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I. INTRODUCTION 

Consider the telegrapher’s equation 

b a positive constant, with initial conditions ~(0, X) = C(X), u,(O, X) = 0. .The 
change of dependent variables f  = et, f  = •l/~x reduces this problem to 

where 12 = O,($, 9) = u(t, x), 4 = $,(A!) = +(N). It is well known that the 
solution of this problem tends, as E - Of, to the solution of 

indeed, it is known [I, among many others] that 

for each fixed f  > 0. Returning to the original variables and keeping i fixed, 

we thus have that 

lim sup / u(t, X) - r:(t, x)1 = 0, 
t+r --T<3<1 

where lJ(t, X) = Q(E~, &/*.x) satisfies 

Thus we have shown that, as I 4 CI, the solution of the telegrapher’s equation 
(1) with the given initial data tends to the solution of the heat equation (2). 

The foregoing argument depends on the special form of the initial conditions 
and on the special circumstance that the right-hand side of (I) is a homogeneous 
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differential operator. It also depends on the particular norm chosen; for, in 
the &-norm it is known [ 1] that 

which becomes, for i fixed, 

‘,1-73i (f,“’ s_: / u(t, x) - U(t, x)1 dx = 0, 

yielding no information about 11 u(t, X) - U(t, ~$1~; as r - co. 
The object here is to generalize the first result above so that it applies to an 

equation with reasonably general initial conditions and right-hand side, to an 
arbitrary norm, and to the mixed initial boundary value problem. Indeed, we 
shall examine the large-time behavior of the solution of the problem 

U” -- bu’ = A% +f(t), u(O) = uo , u’(0) = 241 ) 

where u takes values in a Banach space g and the (possibly unbounded) operator 
A generates a co-group T(t) in g’; this formulation includes the generalizations 
just mentioned. As a consequence of our development and known results for 
parabolic equations, we shall also obtain conditions guaranteeing that u tends 
to zero as t --, cc. 

2. THE HOMOGENEOUS CASE 

Let the closed operator A generate the co-contraction group T(t); we shall 
show that the solution of the abstract wave equation 

U” + bu’ = A%, 40) = uo , u’(0) = u1 (3) 

tends in the norm of 9 to the solution of 

bU’ = rZ”u, U(0) =: u. + ; u, 

as t increases. The appearance of the term (l/b) ui in the initial condition for 
the heat equation is perhaps to be expected on physical grounds; for if u. = 0, 
ui # 0 there is energy present in the system described by (3) which must still be 
accounted for by (4). 

Since our concern is with the asymptotics of solutions, we shall assume that 
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(3) and (4) are well posed; conditions on ua , Al, sufficient for this may be found 
in [2-51. As may be checked by tedious calculation, the solution of (3) is 

u(t) == i embf *[T(t) + T(-t)]uo 

I + _ e-bf,‘P 

2 
Ir, J,(ib(t* - s2)l’*i’2) T(s)[u, + ; uo] ds 

I -- 4 ibembt’* [’ ],(ib(t* - ~~)1~~/2) t(t* - s*)-l ” T(S) u,ds 
f  

=I I, -+ I2 + I3 ; 

here J,, , Jr are Bessel functions of the first kind. This representation is that of 

Hersh [6]. Since A generates the co-group T(.), JP generates the analytic 
semigroup S(.) given by 

[2, p. 921. It is then immediate that the solution of (4) can be written as 

Since // r(t)11 < 1 and b > 0 by assumption, it is evident that 11 I, 11 - 0 as 
f  - ok. We thus have to show that I/ I2 + I, - Ii 11 -P 0 as t - cc; we shall 
first show that 

I2 - I& - ; (i&t)-“* fr e-bs2’4t T(s) [ul + ; u,,] ds. 
---X 

(5) 

Using K as a generic constant, we have 

+ h f ’ / &‘t’* /,,(&(t’ _ s2)1/2/2) _ (&‘-li2e-bs~/4t 1 ds, 

t 

The first two of these integrals may be written in terms of Erfc, whence it is 
obvious that they tend to zero as t --f x). We bound the third integral by a 
constant times the sum of three integrals: 
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For 1,s we have 

the second of these can be written as 

s 
m 

271-l’2b-l 

b’:?t’:l,/2 e-“e d” 

which tends to zero as t -+ co. 

For large positive x we have [7, p. 3731 that 

Jo(ix) = (2nX)-1/2e2[1 + O(l/.)], (7) 

where 1 0( 1 /x)1 < k/x; since Jo(O) = 1, it follows that for some value of k the 
estimate 

Jo(k) < ke” 

holds for all x >, 0. Since in general (aa - b2)1/2 < a - t(P/a), we have the 
estimate 

j  e-bt/2 J&7$2 _ s2)l/2/2)1 < ~e-bt/2eb(t2-s2)‘!‘!2 

< he-bsz/4t (8) 

for t2 >, s2. Using this, we get the following bound on the first integral of the 

right-hand side of (6): 

k m 
i s 

x 
e-bs=i4t ds < &l/2 

e-u2 d” p/4 b’/2t’/4,2 

< kt112 Erfc(W2P4/2); 

this tends to zero as t -+ co since Erfc(x) < ke-“‘. Thus we have shown that 
1ss --f 0 as t + 03, and an entirely similar argument shows that 1ai --f 0. 

It remams to show that I,a + 0 as t + 03. Since for large t, t2 > t3j2 > s2, 
we have (t2 - s2)lj2 > 1 and so can use the asymptotic expansion (7) for Ja . 
Now 2/[b(t2 - s”)‘/“] = o(1) as t -+ 03, uniformly for s E (-t3j4, P), where 
o(1) stands for a function which tends to zero as t + co. Thus 

Since t2 > s2 for s E ( -t314, t3i4), we can expand the square root as 

t(l -$)liZ = t - & (1 + $ + . ..) = t - & (I $- q-1’2)). 
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Hence 

e-bt,2J0(jb(t2 - $)I. ‘,2) : (&t)-1;*e-bs2:4t( 1 + o( 1)). 

It follows that 

1; 12,, !/ r: o(1) 1-t (d-1’*e-bsa’4t ds = o(l). 

This establishes (5). 
Since -iJr(ix) is asymptotic to J,,(ix) [7, p. 372-373],1, can be treated much 

as I, to show that 

61'" m  
I3 -- - K3 = 4(rrt)“2 

s 
--co e-bss’4t T(s)%, ds. (9) 

Indeed, the only nonobvious alteration needed is in the estimation of 

s t 1 e-btiQJl(ib(t* - ~‘7~/*/2) t(P - s2)-11? 1 ds, 
t3 ‘4 

occasioned by the singularity of the integrand at s = t. But by using (8) we see 
that this integral is bounded by 

.t 

I 
te-bsa/4t 

( 
t2 _ fZ)-1.‘2 ds < te-bt1/‘/4 

* t3!1 I 
ot (t’ - s2)--li% ds 

77 = _ te-bt’fa14, 
2 

which tends to zero as t + co. 

From (5) and (9) follows at once the desired result that the solution of (3) 
tends to the solution of (4) as t -+ co. 

3. THE HOMOGENEOUS CASE 

Here we shall show that the solution of the nonhomogeneous wave equation 

U” + bu’ = A2u +f(t), U(O) = 110 , u’(0) = q (10) 

tends to the solution of 

bU’ = A2U +f(t), U(0) = u. + ; 111 (11) 

as t --f co, provided f  satisfies certain restrictions. The presence of the driving 
termf in (10) or (11) means that energy is being pumped into the system. If no 
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restriction on the growth off is made, the energy in the system is unbounded 
and hence the solutions u and U cannot be expected to remain bounded. For 
unbounded U one anticipates a result of the form lim,,, Jj u(t) - U(t)//// U(t)// = 0, 
rather than a stronger result of the form limt,= \I u(t) - U(t)]\ = 0. We therefore 
assume that f, besides being a continuous function from [0, co) to LB’, satisfies 
the growth requirement 

IlfWll G g(t), where 
I 

zc g(t) dt < cc and mpg(t) < 00. (12) 
0 00 

We may use Duhamel’s principle in the standard way to solve for u, U: 

u(t) = w(t) + ; lot j-y, e- b(t-u)12Jo($[(t _ # - $j1/2/‘4. 

. Wfb4 ds 4, (13) 

u(t) = v(t) + 5 jot j--l WV - PII- 1/2e-b9*‘[4(t-rr)lT(~)f(11) ds dp, (14) 

where V, V solve the homogeneous problems (3), (4), respectively. Since we 
showed earlier that w(t) + V(t) as t -+ co, it is enough to show that the integral 
of (13) approaches the integral of (14) as t -+ cz). 

Following [I], we introduce the notations 

K,(t, /A, s) I e-b(*-u)‘Z J,(ib[(t - /$ - ~~]l’~/2), 

K2(t, p, s) z [mb(t - /2-)~-1’2e-b~*‘[4(f-p)l, 

To show that the integral of (13) app roaches that of (14) it will be enough 
to show that 

tends to zero as t + CO. Since for some k, Erfc(x) < k& and Ij T(.)jl < 1, 
we can estimate $, sEPU, [I K,T(s) f (p)II ds dp as follows. 

t m  

If 
o (t- l II GWfWll dsdlr. 

II 

<k 
l/Ze-bs*/[l(t-d] g(p) ds dp 

= k /at Erfc (‘ [b(t - p)]lla) g(p) dp 

I 

t-N 
<k e-bW-u)/4 & + k 

0 

= kle-bN/4 _ e-bt/4] + k 
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which can be made arbitrarily small by choosing N large and then t N 

sufficiently large. Thus to show that I goes to zero it is enough to show that 

.t * t-Ll 
J I / Kl - K, J g(p) ds dp - 0. 
0 ‘I, 

Now 

We estimate Ia as follows. 

the first of these integrals is bounded by 

bs2:[4(t-u)] &) ds dp 

et .H ‘2: k 
I (t - p)lj2 Erf(J-[b(t - p)]l!z) g(p) dp 

t-N 

5.. : kN”2 Erf($[bN]1’2) s,;, g(p) dp, 

which tends to zero as t - rx) for any fixed N. Here we have used (8) with t 
replaced by t - p to estimate Kl . The second integral of (15) can be estimated 
in a similar fashion. 

I, is handled in much the same way. Set 

we shall show only that 1a1 + 0 as t -+ co, as the argument for Is2 is similar. 
We have 
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Now if TV is restricted to satisfy TV < t - Ns, then (t - CL)‘/? > N and, since 
Erfc is a decreasing function of its argument and Erfc(x) < k.&. 

Erfc($P2[(t - p)l12 - iV(t - p)-lfl]) 

< Erfc(&b1/2[(t - p)l’” - 11) 

< ke-bf(t-L1)-2(t-L1)“‘]/4 < ke-b+d/S 

provided N > 4. It follows that for TV < t - Na 

(t - p)lj2 Erfc(&bl/2[(t - ~)‘/a - N(t - CL)-i/a]) < ke-b(t-u)P. 

We can now estimate IS1 by 

t-N2 t-N 

41 < k 
s 

g(p)e-b(t-u)l16 dp + kN 
f 

g(p) 4 
0 t--N’ 

< ke-bNe’16 
s 

0 

li g(p) dp + kN Sa t-N* if(P) dP 

The first term can be made small by choosing N large; the second can then be 
made small by choosing t large. Thus 1sr --) 0 as t 4 co. 

There remains to show that I1 --f 0 as t + co. Since there s < t - p - N < 
t - p for sufficiently large N, we may employ arguments similar to those of 
Section 2 to show that 

in the domain of integration of 1r . Thus 

< o(l) f= g(d dp = o(l), 
0 

since the inner integral is a constant. 
We have established the following result. 

THEOREM. Let the continuous function f: [0, 00) 4 A9 satisfy the growth 
restriction of (12), and let the problems (lo), (11) be well posed. Then the solution 
of (10) tends in the norm of the Banach space 9 to the solution of (11). 
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Under additional restrictions, the solution of the parabolic equation (11) 
is known to tend to a limit itself [3, p. 1531. Combining this result with the 
theorem, we get the following corollary. 

COROLLARY. In addition to the hypotheses of the theorem, assume that 

(i) j is unijormly H6ider continuous and Jim,_, j(f) = 0; 

(ii) A2 h as an inverse. 

Then the solution of (10) tends to zero as t -+ cc. 

Note, for example, that the corollary cannot be applied to the initial boundary 
value problem with boundary conditions of the form au/&r = 0, where n 
denotes the normal to the boundary, since A2 is not then invertible. The theorem 
is, however, applicable. 
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