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INTRODUCTION

Let 4 be an artin algebra and T a splitting tilting module in mod A, the
category of fintely generated left A-modules. If we let B=End (7) and
denote by mod B the category of finitely generated left B-modules, then T
determines a splitting torsion theory (#(T), Z(7T)) in mod B. We know
that all but finitely many connected components of the Auslander—Reiten
quiver /5 of B either completely lie in Z(7T) or completely lie in %{7T) [10].
In this paper we show that all connected components of I, lying in 2(T)
are preinjective components, quasi-serial components, or isomorphic to
valued translation quivers obtained from quasi-serial translation quivers by
coray insertions (see Section 1 for definition).

In general we are not able to get a similar result about those components
of I’z lying in #(T). However, if A is an hereditary algebra of type 4, then
we are able to give a complete description of the possible shapes of the
connected components of /5. We show that a connected component of I
is a preprojective component, a preinjective component, the connecting
component determined by 7, a quasi-serial component, or isomorphic to a
valued translation quiver obtained from a quasi-serial translation quiver by
ray insertions or by coray insertions. The connecting component of I
determined by T can be embedded in ZA4*, where 4* is the opposite quiver
of 4 [17]. The shapes of preprojective and preinjective components of an
arbitrary Auslander—Reiten quiver are well known.

The probiem of describing the shapes of the connected components of
the Auslander—Reiten quiver [, of a tilted algebra B of infinite representa-
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tion type goes back to the work of Happel and Ringel [7] where they gave
a complete description of the shape of /', when B is a tilted algera of tame
type. Later Ringel proved in general that any regular component of I
which is not a connecting component is quasi-serial [18]. A description of
the shapes of the non-regular components of I, when B is a tilted algebra
of wild type might be concluded from results in [11,12] which were
obtained from a detailed study of the homomorphisms between regular
modules of a wild hereditary algebra.

1. PRELMIMINARIES

Throughout this paper 4 denotes a connected artin algebra. We denote
by mod A the category of finitely generated left A-modules, by I, the
Auslander—Reiten quiver of 4, and by 1 the Auslander—Reiten translation
D Tr. We will use freely the standard notion and terminology as well as
some basic results of Auslander—Reiten theory, which may be found in
[3,4]

When no possible confusion can occur, we do not distinguish between an
indecomposable module X in mod 4 and the corresponding vertex [ X] in
r,.

Let I” be a valued translation quiver and x a vertex of I. Let x,,
X,, .., X, be the immediate predecessors of x in /" and (b,, /) the valuation
of the arrow x; — x for | €i<s. Then we say that x has b’ left neighbours
where b' =3} b,. Let y,, y,, .., y, be the immediate successors of x in I
and (c,, ¢;) the valuation of the arrow x — y, for 1 < j<r. Then we say that
x has ¢ right neighbours where ¢ =% c;. We say that an arrow of I" has
trivial valuation if its valuation is (1, 1), and we say that [ has trivial
valuation when each arrow of I has trivial valuation.

We recall that ", is a valued translation quiver and the valuation (b,
byy) of an arrow X — Y is defined so that Y occurs by, times in the
codomain of the source map for X while X occurs b, times in the domain
of the sink map for Y. Thus if X and Y,, Y,, ..., ¥, are modules in I',, then
Y,, Y,, .., Y, are the left neighbours of X in I, if and only if @ Y, is the
domain of the sink map for X, and Y, Y,,.., Y, are the right neighbours
of Xin I, if and only if @ ¥, is the codomain of the source map for X.

In order to describe the shapes of translation quivers which we are
interested in, we quote from [17] the definition of coray insertions and ray
insertions in an appropriate translation quiver.

Let I" be a translation quiver. A vertex x of I' is called a coray vertex if
there is an infinite sectional path

TX, X, 7 Xy X=X
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in 7, which is called a coray ending at x, such that for each integer n >0,
the path x, - x, | — ---x, = x, =x is the only sectional path of length n
in I which ends at x.

Let x be a coray vertex of /" with a coray as above. For a positive integer
n, we define a translation quiver I'{x, n] as follows.

The vertices of I'[x, n] are those of I together with the pairs (i, j) with
1<j<n, iz

The arrows of I'[x,n] are those of I, excluding those ending at x,
other than x,,,—x, with /21, together with the following arrows:
(i+L - pHfort<jsn izl Lj+ -+, )lorI<j<n iz,
(n+i—~1,1)-xforalli=1;and y— (i, n)if y — x, is an arrow of I" other
than x,,, —» x,.

Let p be the transiation of I". The translation p’ of I'[x, n] is defined so
that if z belongs to /" but z# x, for all =1 and p:z 1s defined, then p'z = pz,
whereas p'x;=(n+i,1) for all iz 1; p'(i, j)=(, j+ 1) for 1 <j<n; and
p'li, n)=px; f px, is defined.

We define by induction a translation quiver [[x,, nol[x,,n,]--
[x,,n,] where the n, are positive integers, x, is a coray vertex of I, while
x, is a coray vertex of I'[xy, no)---[x,_y,n,_ ) Where there is no need
to emphasize the coray vertices, we say that a translation quiver /™ is of
form I'(ng,n,,..n ] if I'"=ITxy nellxy,n]1---[x,,n,] with some
appropriate coray vertiees x;, and call /" a translation quiver obtained
from I' by coray insertions. There is a dual concept of a ray vertex and a
dual construction of ray insertions at ray vertices.

Recall that a quasi-serial translation quiver is by definition either a stable
tube or is of form ZA , [18]. We say that a valued translation quiver is
obtained from a quasi-serial translation quiver by coray insertions (or by ray
insertions) if it has trivial valuation, and its underlying translation quiver
is obtained from a quasi-serial translation quiver by coray insertions (or by
ray insertions). In particular, a valued translation quiver is said to be a
coray tube (or ray tube) if it is obtained from a stable tube by coray
insertions (or by ray insertions) [14].

Let us now quote the following results from [13, 14]. Recall that an
indecomposable module X in mod A is said to be stable if 1"X#0 for all
integers n.

1.1, Lemma {13]. Let X be a stable module in I, which is not
t-periodic. If X has at least three stable left neighbours in I',, then we have
lim,_ , {(t7"X)=c0 and lim,,_, , {(t"X) = o0, where I(Y) is the composition
length of Y.

1.2. Lemma [14].  Let I' be a connected component of I',. Then we have
the following:
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(1) If I contains no projective module but does contain an oriented
cycle, then I is either a stable tube or a coray tube.

(2} If " contains no injective module but does contain an oriented
cycle, then I is either a stable tube or a ray tube.

Finally we collect some basic facts of Auslander-Reiten theory in sub-
categories which can be found in [4, 17, 5]. In this paper a subcategory of
mod 4 is always full and closed under isomorphisms, direct sums, direct
summands, and extensions. Thus a subcategory of mod A4 is a Krull-
Schmidt category itself.

Let 4 be a subcategory of mod 4. A non-zero map f: Y — Z in ¢ is said
to be €-irreducible if (1) f is neither a split epimorphism nor a split
monomorphism and (ii) if /= gh with g and 4 in €, then either g is a split
monomorphism or 4 is a split epimorphism.

Let € be a subcategory of mod 4. A map g: Y — Z in € is said to be a
%-sink map for Z if (1) g 1s not a split epimorphism; (2) if g = hg, then A
is an automorphism of Y; and (3) if : V"> Z in € is not a split
epimorphism, then there exists 2: Y'— Y such that h=h'g. A ¥-source
map for Z is defined dually. If there is a %-sink map (respectively, a
%-source map) for Z then it is unique up to isomorphism, and moreover,
Z is indecomposable. Sink maps and source maps are called minimal right
almost split maps and minimal left almost split maps in {4].

1.3. LEMMA [4]. Let € be a subcategory of mod A. If 0£g: Y > Zisa
%-sink map for Z, then a morphism h:W—~Z with W+#0 in € is
€-irreducible if and only if there is a split monomorphism s: W — Y such that
h=sg. Dually if 0# f: X > Y is a €-source map for X, then a morphism
h: X = W with W#0 in € is €-irreducible if and only if there is a split
epimorphism r: Y — W such that h= fr.

Let € be a subcategory of mod 4. If X is an indecomposable module in
mod A, then k , =End(X)/rad(End(X)) is a division ring. Let X and Y be
indecomposable modules in 4. We define [rr (X, ¥)=rad(X, Y)/rad(X, Y)
where rad?(X, Y) is the set of maps f: X — Y which are of form f =7, f,
with f,erad(X, Z), f,erad(Z, Y) for some module Z in 4. Note that
Irr (X, Y) is a left k, vector space and a right k, vector space. Define
dyy=dim, Irr (X, Y) and d,=dim, Irr (X, Y). Using an argument
similar to that used in the proof of the Lemma in [ 18, Sect. 2.5], we have
the following:

1.4, LEMMA. Let € be a subcategory of mod A and X, Y indecomposable
modules in €. If [ X > W is a €-source map for X, then d,, is the multi-
plicity of Y appearing in W._ If g: V — Y is a €-sink map for Y, then d'y, is
the multiplicity of X appearing in V.



CONNECTED COMPONENTS 509

A short exact sequence 0 —» X /5 E—£» Z -0 in mod 4, with X and Z
in 4, is said to be a $-almost split sequence if f is a $-source map for X
and g is a %-sink map for Z. In this case both X and Z are indecom-
posable.

It follows from the definition that two %-almost split sequences are
isomorphic if either the start-terms are isomorphic or the end-terms are
isomorphic.

1.5. LEMMA. Let € be a subcategory of mod A. If there is a %-almost
split sequence 0 - X - E—-Z -0, then ky>k,.

Proof. The lemma follows easily from the definition of a ¥-sink map
and a é-source map. ‘

The proof of the following lemma is similar to that of the corresponding
result of Aulander—Reiten theory in mod 4.

1.6. LEMMA. Let € be a subcategory of mod A. If there is a %-almost
split sequence 0 —» X = E— Z — 0 then, for each indecomposable summand 'Y
of E, we have that dyy=d'y, and d'y,=d,,.

Proof. Assume that 0 »X—>E—-Z -0 is a $-almost split sequence
and Y an indecomposable summand of E. The equality d, =d',, follows
directly from Lemma 1.3. Let C be the center of 4. Then k = C/rad(C) is
a field since A is connected by assumption. We have dy,dim k=
dim, Irr (X, V)=d, dim, k,=d', dim, k ,=dim, Irr (Y, Z)=d,, dim; k.
Thus we have d'y, =d,, since dim, k,=dim, k, by Lemma 1.5.

Let ¥ be a subcategory of mod 4. A module Z in € is said to be
%-projective if each short exact sequence 0 » X' - Y — Z — 0 in mod A4 with
X in % splits. Dually a module X in ¥ is said to be $-injective if each short
exact sequence 0 - X — Y- Z -0 in mod A with Z in € splits.

A subcategory 6 of mod A is said to have relative almost split sequences
if, for each indecomposable module X in %, (1) there exist both a %-sink
map and a ¢-source map for X; (2) if X is not €-projective, then there
exists a -almost split sequence ending at X; and (3) if X is not %-injective,
then there exists a %-almost split sequence starting at X.

Let ¥ be an subcategory of mod 4 having relative almost split sequences.
The Auslander-Reiten quiver I'(€) of € is a valued translation quiver
defined as follows: Its vertices are the isoclasses [X] of indecomposable
modules X in €. There is an arrow [ X]— [ Y] between two vertices [ X]
and [Y] if there is a €-irreducible map from X to Y. Each arrow
[X]1— [Y]is endowed with a valuation (dyy, d’yy) where dy, and d' are
defined as before. Finally, the translation 1, is defined so that if 0 - X -/
E-& 7Z-0 is a ¥-almost split sequence, then [X]=<t[Z] and
{(Z]j=1_[X].
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It follows from Lemmas 1.3 and 1.6 and the uniqueness of %-almost split
sequences that the quiver /(%) defined above is a valued translation
quiver. By definition, if [X] and [Y,], [Y5], ... [ Y,] are vertices in I'(¥),
then [ ¥, 1, [ ¥>1, ... [ Y,] are the left neighbours of [ X] in /(%) if and only
if the module | Y, is the domain of the ¥-sink map for the module X and
{r.], [Y,], -, [Y,] are the right neighbours of { X] in /(%) if and only if
the module B Y, is the codomain of the ¥-source map for the module X.

Let € be a subcategory of mod A having relative almost split sequences.
When no confusion can arise, we do not distinguish between an indecom-
posable module X in ¢ and the corresponding vertex [ X] of I'(¥). From
this point of view, the translation r_ of the quiver I'(¥) can be regarded as
an operation on the indecomposable modules in € which are not
%-projective while 1, can be regarded as an operation on the indecom-
posable modules in € which are not %-injective. We extend these
operations to the whole subcategory ¥ by defining 1. X=0 for an
indecomposable %-projective module X and 1 (P X} = P t.X,; similarly
1, Y=0 for an indecomposable %-injective module Y and 7, (B Y)=
@D . Y. We call 1, the relative Auslander—Reiten translation of the
subcategory €.

2. A SUBCATEGORY % WITH 7, PRESERVING MONOMORPHISMS

In this section we describe the shapes of connected components of the
Auslander—Reiten quiver of a subcategory whose relative Auslander-Reiten
translation either preserves monomorphisms or preserves epimorphisms.

Throughout the rest of this paper, if € is a subcategory of mod 4 having
relative almost split sequences, then we denote by 7(%) its Auslander-
Reiten quiver and by 7, its relative Auslander—Reiten translation.

Let € be a subcategory of mod 4 having relative almost split sequences
and let I be a connected component of 7(%). By saying that 7, preserves
monomorphisms in I’ we mean that if there is a monomorphism f: X — Y in
%, where all indecomposable summands of X and Y are modules in 7, none
of which is ¥-projective, then there is a monomorphism f":1. X —1.Y.
Saying that t, preserves €-irreducible monomorphisms in I” means that
if there is a ¥-irreducible monomorphism f: X - Y with X and Y in I
and not %-projective, then there is a %-irreducible monomorphism
St X—>1.Y. Under the dual conditions we say that t  preserves
epimorphisms or 6-irreducible epimorphisms in I'.

For convenience, we give the following definition.

2.1. DErFINITION. A subcategory € of mod A having relative almost split
sequences 1s said to be an Auslander-Smalp subcategory if € is either closed
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under submodaules or closed under factor modules, and there is only a finite
number of isoclasses of indecomposable %-projective modules and a finite
number of isoclasses of indecomposable €-injective modules in €.

2.2. LeMMA. Let € be an Auslander—Smaly subcategory of mod A. Then
each €-irreducible map in € is either an epimorphism or a monomorphism.

Proof. 1t follows from the fact that € is either closed under submodules
or closed under factor modules.

Let € be an Auslander-Smale subcategory of mod 4 and " a connected
component of /(¥). It follows from the above lemma that 7. preserves
%-irreducible monomorphisms in [ if and only if 1~ preserves
%-irreducible epimorphisms in /.

We will make frequent use of the following easy lemma.

23. Lemma. If
(fr) , (5)
0 X——YBY ——Z-0
is a short exact sequence in mod A, then f is a monomorphism if and only
if g is a monomorphism and [ is an epimorphism if and only if g’ is an
epimorphism.

The following two lemmas are generalisations of similar results in [2].

2.4. LemMa. Let € be an Auslander—Smalp subcategory of mod A.
Assume that

XLy Lixt oy S x

is a chain of €-irreducible maps between indecomposable modules with | a
monomorphism and g’ an epimorphism. Then the module X has at most two
left neighbours in I['(€) which are not %-injective and at most two right
neighbours in I'(€) which are not €-projective.

Proof. It suffices to prove the first part of the statement. Assume that
the module X has at least three left neighbours, say Y, =Y, ¥,, and V;, in
I'(¢) which are not €-injective. Then 1 Y,, 7; Y5, and t] Y, are right
neighbours of X in I'(4) while X is a right neighbour of Y;, i=1,2,3, in
['(¢) by Lemma 1.6. Thus we have

U, X)+HX) 2 HY) + [(Ys) + U Ys);
Y)Y+ V)2 UX), i=1,2,3
Kt X))+ KX)2 K1, Y+ Lz o)+ (t] 1),
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Hence we have (1. X)+{(r, X)=2/{t, Y)+ [(Y). However, we know that
H{t,. Xy<{U(Y) since f is a proper monomorphism, and H{t  X)</(t] Y)
since g’ is a proper epimorphism. This gives rise to a contradiction. The
proof is completed.

Let 4 be an Auslander-Smalg subcategory of mod A. A module X in
I'(%) is said to be left €-stable if t"X #0 for all positive integers n, right
6-stable if X #0 for all negative integers n, and %-stable if 77 X # 0 for all
integers n. An arrow X — Y in I'(%) is said to be monic if there is a
%-irreducible monomorphism from X to Y, and to be epic if there is a
%-irreducible epimorphism from X to Y. By Lemma 2.2, each arrow in
I'(¥') is either monic or epic.

2.5. LEMMA, Let € be an Auslander—Smale subcategory of mod A and
let " be a connected component of '(€), containing no 6-injective module.
Assume that t. preserves €-irreducible monomorphisms in I'. Then we have
the following:

(1) If X—Y is an arrow in I, then either X =Y or Y -1 X is
monic, and furthermore, if X and Y are both €-stable, then one of the arrows
X—>Yand Y -1 X is monic and the other is epic.

(2) Let X - Y be a monic arrow in I If X and Y are €-stable, then
for all integers n20, the arrow 1/ "X — t_"Y is monic.

(3) Let X be a module in I' which has exactly two right neighbours Y
and Y in I If Y, Y', and X are all €-stable, then Y # Y' and one of the
arrows X - Y and X — Y’ is monic and the other is epic.

(4) If Y- Z is an epic arrow in I" with Z not €-projective, then 1. Z
has at most two right neighbours in I'.

Proof. (1) First note that 7, preserves é-irreducible epimorphisms in
I' since 1. preserves $-irreducible monomorphisms in I” by assumption.
Assume that both X — Y and Y — 1t X are epic. Then for an arbitrary
integer n >0, there is a chain of ¢-irreducible epimorphisms

,Y—-) Y""T:X—‘)T(T Y—) _,T(_*"X__)z.(—ny’

which is impossible. So at least one of X— ¥ and Y— 1, X is monic.
Further assume that X and Y are %-stable and that both X - Y and
Y - 17 X are monic then, for an arbitrary integer m > 0, there is a chain of
%-irreducible monomorphisms

VX5tV > ot X Yo XY,

which is again impossible.
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(2) Assume that X and Y are %-stable modules. By (1), the arrow
Y1, X is epic. Thus for any n>0, the arrow 1/ "Y —1 " 'X is epic
since 1, preserves %-irreducible epimorphisms. Using (1) again, we see
that the arrow 7.7"X — t_"Y is monic.

(3) By assumption, Y@ Y’ is the middie term of a %-almost split
sequence starting at X. Assume that Y, ¥’, and X are all ¢-stable. If the
arrow X — Y is monic, then sois Y' -1 X by Lemma 2.3. Hence X — ¥’
is epic by (1). Similarly if X — Y is epic, then X —» Y’ is monic.

(4) Assume that Z is not %-projective and that ¥ — Z is an epic
arrow in /. Then t,.Z — Y is monic by (1), and 1Y — 1 Z is epic since
7, preserves %-irreducible epimorphisms in I Thus there is a chain of
%-irreducible maps

Z-H Yy z 5 v S 7

with /' a monomorphism and g’ an epimorphism. Since [” contains no
%-injective module, it follows from Lemma 2.4 that Z has at most two left
neighbours in 7, that is, 7. Z has at most two right neighbours in I

The basic idea in the proof of the following lemma comes from [16].

2.6. LEMMA. Let € be an Auslander-Smale subcategory of mod A and
let I" be a connected component of I'(€), containing no €-injective module.
Assume that ©, preserves monomorphisms in I'. If a €-stable module X in I
has at least three right neighbours in I', then it has at least three 6-stable
right neighbours in I', and for each n >0, there is a monomorphism from v X
to @, X, s copies of X, where s=I(X).

Proof. By assumption t_ preserves $6-irreducible monomorphisms in I~
and so 1, preserves ¢-irreducible epimorphisms in [

Assume that X is a $-stable module in 7. Since there is no %-injective
module in I, there is an arrow X — Y in " with Y a %-stable module.
Assume that X has at least three right neighbours in 7, then so does
T, "*'X for each n>0. Thus by Lemma 2.5(4), each arrow W — 7 "X in
I" is monic. Hence each arrow W' — 11~ 'X in I' is monic. In particular, the
arrow 'Y -t 'X is monic. So 17X has at least two right neighbours in
I If t7 X has exactly two right neighbours, say 7Y and Y, in I, then by
Lemma 2.3, the arrow "X —t”Y is monic since Y’ — 1/ 'X is monic.
Therefore t”X — 7Y and t"Y —» 17~ 'X are both monic, which contradicts
Lemma 2.5(1). Thus 17X has at least three right neighbours in 7. So X has
at least three ¥-stable right neighbours in I” since there is no %-injective
modules in [
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Now, for each integer n> 0, let

vy

0"-"[(,"+IX 4‘@ Yi

i=1

(¥

T, "X -0

be a %-almost split sequence. Then each %-irreducible map f; is a
monomorphism as we proved above. So there is a monomorphism from
T, "X to @, 1. "X, that is, the module 77" *'X is cogenerated by 7, "X.
Then. by induction, the module X is cogenerated by t"X. Hence there
is a monomorphism X - @ 1"X with s=/(X). So there is a
monomorphism #': X — @, X since 1, preserves monomorphisms in /.
The proof is completed.

Note that if ¢ is not closed under submodules, there may be a
#-irreducible epimorphism with codomain an indecomposable €-projective
module, and if ¢ is not closed under factor modules, there may be a
%-irreducible monomorphism with domain an indecomposable ¢-injective
module.

2.7. THEOREM. Let € be an Auslander—Smalg subcategory of mod A and
let I' be a connected component of [(¥), containing neither €-injective
modules nor oriented cycles. Assume that t. preserves %-irreducible
monomorphisms in I. If [ contains €-stable modules, and each €-stable
module in I' has at most two right neighbours in [I', then either I Is
isomorphic to ZA ., or [ is obtained from LA by ray insertions.

Proof. Since 1. preserves %-irreducible monomorphisms in I” by
assumption, 1, preserves $-irreducible epimorphisms in /. Assume now
that each €-stable module in " has at most two right neighbours. We
divide the proof into several steps.

(1) Let X— Y be an arrow in I between €-stable modules X and Y.
Then the arrow X — Y has trivial valuation.

Since X is €-stable, it has at most two right neighbours in " by assump-
tion. If Y appears more than once as a right neighbour of X, then X has
exactly two right neighbours Y, Y. This contradicts Lemma 2.5(3) since Y
is %-stable. So Y appears just once as a right neighbour of X. It follows
similarly that ¢ X appears just once as a right neighbour of Y. Thus the
arrow X — Y has trivial valuation.

(2) Let X,»X,— --- =X, | = X, be a sectional path in I" with a
monic arrow X, | — X, between €-stable modules X;_ |, and X . For each i,
1 <i<s—1, the following hold:

(a) The arrow X;— X, is monic while the arrow X, =1 X, is
epic,
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(b) The module X, has at most two right neighbours:;
(c) The arrow X, — X, has trivial valuation.

We use induction to prove (2). Since X, , and X, are both #-stable,
X,_, has at most two right neighbours by assumption and the arrow
X, ,— X, has trivial valuation by (1). Since X,_, — X, is monic, the
arrow X, —t1_X, | is epic by Lemma 2.5(1). So the statements (a), (b),
and (c) hold for i=s—1. Assume that they are true for i, 1 <i<s—1.
Then the module X, has exactly two right neighbours X, , and 7/ X, , in
I’ by (b). Since X,,,—»t X, is epic, so is the arrow X, -1 X, | by
Lemma 2.3. Hence the arrow X, , — X, is monic by Lemma 2.5(1) and
X;_, has at most two right neighbours in /" by Lemma 2.5(4). Thus it
follows that X, appears just once as a right neighbour of X;_,. Moreover,
we have shown that 77 X,_ | appears just once as a right neighbour of X,.
So the arrow X, , — X, has trivial valuation.

(3) Let X — Y be a monic arrow in I between €-stable modules X and
Y. Then there is a sectional path X +Y—-Z in [

By (1), the arrow X — Y has trivial valuation. Since the arrow X — Y is
monic, the module Y has at least two left neighbours, say X and Y', which
are different since X' — Y has trivial valuation. So X—»> Y-t Y is a
sectional path in I since I” contains no ¥-injective module.

(4) Let X —» Y — Z be a sectional path in I’ with a monic arrow X - Y
between €-stable modules X and Y. Then Z is 6-stable and the arrow Y - Z
is monic.

Since Y is €-stable, it has exactly two right neighbours 7 X and Z in I
For each integer n>0, the arrow /X —>17Y is monic since X —» Y is
monic. Therefore, there is a sectional path 17X —+17Y - X, in I" by (3). So
X— Y-t _"X,is also a sectional path in /. Thus 7 "X, = Z. This implies
that Z is ¢-stable. By Lemma 2.5(1) the arrow Y — 1 X is epic, and so is
the arrow Z -t Y. Hence the arrow Y — Z is monic by Lemma 2.5(1)
again.

(5) Let X — Y be a monic arrow in I between €-stable modules X and
Y. Then the arrow X — Y is contained in a unique infinite sectional path

o Xy > X=X X >

in I’ which satisfies the following conditions:

(a) The module X, has no immediate predecessor other than 1. X, in
I, and has at most two immediate successors in I,

(b) For all integers i> 1, the module X, has exactly two immediate
successors X, , and 17 X,_ ;

{c) For all integers i=1, the arrow X,— X,,, is monic and has
trivial valuation;
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(d) The modules X, belong to pairwise different t_-orbits;

(e) There is some integer my =0 such that X, is €-stable if and only
if i>niy;

(£)  If p is the number of €-projective modules in I', then 0 < my < p.
If my>0and X;=1 "P; where P, is %-projective, then n, <n,< --- <n

my°

From (2) there is a bound on the lengths of the sectional paths in I’
ending with the arrow X' — Y. Let

A/I_"A,:’._—> —’X\ l—')X.\

be a sectional path in /7 of maximal length with X, =X and X,=Y.
Then X, has no immediate predecessor other than 7%, in I. Moreover, by
(2), the module X, has at most two immediate successors in 7 while for
1 <i<s, the module X; has exactly two immediate successors X, , and
7. X, ), and for all i, I <i<ys, the arrow X, — X, , is monic and has
trivial valuation.

Since X, | — X, i1s monic and X, |, and X, are %-stable, it follows from
(3) and (4) that there is a sectional path X, , — X, — X, in [ such that
the module X, , is ¥-stable and the arrow X, — X, | is monic. Hence, by
induction, we obtain an infinite sectional path

X

s IAX,(—‘)X.\'Jrl—""'—‘)Xf'—’Xi-i»l'_).

in { such that for all i2s~— 1, the module X, is ¥-stable and the arrow
X.— X, is monic. Moreover, for all i>s—1, the arrow X;— X,,, has
trivial valuation by (1), and the module X; has exactly two immediate suc-
cessors X,;,, and 7. X, , from the assumption. So the infinite sectional
path

L R D P A T . San . (PR

satisfies the conditions (a), (b), and (c). So o is the unique maximal infinite
sectional path in 7~ which contains the arrow X — Y and, for all /> 1,

X,_’Xi+1" ~*XiJr,‘”*

is the unique infinite sectional path in I" which starts with the arrow
Xi—> X,

Since X, _, is ¥-stable, there is an integer m,, 0 <my <s—1, such that
X, +1 18 ©-stable and X, is not #-stable if i<m,. Since [ contains no
€-injective module, there is a $-stable module X’ such that X, ., — X' is
an arrow in I. Assume that X'# X, ,,. Then either my>0 and
7. X,,= X', which contradicts the assumption on m,, or my,=0 and X,
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has an immediate predecessor 7,X' # 7. X,, which is a contradiction to the
condition (a). So X, ,,=X"is ¢-stable. Thus by (4), all modules X, with
i>m, are €-stable. Hence the sectional path o, satisfies the condition ().

We show now that the modules X, in g, belong to pairwise different
t-orbits. We first prove that X and X, belong to different t -orbits if j> 1.
Suppose that X, and X; belong to the same 7 .-orbit for some j>1. If X,
is %-stable, then X, has two immediate predecessors in I” since X, has two
%-stable predecessors in /. This contradicts the condition (a). So X, is not
%-stable. Hence j < m,. Now we may suppose that the modules X, and X,
I <u<v<myg, lie in the same 7 -orbit and such that (¢ — ) is minimal for
this condition to hold. Let X, =1 "X, for some integer r. If r <0, then
there is an oriented cycle in I, contrary to assumption. So r > 0. Therefore
it is easy to see that we obtain an infinite sectional path

-r —r
Xu—)Xu-kl—’ —’erl_’z(- X“"’T( Xu—?»l——’

in [” containing no %-stable module. This contradicts the uniqueness of the
infinite sectional path starting with the arrow X, — X, , ;. So X, and X,
belong to different t -orbits if j> 1.

Assume now that, for some n>1 and for each /i, 1 <i<n—1, the
modules X, and X, belong to different 7 -orbits if j> i. Suppose that X, and
X, belong to the same 1 -orbit for some j>n. Then X;=1, "X, for some
r> 0 since there is no oriented cycle in 7. So 1, "~ 'X, | is an immediate
successor of X,. Therefore either 1, " 'X, =1 X, ,ort1 " 'X, =
X,,,, which contradicts the inductive assumption. Thus o, satisfies the
condition (d).

As we can see, the number m, is just the number of modules in ¢, which
are not %-stable. These modules belong to pairwise different 7 .-orbits by
(d). So my 1s less than or equal to the number p of €-projective modules
in I. Now assume that my;>0 and X;=1t_"P, where P, is ¢-projective,
i=1, .., my. Assume that there is some j, 1 < j<m,, such that n, | >n,.
Then 17X, , has at least one immediate predecessor, say X', in I since
X, #0. Clearly X" # 17" 'X, since 17X, is 6-projective. So © "X’ is
an immediate predecessor of X, |, other than t . X,. So j—1>1 by (a).
Hence it follows that 7 ~™X’ = X,;_,. Thus the arrow X' — "X, | is monic
and has trivial valuation. Therefore 17X, | has at least two immediate
predecessors each of which is different from 2% 'X,. Thus %X, , has at
least three immediate successors, so does X; ,, which is a contradiction to
(b). So o, satisfies the condition (f).

We now complete the proof of the theorem. Let X be a ¢-stable module
in I'. Since there is no $-injective module in I, there exists an arrow X — Y
with a ¢-stable module Y. By Lemma 2.5(1), either X — Y or Y —»1_ X is
monic. Without loss of generality we may assume that X' — Y is monic.
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Then by Lemma 2.5(2), for each integer r >0, the arrow 7. "X > 1, "Y is
monic. So the arrow 1, "X —1, 'Y is contained in a unique maximal
infinite sectional path ¢, in I which satisfies the conditions stated in (5).
Let m, be the number of the modules in o, which are not %-stable. Then
m, < p, the number of €-projective modules in I'. Let.m,, be the largest of
the m,. Without loss of generality we may assume that r,=0. This implies
that for each integer n >0, the module 7, "X has only one immediate suc-
cessor 1 "X,. So g, meets each t -orbit in I” exactly once. Therefore I” has
trivial valuation. If m,=0, then I' is isomorphic to ZA . If my> 0, then
X,=1 "P, where P, is €-projective with n, < --- <n,,. Let ry, ry, .., r

K}

be positive integers such that ny=...=n,<n, = - - =n,<--- <
R, 4= +-=n,_=Hn,. Then it follows now that I, as a translation
quiver, is of form ZA  (r,,ry—ry, ..., r,— ¥, ). The proof is completed.

We have the following dual result:

2.8. THEOREM. Let € be an Auslander-Smale subcategory of mod A and
let T be a connected component of I'(6), containing neither 6-projective
modules nor oriented cycles. Assume that 1. preserves €-irreducible
epimorphisms in I'. If I” contains €-stable modules, and each 6-stable module
has at most two left neighbours, then either I' is isomorphic to ZA , or I' is
obtained from ZA , by coray insertions.

3. SPLITTING TILTING THEORY

If X is a module in mod A, then we denote by p.d.X the projective dimen-
sion, and 1.d.X the injective dimension of X. A module T in mod 4 is called
a tilting module if (1) p.d.T<1; (2) Ext!'(T, T)=0; and (3) There is an
short exact sequence 0 A —-T' > T"—0 with T', T" direct sums of
direct summands of T [8].

Let T be a tilting module in mod A4, and let B=End (7). Denote by
mod B the category of finitely generated left B-modules. by Iy the
Auslander-Reiten quiver of B, and by 1 the Auslander-Reiten translation
of I'y. Then T is a A-B-bimodule in a natural way. Hence F = Hom ,(T, —)
and F’'=Ext!(T,—) are functors from mod 4 to mod B while G=T®,—
and G =Tor(7T,—) are functors from mod 8 to mod A. Let
FT(T)={X|F(X)=0} and F(T)={X]|FAX)=0}, and let F(T)=
{X]1G(X)=0} and #(T)={X|G'(X)=0}. It is shown in [8] that
(F(T), 7(T)) is a torsion theory in mod 4 with the torsion class 7 (T)
containing all injective modules in mod 4 while (%(T), Z(T)) is a torsion
theory in mod B with torsion-free class #(7T) containing all projective
modules in mod B.
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The torsion theory (ZF(T), J(T)) induces an idempotent radical t. That
is, t is an idempotent subfunctor of the identity functor of mod 4 which
assigns to a module X in mod A, the submodule t(X) of X such that t(X)
is in 7 (T) while X/t(X) is in #(T). We fix the notation above in the rest
of this section.

3.1. BRENNER-BUTLER THEOREM [6]. Let T be a tilting module in mod A
and B=End ((T). The functor F induces a left exact equivalence hetween
T(T) and H(T) while the functor F' induces a right exact equivalence
between F(T) and X(T).

A tilting module T in mod A4 is said to be splitting if each indecom-
posable module in mod B is either in 4(7T) or in #(T).

3.2. LemMa [8,10]. Let T be a splitting tilting module in mod A and
B=End (T).

(1} Both F(T) and T (T) are Auslander-Smale subcategories in
mod 4.

(2) If Q is an indecomposable injective B-module in #%(T), then
Q = F(I) with I an indecomposable injective A-module in T (T).

(3) An almost split sequence in mod B is either completely contained
in one of Z(T) and #H(T), or is of the form

0— F(I)— F(I/S)@® F'(rad P} — F'(P) >0,

where I is an indecomposable injective module in mod A with socle S, while
P is an indecomposable projective module in mod A with top S.

33. LemMa [8]. Let T be a splitting tilting module in mod A, and let
B=End ,(T). Suppose that I is a connected component of ['y. Then

(1) If I' is completely contained in %(T), then there is a connected
component I'" of I'(F(T)) such that the functor F induces a valued
translation quiver isomorphism from I'’ to I.

(2) If I' is completely contained in X(T), then there is a connected
component I'' of I'(¥#(T)) such that the functor F' induces a valued
translation quiver isomorphism from I’ to I.

If T is a splitting tilting module in mod 4, then we denote by 1, the
relative Auslander—Reiten translation of the subcategory (T) and by 7,
the relative Auslander—Reiten translation of the subcategory #(T). We fix
this notation for a splitting tilting module T in the sequel.
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34. HosHinO's LEMMA [10]. Let T be a splitting tilting module in
mod A and t the idempotent radical determined by T.

(1) If X is a module in 7(T), then 1, X =1t{1X).
(2) If X is a module in F(T), then id. X<l andt, X=1 X/t(t X).

COROLLARY. Let T and t be as above.

(1) Assume that X and Y are modules in F(T). If there is a
monomorphism from tX to tY, then there is a monomorphism from t,X to
1,Y.

(2) Assume that X and Y are modules in F(T). If there is an

epimorphism from © X to © 'Y, then there is an epimorphism from 1, X to
T, Y.
!

3.5. PROPOSITION.  Let T be a splitting tilting module in mod A. Then v
preserves epimorphisms in F(T).

Proof. Note that % (T) is closed under submodules. Assume that X is
a module in #(T). Since 1.d.X<1 by Hoshino’s lemma (3.4), we have
1~ X=Tr DX =Ext (DX, A). (See, for example, [17, (2.4)]).

Now suppose that f: ¥ — Z is an epimorphism in & (T). Then there is a
short exact sequence 0 —» X - Y-~ Z -0 in mod A with X in ZF(7).
Hence there is a short exact sequence

0->DZ—2 s DY->DX—0

in mod A4°P. Note that p.d. DX <1, since i.d.X < 1. Therefore the sequence

Ext!(DX, A) » Ext' (DY, A) - Ext'(DZ, A) >0

induced by Df is exact, which implies that f induces an epimorphism from
7 Y to 17 Z in mod A. Hence by the corollary to Hoshino’s lemma (3.4),
S induces an epimorphism from 7, Y to 1, Z in #(T).

3.6. THEOREM. Let T be a splitting tilting module in mod A and
B=End ,(T). Suppose that I’ is a connected component of I'y which lies
completely in X(T). If I' is not a preinjective component, then either I is
quasi-serial or I" is obtained from a quasi-serial translation quiver by coray
insertions.

Proof. Since I' 1s completely contained in #(T), then by Lemma 3.3(2)
there is a connected component I'" of I'(#(T)) such that the functor F’
induces a valued translation quiver isomorphism from I’ to I. Since ¥(T)
does not contain projective modules in mod B, neither does I. We prove
the theorem by considering seperately the following three cases:



CONNECTED COMPONENTS 521

(a) There is an oriented cycle in /" In this case by Lemma 1.2, either
I’ is a stable tube or a coray tube.

(b) There is neither an oriented cycle nor a stable module in I". In
this case each module in 7" belongs to the tg-orbit of an injective module
in I'y. So I' is a preinjective component.

(c} I contains stable modules but no oriented cycle. In this case I’
contains neither .% (T)-projective modules nor oriented cycles. However, it
does contain F(7)-stable modules. In addition, by Proposition 3.5, 1,
preserves epimorphisms in /7. Assume that there is a # (T)-stable module
X in I which has at least three left neighbours in I’. Then by the dual of
Lemma 2.6, the module X has at least three .7 (7T)-stable left neighbours in
I", and for each n > 0, there is an epimorphism from @ X to 7, "X, where
s=1I(X). Since F’ induces a valued translation quiver from I’ to I, the
module M = F'X is a stable B-module in " which has at least three stable
left neighbours in /. Furthermore since F' is a right exact functor, for each
n>0, there is an epimorphism from @ ,M to t,"M, which contradicts
Lemma 1.1.

So each #(T)-stable module X in /7' has at most two left neighbours.
Hence, by Theorem 2.8, we conclude that either I’ is isomorphic to ZA _,
or I'" is obtained from ZA_ by coray insertions. Therefore either I is
isomorphic to ZA,, or I is obtained from ZA , by coray insertions. This
completes the proof.

Now we assume that A4 is an hereditary algebra, 7 is a tilting module in
mod 4, and B=End (7). It is well known that T is a splitting tilting
module [8]. Further all modules in Fy of form F([), with I an indecom-
posable injective module in mod A, lie in a single connected component of
Iy, called the connecting component determined by T. Let I” be a connected
component of Iz other than the connecting component. Then either I is
completely contained in %(7T) and contains no injective #-module or I is
completely contained in #(7) and contains no projective B-module. Note
that in this case t, preserves monomorphisms in 7 (7) [16] while 7,
preserves epimorphisms in #(T) (3.5).

3.7. THEOREM. Let A be an hereditary connected artin algebra. Let T
be a tilting module in mod A, and let B=End ((T). Assume that I is a
connected component of [y other than the connecting component determined
by T. If I is neither a preprojective component nor a preinjective component,
then either I' is quasi-serial or I is obtained from a quasi-serial translation
quiver by ray insertions or by coray insertions.

Proof. Since I' is not the connecting component of Iy, either I is com-
pletely contained in Z'(7T) or I" is completely contained in #(T). If I lies

481°161:2-17
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in Z(T), then Theorem 3.6 shows that I" is preinjective, quasi-serial, or
obtained from a quasi-serial translation quiver by coray insertions. If I lies
in #(T), since I contains no injective module in mod B and z, preserves
monomorphisms in J (7} then, dualising the argument used to prove
Theorem 3.6, we find that [”is preprojective, quasi-serial, or obtained from
a quasi-serial translation quiver by ray insertions.
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