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Abstract In this work, quantitative structure–activity relationship (QSAR) study has been done on

tricyclic phthalimide analogues acting asHIV-1 integrase inhibitors. Forty compoundswere used in this

study.Genetic algorithm (GA), artificial neural network (ANN) andmultiple linear regressions (MLR)

were utilized to construct the non-linear and linearQSARmodels. It revealed that theGA–ANNmodel

was much better than other models. For this purpose, ab initio geometry optimization performed at

B3LYP level with a known basis set 6–31G (d). Hyperchem, ChemOffice and Gaussian 98W softwares

were used for geometry optimization of themolecules and calculation of the quantum chemical descrip-

tors. To include someof the correlation energy, the calculationwas donewith the density functional the-

ory (DFT) with the same basis set and Becke’s three parameter hybrid functional using the LYP

correlation functional (B3LYP/6–31G (d)). For the calculations in solution phase, the polarized contin-

uum model (PCM) was used and also included optimizations at gas-phase B3LYP/6–31G (d) level for

comparison. In the aqueous phase, the root–mean–square errors of the training set and the test set for

GA–ANN model using jack–knife method, were 0.1409, 0.1804, respectively. In the gas phase, the
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root–mean–square errors of the training set and the test set for GA–ANN model were 0.1408,

0.3103, respectively. Also, the R2 values in the aqueous and the gas phase were obtained as 0.91,

0.82, respectively.

ª 2011 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

HIV-1 integrase (IN) catalyzes two distinct reactions: the ter-
minal cleavage at each 30 end of the proviral DNA removing
a pair of bases and the strand transfer which results in the join-

ing of each 30 end to 50-phosphates in the target DNA. Such
integration is essential for the production of progeny viruses
and therefore therapeutic agents that can inhibit this process

should be effective anti-HIV agents. HIV-IN has also been rec-
ognized as a safe target against HIV because there are no sim-
ilar enzymes involved in human cellular function (Sakai et al.,

1993; Taddeo et al., 1994; Engelman et al., 1995).
The purpose of QSAR study is to find a relation between

the composition or structure of a compound with its bio or
chemical activity, in order to design a new compound with ex-

pected properties or predict the properties of an unknown
compound. Up to now, a lot of successful applications have
been reported in many different types of cases, e.g., medicine

design, environmental chemistry exploration, pesticide search-
ing, etc (Topliss and Edwards, 1979; Hasegawa and Miyashita,
1992).

The artificial neural networks (ANNs) are known as a good
method in expressing highly non-linear relationship between
the input and output variables, hence, greater interests were at-

tracted in applying them to the pattern classification of com-
plex compounds (Huuskonen, 2000; Schneider et al., 1999;
Jalali-Heravi and Parastar, 2000; Burden and Winkler, 1999;
Burden et al., 2000).

Genetic algorithms (GAs) were introduced by Holland.
They mimic nature’s evolutionary method of adaptation to a
changing environment. GAs are stochastic optimization meth-

ods that provide powerful means to perform directed random
searches in a large problem space as encountered in chemomet-
rics and drug design (Hasegawa, 1999; Handschuh and Gastei-

ger, 2000; Kimura, 1998).
In multiple linear regression (MLR), for a given data set

consisting of a target variable and M descriptors for n com-
pounds, a model is made with good fitting to define the com-

bination of m descriptors (m< M) on target variable.
Running through all combinations usually is too time-consum-
ing. Therefore, several approximate methods have been pro-

posed for this reason, but none of them guarantied to find
very best combination in all cases. The best found model for
a given data set may differ from one method to another meth-

od. So a real QSAR model should be compared to pseudo
models based on random numbers preferably using the same
descriptor selection procedure (Livingstone and Salt, 2005).

In order to evaluate the effectiveness of different methods in
obtaining QSAR models, cross-validation method is used.

2. Computational details

The 3D structures of the molecules were generated using the
built optimum option of Hyperchem software (version 8.0),
Then, the structures were fully optimized based on the ab initio
method, using DFT level of theory. Hyperchem, ChemOffice

and Dragon (version 3.0) programs were employed to calculate
the molecular descriptors.

All calculations were performed using Gaussian 98W pro-

gram series. Geometry optimization of forty compounds was
carried out by B3LYP method employing 6–31G (d) basis set
with no initial symmetry restrictions and assuming C1 point

group which were drawn in Hyperchem. In order to show
the effect of solvent environment on the structures, all struc-
tures were optimized in H2O solvent.

In this study, the independent variables were molecular

descriptors and the dependent variables were the actual half
maximal inhibitory concentration (IC50) values. Overall, more
than 1039 theoretical descriptors were selected and calculated.

These descriptors can be classified into several groups includ-
ing: (i) topological, (ii) geometrical, (iii) MoRSE, (iv) RDF,
(v) GETAWAY, (vi) autocorrelations and (vii) WHIM

descriptors.
For each compound in the training sets, the correlation

equation was derived with the same descriptors. Then, the ob-
tained equation was used to predict log (1/IC50) values for the

compounds from the corresponding test sets. The efficiency of
QSAR models for prediction of log (1/IC50) values was esti-
mated using the cross-validation method.

In the present work, stepwise multiple linear regression
(stepwise-MLR) and GA variable subset selection methods
were used for the selection of the most relevant descriptors

from all of the descriptors. These descriptors would be used
as inputs of the ANN.

Totally 1039 descriptors were generated that were too many

to be fitted in our models. So, it was necessary to reduce the
number of descriptors through an objective feature selection
which was performed in three steps. First, descriptors that
had the same value for at least 70% of compounds within

the dataset were removed. In next step, descriptors with corre-
lation coefficients less than 0.4 with the dependent variable
were regarded redundant and removed. Finally, since highly

correlated descriptors provide approximately identical infor-
mation, a pair wise correlation was performed. When their cor-
relation coefficient exceeded 0.90, one of two descriptors was

randomly removed.
GA was utilized as the mean for non-linear feature selec-

tion. After calculation of the correlation between descriptors,

63 descriptors were used as input of the ANN in aqueous
phase. In other words, the defined chromosome contains
58 genes, one gene for each feature, which can take two val-
ues. A value of 0 indicates that the corresponding feature is

not selected, and a value of 1 means that the feature is se-
lected. Therefore, there are 263 possible feature subsets. GA
selects the best features from these possible feature subsets

during different generations. In each generation, the popula-
tion is probabilistically modified, generating new chromo-
somes that may have a better chance of solving the



Figure 1 The molecular structure of phthalimide analogues.
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problem. New characteristics are introduced into a chromo-

some by crossover and mutation. The probability of survival
or reproduction of an individual depends more or less on its
fitness to the environment. Each feature in a given feature

space is treated as a gene and is encoded by a binary digit
(bit) in a chromosome.



Table 1 Experimental and predicted values of log (1/IC50)

using Jack–Knife model.

Calculated

(Jack–Knife) gas

Calculated

(Jack–Knife) PCM

Observed log

(1/IC50)

6.5516 6.7009 6.420

6.6398 6.2908 6.590

6.4050 6.6533 5.440

6.4311 6.6774 6.680

3.1604 4.5125 4.310

3.9496 4.6055 4.980

6.1276 6.0073 5.620

5.3327 5.4687 5.660

5.5812 5.8385 5.980

5.4801 5.3665 5.000

6.0373 5.9212 6.250

6.0143 6.1461 5.850

5.8932 5.9627 6.090

6.2142 6.1039 6.250

6.3538 6.2872 5.700

6.2527 6.3440 6.370

6.4281 6.2605 6.370

6.2004 5.9841 6.110

6.4004 5.7789 5.800

6.3610 5.7886 5.690

5.7097 6.4423 6.370

6.2716 6.2876 6.250

6.0468 6.1329 6.390

6.8675 6.3648 6.360

6.5993 6.4879 6.450

6.3413 6.5234 6.430

6.5138 6.5931 6.750

6.0691 6.5876 6.660

6.3272 6.2880 6.380

6.8970 6.8502 6.980

6.8162 6.7013 6.730

5.9714 6.0203 6.200

5.5838 5.6964 5.170

6.0169 5.6681 5.850

5.7583 6.2011 6.170

6.1521 5.9052 6.300

6.1695 6.2395 6.000

5.3564 5.9874 5.840

5.7120 5.7381 5.690

5.8028 5.8792 5.690

Table 2 Descriptors values for GA–MLR model.

Molecule GATS6v RDFo35m QZZv P2e HATS2e

1 0.811 10.576 7.716 0.405 0.079

2 0.856 10.578 7.880 0.398 0.077

3 0.786 10.292 7.630 0.403 0.079

4 0.838 11.119 8.709 0.402 0.079

5 1.168 6.965 4.004 0.218 0.057

6 1.125 7.471 7.419 0.274 0.065

7 1.150 11.585 11.123 0.318 0.050

8 1.019 12.088 9.345 0.346 0.053

9 0.980 11.032 12.137 0.335 0.061

10 0.934 9.957 7.155 0.295 0.076

11 1.006 12.744 10.049 0.366 0.052

12 1.030 11.872 9.731 0.298 0.049

13 0.825 9.796 10.421 0.351 0.051

14 0.918 11.040 8.597 0.366 0.049

15 0.754 10.365 7.931 0.340 0.047

16 0.997 14.062 8.803 0.364 0.052

17 0.818 10.426 11.300 0.333 0.048

18 0.888 11.776 8.828 0.344 0.047

19 1.015 9.364 10.388 0.324 0.042

20 0.949 12.544 10.610 0.336 0.049

21 0.798 11.406 11.093 0.341 0.062

22 0.920 10.232 9.605 0.330 0.097

23 0.935 10.463 9.994 0.348 0.100

24 1.003 9.154 10.843 0.388 0.087

15 0.832 11.409 9.902 0.393 0.080

26 0.957 12.476 9.595 0.327 0.102

27 0.918 11.013 11.794 0.361 0.134

28 0.900 10.320 11.694 0.369 0.086

29 1.052 10.535 11.319 0.377 0.085

30 1.005 10.393 13.928 0.404 0.113

31 0.849 10.672 14.405 0.404 0.085

32 0.935 10.297 11.026 0.302 0.072

33 1.050 10.173 9.423 0.343 0.051

34 0.875 10.970 7.625 0.268 0.061

35 1.020 10.570 12.187 0.369 0.050

36 1.041 11.604 11.780 0.366 0.049

37 1.020 10.570 12.187 0.369 0.050

38 1.040 10.664 10.546 0.368 0.049

39 0.970 10.712 10.643 0.360 0.062

40 1.015 11.593 10.457 0.321 0.063

Table 3 The statistical parameters of different constructed

QSAR models.

Method RMSE test RMSE train R2

GA–ANN Jack–Knife (gas) 0.3103 0.1408 0.82

GA–ANN (gas) cross validation 0.3836 0.1532 –

GA–ANN Jack–Knife (PCM) 0.1804 0.1409 0.91

GA–ANN (PCM) cross validation 0.5440 0.14010 –
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In our study, two point binary crossover and binary muta-
tion were performed. The roulette wheel selection strategy was
also used in the algorithm for parent selection. The relevant
parameter settings such as population size: 40; number of gen-

eration: 100; probability of crossover: 0.8; probability of muta-
tion: 0.1 were used. A lot of fitness functions were tested and
the optimal fitness function, as the object of minimization by

GA was found to be as follows:

F ¼ 100�RMSECVSET �RMSETSET ð1Þ

where RMSECVSET and RMSETSET are the root–mean–square
errors of the training set and the test set, respectively.

Each fitness value was obtained in a cross validation proce-
dure by removing eight cross validation (CVSET) individuals
from the data set, remaining other 32 train set (TSET) ones

each time. This was done in a way that each compound was
used four times as a TSET member and once as a CVSET
one. In this way, the average result of five different simulations
was reported as the fitness value.

3. Results and discussion

The structures of the tricyclic phthalimide analogues used in
this study are shown in Fig. 1.



Table 4 The descriptors selected using GA–ANN model.

Descriptors

Aqueous Gas

X2A X2A

R1e+ IDDE

X3A IC1

PW4 ATS7m

BAC ATS8m

IC1 MATS6p

IC2 GATS6v

CIC3 GATS1p

SEigm RDF035m

ATS8m RDF095m

MATS8m RDF055e

MATS3p Mor27u

GATS3v Mor05m

RDF035m Mor29v

Mor27u Mor32v

Mor27v E3m

E3m E3p

E1v H6m

E2p H3e

E3s HATS6p

H6m RTu+

HATS5v R1e+

H1e

H3e

R6m

R4v+

Table 5 The results of genetic algorithm.

Descriptor symbol Descriptor group Meaning

X2A Topological (1D) Average connectivity

index chi-2

MATS6p Autocorrelation (2D) Moran autocorrelation

lag 6/weighted by atomic

polarizability

GATS6v Autocorrelation (2D) Geary autocorrelation

lag 6 weighted by atomic

van der walls volumes

RDFo35m RDF (3D) Radial distribution

function 3.5 weighted by

atomic masses

RDFo55e RDF (3D) Radial distribution

function 5.5 weighted by

atomic sanderson

electronegativities

Moro5m 3D MoRSE 3D MoRSE signal 05

weighted by atomic

masses

Mor32v 3D MoRSE 3D MoRSE signal 32

weighted by atomic van

der walls volumes

E3m WHIM (3D) 3rd component

accessibility directional

WHIM index weighted

by atomic masses

H6m GETAWAY (3D) H autocorrelation of lag

6 weighted by atomic

masses

R1e+ GETAWAY (3D) R maximal

autocorrelation of lag 1

weighted by atomic

sanderson

electronegativity
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The efficiency of the QSAR model to predict log (IC50) va-
lue was also estimated using the internal cross-validation meth-
od. The resulted predictions of the log (1/IC50) in gas and
aqueous phases are given in Table 1.

Considering the experimental error, the overall prediction
of the log (1/IC50) values was quite satisfactory (without com-
pound 3). As shown in Table 1, the results of aqueous phase

were much better than gas phase.
Two linear and non-linear variable selection methods were

used to select the most significant descriptors (stepwise-MLR

and GA) (Table 2). The selected descriptors through these
methods were used to construct some linear and non-linear
models by using MLR and ANN methods. Based on the types
Figure 2 The results of G
of variable selection method and also the types of the feature

mapping technique, these models can be shown as MLR–
ANN, GA–MLR and GA–ANN (de Weijer et al., 1992; Sher-
idan and Bush, 1993; Tominaga, 1999; Manallack and Living-
stone, 1999). It revealed that the GA–ANN model was much

better than other models (Table 3). Statistical parameters of
different constructed QSAR models are shown in Table 3.
a–ANN in gas phase.



Figure 3 The results of Ga–ANN in aqueous phase.
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As can be seen from this table, R2 and RMSE values in aque-
ous phase are better than gas phase.

Since the chemical variation of the considered compounds
is low, the selection of chemical descriptors, which can encode
small variations between structures of molecules in data set, is
very important. In this way, GETAWAY and WHIM descrip-

tors are very informative 3D descriptors that can encode struc-
tural features of molecules and they are included in the GA–
ANN model (Table 4). The ten most significant descriptors

which were selected by GA are as follows: (Todeschini and
Consonni, 2000; Consonni et al., 2002a,b) (with PCM)

X2A;MATS6p;GATS6v;RDFo35m;RDFo55e;Moro5m;

Mor32v;E3m;H6m and R1eþ :

These GA selected descriptors were used as inputs for the
construction of ANN model (Table 5). As can be seen from

this table, atomic mass, electronegativity and atomic polariz-
ability were important descriptors in our study.

In the present study, two linear and non-linear variable

selection methods were used to select the most significant
descriptors. The MLR, ANN and GA were used to construct
a quantitative relation between activities of tricyclic phthali-

mide analogues and their calculated descriptors (Figs. 2 and 3).
We have evaluated several layers ([3,1], [5,1], [7,1], [9,1],

[11,1]) in GA and results are shown in Figs. 1 and 2.
4. Conclusion

In the present study, two linear and non-linear variable selec-
tion methods were used to select the most significant descrip-
tors, and the MLR, ANN and GA were used to construct a
quantitative relation between the activities of phthalimide ana-

logues and their calculated descriptors. ANN has been success-
fully used for finding a QSAR model for tricyclic phthalimide
analogues. It provides the best results among those we have

tested. Our present attempt to correlate the log (1/IC50) with
theoretically calculated molecular descriptors has led to a rel-
atively successful QSAR model that relates this complex

molecular property to structural characteristics of the
molecules.
The results obtained from this work indicate that the linear
regression and ANN models exhibit reasonable prediction

capabilities. Though the linear model was developed mainly
for the purpose of structure–activity interpretation, the ANN
model was primarily developed for predictive ability and
classification.
Acknowledgment

The authors thank Dr. H. Fallah for various helpful contribu-
tions at all stages of the work.

References

Burden, F.R. et al., 2000. J. Chem. Inf. Comput. Sci. 40, 1423–1430.

Burden, F.R., Winkler, D.A., 1999. J. Med. Chem. 42, 3183–3187.

Consonni, V., Todeschini, R., Pavan, M., 2002a. J. Chem. Inf.

Comput. Sci. 42, 682.

Consonni, V., Todeschini, R., Pavan, M., 2002b. J. Chem. Inf.

Comput. Sci. 42, 693.

de Weijer, A.P., Buydens, L., Kateman, G., 1992. Chemom. Intell.

Lab. Syst. 16, 77–86.

Engelman, A., Englund, G., Orenstein, J.M., Martin, M.A., Craigie,

R., 1995. J. Virol. 69, 2729.

Handschuh, S., Gasteiger, J., 2000. J. Mol. Model. 6, 358–378.

Hasegawa, K., 1999. J. Chem. Inf. Comput. Sci. 39, 112–120.

Hasegawa, K., Miyashita, Y., 1992. Chemom. Intell. Lab. Syst. 16, 69–

75.

Huuskonen, J., 2000. J. Chem. Inf. Comput. Sci. 40, 773–777.

Jalali-Heravi, M., Parastar, F., 2000. J. Chem. Inf. Comput. Sci. 40,

147–154.

Kimura, T., 1998. J. Chem. Inf. Comput. Sci. 38, 276–282.

Livingstone, D.J., Salt, D.W., 2005. Rev. Comput. Chem. 21, 287–348.

Manallack, D.T., Livingstone, D.J., 1999. Eur. J. Med. Chem. 34, 195–

208.

Sakai, H., Kawamura, M., Sakuragi, J., Sakuragi, S., Shibata, R.,

Isimoto, A., Ono, N., Ueda, S., Adachi, A., 1993. J. Virol. 67, 1169.

Schneider, G. et al., 1999. J. Med. Chem. 42, 5072–5076.

Sheridan, R.P., Bush, B.L., 1993. J. Chem. Inf. Comput. Sci. 33, 756.

Taddeo, B., Haseltine, W.A., Farnet, C.M., 1994. J. Virol. 68, 8401.

Todeschini, R., Consonni, V., 2000. Handbook of Molecular Descrip-

tors. Wiley-VCH, Weinheim, Germany.

Tominaga, Y., 1999. Chemom. Intell. Lab. Syst. 49, 105–115.

Topliss, J.G., Edwards, R.P., 1979. J. Med. Chem. 10, 1238–1244.


	A quantitative structure–activity relationship study on HIV-1 integrase inhibitors using genetic algorithm, artificial neural networks and different statistical methods
	1 Introduction
	2 Computational details
	3 Results and discussion
	4 Conclusion
	Acknowledgment
	References


