
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
International Journal of Solids and Structures 44 (2007) 5481–5498

www.elsevier.com/locate/ijsolstr
Rupture mechanisms in combined tension
and shear—Micromechanics

Imad Barsoum, Jonas Faleskog *

Department of Solid Mechanics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Received 31 October 2006; received in revised form 8 January 2007
Available online 17 January 2007

Communicated by S. Kyriades
Abstract

A micromechanics model based on the theoretical framework of plastic localization into a band introduced by Rice is
developed. The model consists of a planar band with a square array of equally sized cells, with a spherical void located in
the centre of each cell. The periodic arrangement of the cells allows the study of a single unit cell for which fully periodic
boundary conditions are applied. The micromechanics model is applied to analyze failure by ductile rupture in experiments
on double notched tube specimens subjected to combined tension and torsion carried out by the present authors. The stress
state is characterized in terms of the stress triaxiality and the Lode parameter. Two rupture mechanisms can be identified,
void coalescence by internal necking at high triaxiality and void coalescence by internal shearing at low triaxiality. For the
internal necking mechanism, failure is assumed to occur when the deformation localizes into a planar band and is closely
associated with extensive void growth until impingement of voids. For the internal shearing mechanism, a simple criterion
based on the attainment of a critical value of shear deformation is utilized. The two failure criteria capture the transition
between the two rupture mechanisms successfully and are in good agreement with the experimental result.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent experimental studies show that ductility depends markedly on the the type of rupture mechanism
that is active (Bao and Wierzbicki, 2004; Barsoum and Faleskog, 2007). This is especially noticeable in the
low to intermediate stress triaxiality regime, where stress triaxiality is defined as the ratio between mean stress
and the effective von Mises stress. In this regime, triaxiality is not sufficient in order to accurately predict duc-
tile rupture. Also, a parameter quantifying the type of stress deviator state appears to be necessary (Wierzbicki
et al., 2005; Barsoum and Faleskog, 2007). The stress deviator state, can for an isotropic material and the
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purpose discussed here, fully be described by the third stress deviator invariant or by the Lode parameter. The
latter describes the position of the middle principal stress in relation to the maximum and minimum principal
stresses.

In Barsoum and Faleskog (2007), experiments are carried out on a double notched tube specimen sub-
jected to a combination of tension and torsion, as shown in Fig. 1(a). In the notched region, Fig. 1(b), the
average normal stress and the average shear stress are statically determined and given by the tensile force
and the torque, respectively. The presence of the notch increases triaxiality and adds hydrostatic stress to
the simple tension–torsion stress state in the centre of the notch. By applying different ratios of torsion
and tension, stress triaxiality can be controlled and varied in the tests. Barsoum and Faleskog (2007) inves-
tigated two different structural steels, an intermediate strength steel and a high strength steel. For both
materials they observe that when the stress triaxiality is sufficiently high, the specimens fail by a ductile rup-
ture mechanism characterized by voids that have grown to impingement and coalesce by internal necking, as
seen by the fractograph in Fig. 2(a). By contrast, when the stress triaxiality is sufficiently low, failure occurs
by plastic shear localization in ligaments between voids, see fractograph in Fig. 2(b). Thus, in both cases the
fracture surfaces are covered by voids. In this companion paper the authors develop a micromechanics
model based on a layer of pre-existing voids to examine the transition between the two rupture mechanisms
observed in Fig. 2.

The localized type of deformation characterizing both rupture mechanisms discussed above fits well into
the general theoretical framework of plastic localization introduced by Rice (1977), where he investigates the
conditions for deformation to localize into a thin band. Here, we make use of the kinematical conditions for
the deformation across the band to analyze the transition between the two rupture mechanisms seen in
Fig. 2. The deformation gradient is homogeneous outside the band in the Rice model, whereas it varies
in a continuous manner with position across the band. This facilitates localization into a symmetric mode,
a shear mode or a combination of both modes. The important effect of porosity on plastic flow localization
and material softening have been studied by Needleman and Rice (1978), Yamamoto (1978) and Saje et al.
(1982), where the influence of pre-existing voids and void nucleation within a continuum description are
examined. Similarly, Tvergaard (1981, 1982a), Koplik and Needleman (1988), Faleskog and Shih (1997)
and Pijnenburg and Van der Giessen (2001) used cell models with discrete voids to explore the influence
of porosity on void coalescence and localization of plastic flow. Ductile rupture in smooth and notched
plane strain and axisymmetric specimen configurations driven by evolution of porosity have been studied
by Needleman and Tvergaard (1984) and Tvergaard and Needleman (1984). However, one of the main
issues in the present study, the transition between the two rupture mechanisms, is not thoroughly addressed
in the studies cited above.

In the present work, a micromechanics model was developed with the purpose to investigate the conditions
that governs the transition between the two rupture mechanisms observed in the experiments by Barsoum
and Faleskog (2007) and are shown in Fig. 2(a) and (b). This model is presented in Section 2, the properties
of the materials used in the experiments are summarized in Section 3 and the general model behavior
illustrating the two rupture modes are delineated in Section 4. The micromechanics analysis of the tests is
presented in Section 5.
a b 

Fig. 1. (a) A schematic picture showing the double notched tube specimen loaded in combined tension and torsion used in Barsoum and
Faleskog (2007). (b) A close-up of the notch region.



Fig. 2. Scanning electron microscope fractographs illustrating two different rupture mechanisms: (a) void coalescence by internal necking
and (b) void coalescence by internal shearing. The fractographs are taken from fractured specimens of material Weldox 420 from tests
conducted by Barsoum and Faleskog (2007).
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2. Micromechanics model

To model failure in the tube experiment, we employ a micromechanics model where the material deforms
under the macroscopic stress state of combined generalized tension and generalized shear as shown in
Fig. 3(a). Material failure is assumed to occur when the deformation becomes highly non-uniform and local-
izes into a thin planar band. Furthermore, it is assumed that the mechanism leading to the onset of localized
deformation and subsequent failure is ductile rupture involving nucleation, growth and coalescence of voids.

In the present study, the material is assumed to contain an initial planar band with a regular square array of
pre-existing voids, see Fig. 3(a). Thus, the process of void nucleation is not considered. The pre-existing array
of voids can be viewed as an initial imperfection, which may induce localization into a symmetric mode, a
shear mode or a combination of both. The behavior of the matrix material is taken to be homogeneous,
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Fig. 3. Micromechanics model: (a) homogeneous material with a band containing pre-existing voids, (b) dimensions of the unit cell and
(c) macroscopic stresses acting on the unit cell referring to a Cartesian coordinate system with origin at the centre of the void.
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elastic–plastic with isotropic hardening and modeled by a finite strain J2 flow theory. Building on the work by
Marciniak and Kuczynski (1967), Rice (1977) presents a general framework for imperfection based localiza-
tion analysis, as is also discussed in Needleman and Tvergaard (1992). The present micromechanical analysis
fits well into the framework of Rice.

Due to the regular array of voids, attention can be restricted to a three-dimensional unit cell as indicated in
Fig. 3(b) and (c), with linear dimensions 2D1, D2 and D3. The unit cell contains one void placed in its centre,
initially of spherical shape with radius R0. The initial size of the cell is given by D1 = D2 = D3 = D0. The initial
ratio of void size to void spacing is defined as v0 = R0/D0 and the initial void volume fraction in the cell can be
expressed as f0 ¼ v3

0p=12. In the present case, v0 is the more relevant parameter for defining porosity.

2.1. 3D unit cell

The macroscopic Cauchy stresses Rij acting on the cell, see Fig. 3(c), are equal to the volume average of the
Cauchy stresses, rij, over the deformed volume V, and can be calculated as
Rij ¼
1

V

Z
V

rij dV : ð1Þ
The mean value and the von Mises effective value of the macroscopic stress are then defined as
Rh ¼
1

3
ðR11 þ R22 þ R33Þ; ð2Þ

Re ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR11 � R22Þ2 þ ðR22 � R33Þ2 þ ðR33 � R11Þ2 þ 6R2

12

q
: ð3Þ
Loading is applied on the unit cell such that the macroscopic stresses acting on the cell follow the proportional
history
R22=R11 ¼ R33=R11 ¼ qn; R12=R11 ¼ qs; ð4Þ

where qn and qs are prescribed constants. By varying qn and qs a stress state of combined generalized tension
and generalized shear can be accomplished. Furthermore, the stress triaxiality T and the Lode parameter l will
remain constant during the load history as
T ¼ Rh

Re

¼ ð1þ 2qnÞ � signðR11Þ

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� qnÞ

2 þ 3q2
s

q ; ð5Þ

l ¼ 2RII � RI � RIII

RI � RIII

¼ �ð1� qnÞ � signðR11Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� qnÞ

2 þ 4q2
s

q ; ð6Þ
where RI P RII P RIII are the macroscopic Cauchy principal stresses. From Eqs. (5) and (6), the stress ratios
can be expressed in terms of T and l as
qn ¼
3T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ l2

p
þ 2l

3T
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ l2

p
� 4l

; qs ¼
3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
3T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ l2

p
� 4l

: ð7Þ
The solutions for qn and qs are valid for �1 6 l 6 1 and R11 ? 0 for T?4l=ð3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ l2

p
Þ. A few limiting cases

are here of interest. Those are: qn = �1/2 and qs ¼ �3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
=ð4lÞ for T! 0; qn = 1 and qs ¼ 1=ð

ffiffiffi
3
p

T Þ for
l! 0; qn = (3T�1)/(3T + 2) and qs = 0 for l!�1.

Relative to a fixed Cartesian frame, a material point is described by the coordinates Xi in the undeformed
configuration and by the coordinates xi(Xk) = Xi + ui(Xk) in the deformed configuration, where ui(Xk) denotes
the displacements. Fig. 4(a) depicts how the 3D unit cell may deform under loading. It is a combination of two
deformation modes—an axisymmetric mode and a shear mode, and as a consequence the cell boundaries will
not remain straight. Thus, fully periodic boundary conditions must be applied on faces with normal vectors in
the X2–X3 plane, which will be given in detail in Section 2.2. Sufficiently remote from the band of imperfection,
i.e., the void, homogeneous conditions are assumed to prevail, where for instance ou1/oX2 = ou1/oX3 = 0.
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Fig. 4. (a) Depicting a general deformation mode of the unit cell in plane X3 = 0 and (b) illustrating the uniform and non-uniform parts of
the displacement, where i = 1, 2.
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Such conditions are here assumed for the boundary surfaces X1 = ±D0, which will remain straight throughout
the loading.

Following the notation of Rice (1977), compatibility across the band requires in the present cell analysis
that the displacement gradient along X1 = ±D0 must take the form
oui

oX 1

¼ oui

oX 1

� ��
þ qiðX 1Þ; i ¼ 1; 2; ð8Þ
where ()� denotes the uniform field quantities outside the band of localized deformation and qi denotes the
non-uniform part of the displacement gradient across the band, which is a function of X1 only, see the illus-
tration in Fig. 4(b). The volume average of the deformation gradient can be determined from the displace-
ments on the cell boundary as
�F ik ¼
1

V 0

Z
V 0

F ik dV 0 ¼ dik þ
1

V 0

Z
S0

uin0
k dS0; ð9Þ
where V0 and S0 are undeformed volume and outer surfaces of the cell, respectively, dik denotes the Kronecker
delta and n0

k is components of the normal vector to S0 in the undeformed configuration. In view of Fig. 4(b)
and Eqs. (8) and (9), the volume average of the deformation gradient for the 3D unit cell can be expressed as
�F ¼ F0 þ �Fq ¼
F 0

11 þ �q1 0 0

F 0
21 þ �q2 F 0

22 0

0 0 F 0
33

264
375 with �qi ¼

Dui

D0

: ð10Þ
Here, F0 denotes the uniform deformation gradient outside the band of localized deformation, and hence
localization of deformation into a narrow planar band can be defined as (Needleman and Tvergaard, 1992)
_�F
��� ���. _F0

�� ��!1: ð11Þ
In Eq. (11) the norm kk of a second order tensor with components ()ij is evaluated as
ffiffiffiffiffiffiffiffiffiffiffiffi
ðÞijðÞij

q
, and for prac-

tical purposes localization is taken to occur when the ratio k _�Fk=k _F0k is sufficiently large. In the present study,
a ratio of 2 is used.

As an effective scalar measure of strain we will use
Ee ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

3
D0ijD

0
ij

r
dt; D0ij ¼ Dij �

1

3
dijDkk; ð12Þ
where Dij is the components of the volume average of the rate of deformation tensor, which can be calculated
from the volume average of the deformation gradient as
Dij ¼
1

2
ð _�F ik

�F �1
kj þ _�F jk

�F �1
ki Þ: ð13Þ
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2.2. Numerical implementation

The 3D unit cell was numerically analyzed by use of the finite element program ABAQUS (2004). The
material in the cell was assumed to be elasto-plastic with isotropic hardening, with the uniaxial behavior
defined in Section 3 below. ABAQUS (2004) makes use of an updated Lagrangian formulation to account
for large deformations and employs a finite strain J2 flow theory based on a co-rotational stress rate to
account for rotations of the principal axes of deformation.

Symmetry allows for modeling of the X3 P 0 half of the unit cell. A typical mesh with v0 = 0.2 is shown in
Fig. 5. It constists of 5184 20-node tri-quadratic elements with reduced integration of which 432 are located on
the half spherical void surface. Periodic boundary conditions are applied on periodic points on the surfaces
X2 = ±D0/2. Four displacement measures di (i = 1,2,3,4) are introduced to describe the periodic and the
homogeneous boundary conditions, respectively. The displacement boundary conditions can then be formu-
lated as
On X 1 ¼ �D0 : u1ðD0;X 2;X 3Þ ¼ �u1ð�D0;X 2;X 3Þ ¼ d1;

u2ðD0;X 2;X 3Þ ¼ �u2ð�D0;X 2;X 3Þ þ 2d4;

u3ðD0;X 2;X 3Þ ¼ u3ð�D0;X 2;X 3Þ;
ð14Þ

On X 2 ¼ �D0=2 : u1 X 1;
D0

2
;X 3

� �
¼ u1 X 1;

�D0

2
;X 3

� �
;

u2 X 1;
D0

2
;X 3

� �
¼ u2 X 1;

�D0

2
;X 3

� �
þ d2;

u3 X 1;
D0

2
;X 3

� �
¼ u3 X 1;

�D0

2
;X 3

� �
;

ð15Þ

On X 3 ¼ 0 : u3ðX 1;X 2; 0Þ ¼ 0;

On X 3 ¼ D0=2 : u3 X 1;X 2;
D0

2

� �
¼ d3=2:

ð16Þ
Here, the rates of di are determined from the condition of loading under fixed stress ratios (4). To implement
the special type of boundary condition we use the method suggested by Gudmundson and Faleskog (in prep-
aration), where a full account of the method is given. The method will only briefly be outlined here.

Utilizing (14)–(16) in (9), the volume average of the deformation gradient and the velocity gradient, respec-
tively, can be expressed as
X1

X2

X3

Fig. 5. Finite element mesh of one-half of the unit cell.
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�F ¼

D1

D0
0 0

d4

D0

D2

D0
0

0 0 D3

D0

26664
37775; �L ¼ _�F�F�1 ¼

_d1

D1
0 0

_d4

D1
� _d2

D2

d4

D1

_d2

D2
0

0 0
_d3

D3

266664
377775; ð17Þ
where D1 = D0 + d1, D2 = D0 + d2 and D3 = D0 + d3. The symmetric part of �L defines the volume average of
the rate of deformation tensor D (13). Hill (1967, 1972) showed for the boundary conditions applicable here
that the total work rate of the cell can be determined from the volume average values of the strain rate and
stress, respectively, as
_W ¼ V RijDij ¼ bDTbR; ð18Þ

where V = 2D1D2D3 and the column vectors
bR ¼
V R11

V R22

V R33

V R12

266664
377775; bD ¼

D11

D22

D33

2D12

266664
377775 ¼ Q _d ð19Þ
have been introduced. Here, Q is derived from (17)2 and depends on di and the initial dimensions of the cell.
To enforce the linear constraints between the stress components, as defined by the ratios in (4), a set of
generalized forces are introduced as
P ¼ CTbR with C ¼ ½a b c d�; ð20Þ

where C is a transformation matrix composed of the four orthonormal column vectors a, b, c and d. In
particular
aT ¼ 1
w0

w2

w0

w3

w0

w4

w0

h i
; where w0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

2 þ w2
3 þ w2

4

q
: ð21Þ
To proceed, we choose w2 = w3 = qn and w4 = qs and note that the stress vector can be expressed as bR ¼ CP.
The stress constraint (4) can now be satisfied by requiring that the generalized forces P2 = P3 = P4 = 0. The
stress vector then simplifies to bR ¼ aP 1. Hence, P1 corresponds to the resulting generalized force aligned in the
direction of bR, i.e., a. The column vectors b, c and d are given in the Appendix A.

Conjugate generalized displacement rates to P are defined as
bD ¼ C _p; _pT ¼ ½ _p1 _p2 _p3 _p4�: ð22Þ

The conjugate properties of P and p are readily seen by inserting (20) and (22) into the work rate equation (18)
giving _W ¼ _pTP. It is thus convenient to introduce four new degrees of freedom p1, p2, p3 and p4 into the finite
element model. These are coupled to the physical degrees of freedom in the unit cell model by inserting (22)
into Eq. (19.2), which gives
_d ¼ Q�1C _p; Q�1 ¼

D0 þ d1 0 0 0

0 D0 þ d2 0 0

0 0 D0 þ d3 0

0 d4 0 D0 þ d1

26664
37775: ð23Þ
It should be noted that insertion of (23) into (14)–(16) constitutes a set of non-linear multi point constraint
equations for the deformation of the 3D unit cell. Loading at fixed stress ratios can thus be achieved by apply-
ing the following boundary conditions
_p1 ¼ _p0; P 2 ¼ P 3 ¼ P 4 ¼ 0; ð24Þ

where _p0 is a prescribed value. Finally, this procedure was implemented into ABAQUS (2004) by utilizing the
features provided in the user subroutines *EQUATION and *MPC.



Table 1
Material parameters for the mechanical properties

Material r0 (MPa) N e0 es eN

Weldox 420 418 0.018 0.0020 0.0084 0.0162
Weldox 960 956 0.059 0.0046 0 0.0046
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3. Material

The two materials considered are Weldox 420 and Weldox 960. The true stress–strain behavior, obtained
from uniaxial tests, is given in Eq. (25) for both the materials, where r0 represents the initial yield stress, N

strain hardening exponent, es an offset strain, eN a normalizing strain and e0 = r0/E. These material parame-
ters are listed in Table 1.
r ¼

Ee e 6 e0;

r0 e0 6 e 6 es þ eN;

r0
e�es

eN

� 	N
e > es þ eN:

8>>><>>>: ð25Þ
It is assumed that voids will nucleate from inclusions embedded in the matrix material. In Barsoum and Fale-
skog (2007), the average area fraction Af of inclusions is estimated by examination of 10 micrographs of pol-
ished surfaces for each material. It was found that Af = 0.0088 for Weldox 420 and Af = 0.0060 for Weldox
960. It should be noted that not all the inclusions will contribute to the nucleation of voids. Thus, it is assumed
that the initial void volume fraction in the cell can be associated with a fraction g of the inclusions. By equat-
ing gAf with the initial void volume fraction in the cell, an estimation of the initial ratio of void size to void
spacing, v0, can be obtained as
v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12

p
gAf

3

r
: ð26Þ
This gives v0 ¼ 0:32� ffiffiffi
g3
p

for Weldox 420 and v0 ¼ 0:28� ffiffiffi
g3
p

for Weldox 960. From Section 5 below it will be
seen that an appropriate range for g appears to be 0.004–0.03 for Weldox 420 and 0.04–0.15 for Weldox 960,
respectively. Further details of the materials can be found in Barsoum and Faleskog (2007).
4. Model behavior and failure mechanisms

In this section, the general behavior of the model is explored and also how the two rupture mechanisms,
internal necking and internal shearing, depends on T and l. The strong influence that the stress triaxiality
T alone exerts on void growth and coalescence has been demonstrated in the past in cell studies under axisym-
metric conditions (Andersson, 1977; Tvergaard, 1982b; Koplik and Needleman, 1988; Kuna and Sun, 1996;
Søvik and Thaulow, 1997; Pardoen and Hutchinson, 2000), under plane strain conditions for cylindrical voids
(Needleman, 1972; Tvergaard, 1981, 1982a; Faleskog and Shih, 1997) and for spherical voids (Faleskog et al.,
1998; Gao et al., 2005). Other cell studies incorporate the possibility of shear deformation by employing fully
periodic boundary conditions (Tvergaard, 1981, 1982a; Pijnenburg and Van der Giessen, 2001). The effects of
the Lode parameter has also been studied on cells, but without allowing for shear deformation in the bound-
ary conditions (Zhang et al., 2001; Gao and Kim, 2006).
4.1. Influence of l on void growth and coalescence

The influence of the Lode parameter l on void growth and coalescence will be elucidated first. This will be
exemplified by results pertaining to an elastic, ideal plastic, medium strength material (N = 0 and e0 = 0.002 in
(25)) and a fairly large v0 = 0.3 to bring out the characteristic features related to variations in l. A constant
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value of stress triaxiality T = 1.0 is chosen and five different l values are considered, l = 0, �0.33, �0.45,
�0.65, �1, ranging from generalized shear to generalized tension.

The macroscopic stress–strain response is strongly affected by l, as can be seen in Fig. 6(a). The onset of
macroscopic yielding is significantly lower for generalized shear (Re = 0.90r0 for l = 0) than for generalized
tension (Re = 0.97r0 for l = � 1). For l = 0, the onset of yielding is primarily due to ligament shearing, which
is controlled by the area fraction of voids given by pv2

0=4. For l = �1 on the other hand, the onset of yielding
is controlled by the volume fraction of voids (cf. Gurson, 1977), here estimated by pv3

0=12. The latter also
seems to govern the behavior for all cases where l 6 �0.45. For the remaining case l = �0.33, onset of yield-
ing occurs between the two limiting cases of generalized tension and shear, respectively.

Significant softening, i.e., a noticeable decrease in stress Re, is here associated with the onset of localization.
Fig. 6(b) shows the ratio k _�Fk=k _F0k vs. strain Ee, where it can be observed that the strain at localization (11) is
decreasing with increasing values of l. For l = �1 localization occurs at about Ee = 0.25 and for l P �0.33
localization appears to coincide with the onset of yielding. Moreover, the softening rate increases with decreas-
ing values of l as can be seen Fig. 6(a). This is closely connected to the void growth rate, which can be appre-
ciated from Fig. 6(c), showing the void volume ratio Vv/Vv0 (quotient between current to initial void volume)
vs. strain Ee. The void growth rate corresponds to the slope of the curves in Fig. 6(c). For the case of general-
ized shear (l = 0) the void growth rate is initially high, but seems to vanish at about Ee = 0.06. For the case of
Fig. 6. Influence of the Lode parameter l on the model behavior for an elastic–ideal plastic material (N = 0) with v0 = 0.3 and a constant
stress triaxiality T = 1.0. Showing (a) macroscopic effective stress, (b) the ratio k _�Fk=k _F0k and (c) void growth vs. macroscopic effective
strain.
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generalized tension (l = �1) the void growth rate is initially lower than all other cases, but increases drasti-
cally at localization and there reaches a rate higher than all other cases. However, for strain values less than
Ee = 0.3 the intermediate l-values �0.45 and �0.65 give rise to the largest void growth, Vv/Vv0 (the full range
of Vv/Vv0 is not included in the graph).

At this juncture, readers should be reminded that the different behavior seen in Figs. 6(a)–(c) is solely due to
the variations in the Lode parameter, since triaxiality is the same in all the examined cases. Thus, the value of l
has a profound effect on void growth and localization. In the present model, localization will act as a precursor
to void coalescence, where two competing/co-operating modes can be identified from Fig. 6. For l = �1, void
growth becomes extremely rapid at localization and coalescence is foreseen to take place by internal necking of
intervoid ligaments. For l = 0, on the other hand, coalescence is inclined to take place by shearing off inter-
void ligaments due to the limited void growth. Next, the two different mechanisms will be described where the
material behavior and the cell parameters are chosen to resemble the two materials used in the experiments.

4.2. Void coalescence by internal necking

To simulate the rupture mechanism associated with coalescence by internal necking of intervoid ligaments,
data is taken from the material Weldox 960, with v0 = 0.2. The load case considered corresponds to a triax-
iality of T = 1.0 and a Lode parameter near generalized tension, l = �0.85.

Figs. 7(a and b) show the stress Re and the ratio k _�Fk=k _F0k plotted vs. the strain Ee. The deformation is
virtually homogeneous for strains less than 0.09, since k _�Fk=k _F0k � 1. For increasing levels of strain, the defor-
mation gradually shifts to the layer of voids, and localization occurs at Ee = 0.39. This causes a drastic drop in
the effective stress as seen in Fig. 7(a), where the localization point is marked with a solid circle. The locali-
zation event is here accompanied by a drastic increase in void volume as is notable in Fig. 7(c), showing
the ratio Vv/Vv0 vs. Ee.

Fig. 7(d) show the deformation measures �q1 and �q2 vs. Ee. These measures defined in Eq. (10) corresponds
to the non-uniform normal and shear deformation, respectively, associated with localization. A geometric
interpretation is illustrated by the deformed mesh shown in Fig. 7(e). The rate of �q1 increases drastically after
the onset of localization as expected. �q2 follows a similar history. Even though the mode of coalescence then
appears to be a combination of the two modes discussed above, coalescence occurs by internal necking of
intervoid ligaments in this case. This is underlined by the deformed mesh of the unit cell shown in
Fig. 7(e), where the undeformed mesh also is shown as a reference. The deformed mesh belongs to the load
point marked by an open circle in the localization regime as depicted in Fig. 7(a). In addition, the deformed
mesh representing this coalescence mode is envisioned to be consistent with the morphology observed in the
fractograph shown in Fig. 2(a), where final rupture has occurred by the internal necking mechanism.

4.3. Void coalescence by internal shearing

In a stress state near generalized shear (l! 0) and low triaxiality, growth of voids is limited. Here, the final
rupture mechanism is mainly due to internal shearing between voids. To simulate this mechanism, data is
again taken from the material Weldox 960 and v0 = 0.2, but with the stress state parameters T = 0.5 and
l = �0.15.

Along with the previous case, the deformation is virtually homogeneous for strains less than 0.09, as can be
observed from Figs. 8(a and b) showing Re and k _�Fk=k _F0k vs. Ee. At this strain level (Ee = 0.09), in contrast to
the previous case, an early tendency to localization can be observed by the abrupt increase in the ratio
k _�Fk=k _F0k. However, localization is put on hold by material strain hardening and does not occur until
Ee = 0.6, as is seen in Fig. 8(b). The localization point is also marked by a solid circle in the stress–strain curve
shown in Fig. 8(a). From Fig. 8(c) it is noted that void growth (Vv/Vv0) is essentially linear with respect to Ee

up to localization, where it seems to saturate at a value of about 2.2.
The non-uniform shear deformation �q2 starts to increase at a constant rate at the subsidiary localization

(Ee = 0.09), and becomes practically unbounded at localization (Ee = 0.6), as can be observed in Fig. 8(d).
At the same time, the non-uniform normal deformation �q1 is negligible. Here, coalescence occurs by extensive
localized shear deformation in the ligaments between voids and essentially no void growth. The deformed



Fig. 7. Illustration of void coalescence by internal necking for the material Weldox 960 with v0 = 0.2, l = �0.85 and T = 1.0. (a)
Macroscopic effective stress, (b) the ratio k _�Fk=k _F0k, (c) void growth and (d) �q1 and �q2 of Eq. (10) vs. macroscopic effective strain Ee. (e)
The undeformed and deformed mesh showing this coalescence mode. The open circle in (a) represents the instance of the deformed mesh in
(e) and the solid circle indicates the onset of localization.
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Fig. 8. Illustration of void coalescence by internal shearing for the material Weldox 960 with v0 = 0.2, l = �0.15 and T = 0.5. (a)
Macroscopic effective stress, (b) the ratio k _�Fk=k _F0k, (c) void growth and (d) �q1 and �q2 of Eq. (10) vs. macroscopic effective strain Ee. (e)
The undeformed and deformed mesh showing this coalescence mode. The open circle in (a) represents the instance of the deformed mesh in
(e) and the solid circle indicates the onset of localization.
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mesh in Fig. 8(e), taken at the load level shown by the open circle in Fig. 8(a), illustrates this mode of coales-
cence. This rupture mode is consistent with the shear dimple rupture mechanism observed in the fractograph
in Fig. 2(b), showing small elongated shear dimples similar to the deformed shape in Fig. 8(e).



I. Barsoum, J. Faleskog / International Journal of Solids and Structures 44 (2007) 5481–5498 5493
Finally, it is noted that before the onset of localization the major axes of the evolving void shapes in Figs. 7
and 8(e) are roughly aligned with the directions of the principal stresses in the respective case. The latter direc-
tions are fixed in the present analysis due to the constraint (4). At localization, the void in Fig. 7(e) seems to
grow with its major axis in the bisector direction of the x1–x2 plane, since �q1 � �q2, whereas the void in Fig. 8(e)
primarily rotates toward the x2-axis, with constant void volume.
5. Micromechanics analysis of the experiments and discussion

The micromechanics model will, here, be applied to analyze the experiments carried out in Barsoum and
Faleskog (2007) on the double notched tube specimen pictured in Fig. 1. The properties of the two materials
tested are listed in Table 1. The loading condition of the unit cell, Eqs. (4) and (7), was chosen such that it
resembles the stress state at failure in the centre of the notch shown in Fig. 1(b). The stress state, T vs. l,
at failure for the two materials is depicted in Fig. 9, which were obtained from the experimental work by Bar-
soum and Faleskog (2007). Three different initial void size to void spacing ratios were considered, v0= 0.05,
0.10 and 0.15, which corresponds to void volume fractions f0 = 0.33 · 10�4, 0.26 · 10�3 and 0.88 · 10�3,
Fig. 9. The Lode parameter l vs. stress triaxiality T in the centre of the notch at failure (cf. Barsoum and Faleskog, 2007). Open circles
pertain to Weldox 420 and solid circles pertain to Weldox 960.

Fig. 10. Failure locus for Weldox 420, where the macroscopic effective strain Ee at failure is plotted vs. stress triaxiality T. The solid circles
represents experimental results. The three thin lines indicate failure by localization according to Eq. (11) and the thick line indicates failure
when �F 21 ¼ 1:6 is attained and the dash-dotted line indicates to failure when c(n = 0) = 2.86 in Eq. (28) is attained.
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respectively. In relation to the content of inclusions in the two materials, this means that only a fraction of
about 15% or less of the inclusions will participate in the nucleation of voids at such low loads that they
can be regarded as present from the beginning, see Section 3.

The outcomes of the micromechanics analyses are summarized and compared with the experimental results
in Fig. 10 for Weldox 420 and in Fig. 11 for Weldox 960, where critical values of strain Ee are plotted vs. tri-
axiality T. The solid circles are experimental data and represent the effective plastic strain in the centre of the
notch of a specimen at failure. In Figs. 10 and 11, Ee represents the total effective strain, however, this is only
of order e0 larger than the effective plastic strain and the difference is therefore negligible. The thin solid lines,
corresponding to the three different v0 values, are theoretical curves from the micromechanics model that indi-
cate failure by localization according to Eq. (11), which marks the onset of void coalescence and subsequent
failure by ductile rupture. Note that the theoretical curves captures the experimental results well for triaxiality
values larger than about 0.8 for both materials. The experimental results exhibit some scatter, but the failure
points pertaining to Weldox 420 appears to be well described by the theoretical curves with 0.05 < v0 < 0.10,
and the failure points pertaining to Weldox 960 appears to be well described by the theoretical curves with
0.10 < v0 < 0.15. From Eq. (26) the fraction of inclusions participating in nucleating voids can then be esti-
mated to be in the range 0.4–3% for Weldox 420 and in the range 4–15% for Weldox 960.

In the higher triaxiality range discussed above, the behavior of a unit cell in the post-localization regime is
characterized by a dramatic decrease in stress Re and a significant increase in void volume Vv/Vv0. This can be
ascertained by Fig. 12 showing the effective stress–strain behavior in (a) and void growth vs. effective strain in
(b) for Weldox 420 with v0 = 0.1. The four curves belong to the T values: 0.53, 0.7, 0.9 and 1.1, where the two
lower T values will be dealt with later. The open circles indicate the onset of localization. Note that also the
T = 1.1 case exhibits a dramatic drop in Re and a significant increase in Vv/Vv0, even though l is approaching
zero. Not shown here, but post-localization in this triaxiality range is also accompanied by a noticeable
increase in �q1. Increase in �q1 and Vv/Vv0 is indicative of the rupture mechanism described as void coalescence
by internal necking, which also agrees with the type of rupture mechanism observed in the fractographical
investigation reported in Barsoum and Faleskog (2007) for this range in triaxiality. Thus, it appears that final
rupture occurs by void coalescence through internal necking in the materials investigated here when stress tri-
axiality is high enough regardless the value of l. Onset of void coalescence described by the localization cri-
terion (11) can be viewed as a generalization of the change of deformation to an uniaxial straining mode that
characterizes void coalescence under axisymmetric conditions as found by Koplik and Needleman (1988).

In the low triaxiality regime (T < 0.8), the solid lines representing the localization criterion do not at all
capture the experimental outcome. Failure occurs at much lower strain levels than what would be predicted
by Eq. (11). In fact, the strain at failure decreases somewhat with decreasing stress triaxiality and the layer of
Fig. 11. Failure locus for Weldox 960, where the macroscopic effective strain Ee at failure is plotted vs. stress triaxiality T. The solid circles
represents experimental results. The three thin lines indicate failure by localization according to Eq. (11), the thick line indicates failure
when �F 21 ¼ 0:8 is attained and the dash-dotted line indicates to failure when c(n = 0) = 1.70 in Eq. (28) is attained.



a b

Fig. 12. Behavior of the unit cell in the post-localization regime for Weldox 420 with v0 = 0.1. (a) Macroscopic effective stress and (b) void
growth vs. macroscopic effective strain Ee. The open circles indicates the onset of localization and solid circles indicates when �F 21 ¼ 1:6 is
attained.
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pre-existing voids does not seem to play a role in the onset of fracture. This abrupt change in behavior is
accompanied by an abrupt change in the Lode parameter as seen from Fig. 9. Here, a transition in the rupture
mechanisms was observed in the experiments and the deformation across the notch of the specimen (see Fig. 1)
became dominated by shearing as the triaxiality decreased. Building on this observation, a simple criterion
based on the attainment of a critical shear deformation was explored here. Within the context of the microm-
echanics model employed, such a criterion was realized by assuming that failure occurs when the shear com-
ponent �F 21 of the volume average of the deformation gradient, Eq. (10) or (17), reaches a critical value. The
critical value was chosen such that the strain at failure captures the experimental results when T < 0.6 for Wel-
dox 420 and when T < 0.8 for Weldox 960, and was found to be 1.6 for Weldox 420 and 0.8 for Weldox 960.
The difference between the localization and the critical shear deformation criterion, respectively, can be seen
for material Weldox 420 in Fig. 12(b), where the filled circles mark the attainment of �F 21 ¼ 1:6 prior to the
onset of localization (open circles) for the cases T = 0.53 and 0.70. The thick solid lines in Figs. 10 and 11
represent the critical shear deformation criterion, and it can be observed that the accordance with the exper-
imental results of Weldox 420 is very good, whereas the accordance with the experimental results of Weldox
960 is less apparent. One may also note that the thick solid line at some instances is replaced by a dashed line.
This indicates that no solution was found in the strain range considered in Figs. 10 and 11, which is due to the
near axisymmetric conditions prevailing here, with the consequence that �F 21 does not attain large values. In
this low triaxiality regime, the measures of localized deformation �q1 and �q2 are as good as zero at the instance
where the shear deformation criterion predicts failure, i.e., �F 21 is virtually equal to the corresponding compo-
nent of the uniform deformation gradient, i.e., F 0

21. The physical relevance and a generalization of the simplis-
tic criterion based on shear deformation will be discussed next.

Despite the fact that the pre-existing voids do not seem to trigger failure at this lower triaxiality range, the
inspection of the fractured specimens made in Barsoum and Faleskog (2007) reveal that the fracture surfaces
to a large extent are covered with small elongated shear dimples as shown in Fig. 2(b). The probable cause for
this is that failure is triggered by an extensive nucleation of voids occurring at a rather narrow interval in strain
Ee. This kind of strain driven nucleation behavior is observed in experiments and discussed by Goods and
Brown (1979) and Fisher and Gurland (1981). Further discussion on void nucleation can be found in the
review articles by Van Stone et al. (1985) and Garrison and Moody (1987). There is also evidence that a sud-
den burst of void nucleation can trigger shear localization in some high strength steels as recognized by Hutch-
inson and Tvergaard (1989). If a burst of void nucleation is responsible for the failure observed in the
experiments, it appears to be rather insensitive to variations in the parameters T and l, with the exception
of l approaching �1, which corresponds to axisymmetric conditions. A material is generally far more resistant
to shear band formation under axisymmetric (generalized tension) conditions than under plane strain (general-
ized shear) conditions. Chu and Needleman (1980) have suggested a simple model for void nucleation within a
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continuum framework that allows for nucleation under an arbitrary narrow interval in strain. Void nucleation
was not accounted for in the present micromechanics model.

In an attempt to generalize the simple criterion used here based on the shear component of the volume aver-
age of the deformation gradient, �F 21, we make use of the a generalized strain tensor defined as
EðnÞ ¼
ln �U n ¼ 0;
1
n ð�Un � IÞ n > 0;

(
ð27Þ
where �U is the average of the right Cauchy–Green stretch tensor over some representative volume and I is the
second order unit tensor. For the special cases n = 0, 1 and 2, the strain tensors Hencky, Biot and Green–La-
grange, respectively, are obtained. A generalized measure of the maximum shear deformation can then be de-
fined as
cðnÞ ¼
lnðk1=k3Þ n ¼ 0;
1
n ðk

n
1 � kn

3Þ n > 0;

(
ð28Þ
where k1 > k2 > k3 are the eigenvalues/principal stretches of �U. Here, failure was assumed to occur when c(n = 0)

reached a critical value chosen such that the strain at failure captures the experimental results in the low stress
triaxiality regime. The critical value of c(n = 0) was found to be 2.86 for Weldox 420 and 1.70 for Weldox 960.
This failure criterion is signified by the thick dash-dotted line in Figs. 10 and 11. The agreement with the exper-
imental results is acceptable. However, this generalized shear deformation criterion does not capture the up
going trend in failure strain near the transition region. The other two measures c(n = 1) and c(n = 2) were also
checked here, but did not improve the predictions as compared to c(n = 0).

6. Conclusions

In the present study, micromechanics modelling of rupture mechanisms in combined tension and shear is
performed. The micromechanics model consists of a unit cell containing a single void allowing for fully peri-
odic boundary conditions, which enables examination of two modes of void coalescence leading to ductile
fracture. The unit cell is loaded under proportional stressing conditions allowing for arbitrary ratios of mac-
roscopic stresses in terms of stress triaxiality and the Lode parameter. The present study is concluded by the
following points:

• The influence of the Lode parameter on void growth and coalescence can be significant.
• Two distinctly different rupture mechanisms are predicted with the micromechanics model.
• The void coalescence by internal necking is predicted by a localization criterion, which can be view as a

generalization of the change of deformation to a uniaxial straining mode that characterizes void coales-
cence under axisymmetric conditions (cf. Koplik and Needleman, 1988).

• Shear failure is predicted by a critical shear deformation criterion, where pre-existing voids do not play a
significant role.

• The micromechanics model, extended with the shear deformation criterion, captures the experimental
trends well.
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Appendix A

The elements of the orthogonal column vectors in matrix C are given here. Orthogonality gives 9 conditions
for the 12 elements in the vectors b, c and d. Thus, there is no unique way of constructing these vectors, and
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therefore three parameters, b1, b2 and b3, are introduced. In order to make the elements of C real, these
parameters must be chosen in the interval: 0 < bi < 1. Starting with the elements of d, the conditions
aTd = 0, dTd = 1 and requirement of d being real, gives
d4 ¼ �
1

w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2ðw2

0 � w2
4Þ

q
; d3 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

w2
0 � w2

4

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ w2

2Þð1� b2Þ
q

� w3w4

w0

ffiffiffiffiffi
b2

p
 �
;

d2 ¼ �
w2ðw3d3 þ w4d4Þ

1þ w2
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b1

1þ w2
2

s
; d1 ¼ �ðw2d2 þ w3d3 þ w4d4Þ:
Continuing with the elements of c, the conditions aTc = dTc = 0, cTc = 1 and requirement of c being real, gives
c4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b3g2
0G1

G1G3 � G2
2

s
; c3 ¼ �

ffiffiffiffiffiffi
g2

0

G1

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b3

p
� G2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3

G1G3 � G2
2

s" #
; c2 ¼ �ðc3g3 þ c4g4Þ=g0;

c1 ¼ ðc3g1 þ c4g2Þ=g0;
where
G1 ¼ g2
0 þ g2

1 þ g2
3; G2 ¼ g1g2 þ g3g4; G3 ¼ g2

0 þ g2
2 þ g2

4; g0 ¼ w2d1 � d2

¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� b1Þð1þ w2

2Þ
q

; g1 ¼ w3d2 � w2d3; g2 ¼ w4d2 � w2d4; g3 ¼ w3d1 � d3;

g3 ¼ w4d1 � d4:
Finally, the elements of b are determined from the conditions aTb = cTb = dTb = 0 and bTb = 1 as
b4 ¼ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ hTh
p ;

b1

b2

b3

264
375 ¼ �b4h;
where
h ¼ H�1

w4

c4

d4

264
375; H ¼

1 w2 w3

c1 c2 c3

d1 d2 d3

264
375:
The positive roots and b1 = b2 = b3 = 0.5 were employed in the present study.
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