 0.057 0.008 0.047 0.006

OB 50 0.047 0.007 0.060 0.009 0.049 0.007
100 0.047 0.007 0.060 0.009 0.049 0.006

In the following, we consider four models

ModelM123: log10 Y = log10 α + β log10 X1 + γ log10 X2 + δ log10 X3 + ϵ (true model).
ModelM12: log10 Y = log10 α + β log10 X1 + γ log10 X2 + ϵ.
ModelM13: log10 Y = log10 α + β log10 X1 + δ log10 X3 + ϵ.
ModelM23: log10 Y = log10 α + γ log10 X2 + δ log10 X3 + ϵ.

For each model, we compute ξ̂2 and IQR based on OB, WB and BR algorithms. Table 3 shows that the best model for
these algorithms is M123. From Table 3, we choose B = 50 for the OB algorithm. But the WB and BR algorithms only need
B = 25, 20, respectively. It indicates that the WB and BR algorithms do permit a reduction in replication size.

Example 4. Kallel et al. [1] considered a real data set which explores the power peak control in the core of nuclear
reactors [11]. Gaudier [11] constructed a neuron model with 22 input variables and 2 hidden layers, (the first one with
26 neurons, the other 40 neurons). The following models accounts for physical localization of uranium bars and diffusion
processes, and was set to reproduce the classical calculus code, while winning in terms of computing time.

ModelM40: 22 inputs, two hidden layers with, respectively, 26 and 40 hidden neurons.
ModelM35: 22 inputs, two hidden layers with, respectively, 26 and 35 hidden neurons.
ModelM30: 22 inputs, two hidden layers with, respectively, 26 and 30 hidden neurons.

For eachmodel, we compute ξ̂2 and IQR based on OB, WB and BR algorithms. Table 4 shows that the best model for these
algorithms is M30. From Table 4, we choose B = 50 for the OB algorithm. But the WB and BR algorithms only need B = 25,
20, respectively. It also indicates that the WB and BR algorithms do permit a reduction in replication size.

5. Conclusions

In this paper we propose the BR algorithm to reduce computer effort of the bootstrapmethod for neural model selection.
Compared with OB, WB and BR algorithms, the numerical results show that the BR algorithm not only is an effective means
of reducing the bootstrap replications but also selects the correct model. According to the experimental results, the BR
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algorithm permits an approximately 2.5 to 1 reduction in replication size. This result reflects the fact that the asymptotic
relative efficiency is r(0) = 2.752. We mentioned that Chuang et al. [4] did not discuss the asymptotic relative efficiency of
WB. Therefore, the proposed BR algorithm should be considered in the neural model selection.

Support vector machines are useful for modeling in statistical applications. Shen et al. [12] combined the vague and
ill-defined information to propose a support vector fuzzy adaptive network in regression analysis. Suppose there are p
explanatory variables and a response variable y. Since some of the explanatory variables may not be actually related y,
the use of all the p explanatory variables as predictors does not necessary produce an accurate prediction. Suppose that α
is a subset of {1, 2, . . . , p}. Our problems is ‘‘How to select α such that the corresponding model produces more efficient
predictions?’’ In the future, we will use the proposed BR algorithm to solve this problem.
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