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Alarm reactions to a substance secreted by the damaged skin of conspecifics and closely-related species are in-
creasingly being recognized as fear-like responses in fish. The neurochemical underpinnings of these effects
are so far unknown; however, given the role of the serotonergic system on defensive behavior, it is possible
that the alarm reaction ismediated by thismonoamine. Exposure to conspecific alarm substance (CAS) increased
anxiety-like behavior in the light/dark test in zebrafish and decreased nocifensive behavior. These effects were
accompanied by increases in blood glucose, hemoglobin, epinephrine and norepinephrine levels, aswell as extra-
cellular levels of serotonin in the brain. Pretreatmentwith fluoxetine blocked the anxiogenic effects of CAS on the
light/dark test as well as all physiological parameters and the increase in extracellular brain 5-HT, but not the
reduction in nocifensive behavior. Conversely, pretreatment with the 5-HT1AR antagonist WAY 100635 blocked
the effects on nocifensive behavior, but not the effects on anxiety-like behavior nor on physiological parameters.
These results point to an important and complex role of the serotonergic system in the mediation of fear-
potentiated behavior in the light/dark test and in fear-induced analgesia in zebrafish.
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1. Introduction

A dual role for serotonin (5-HT) has been proposed in the control of
mammalian defensive behavior, with the neurotransmitter increasing
anxiety-like and decreasing fear-like behavior (Graeff et al., 1996,
1997). Although it is yet unknown if such a behavioral specialization
exists in teleost fish (Kalueff et al., 2012), two of the most widely used
behavioral tasks in zebrafish – the novel tank test and the light/dark
test – show differential pharmacological sensitivity to anxiolytic and
panicolytic drugs: dark preference is sensitive to anxiolytic, but not
panicolytic drugs (Maximino et al., 2011), while bottom-dwelling is
also sensitive to panicolytic drugs (Stewart et al., 2011). Besides their
differential pharmacological sensitivity, both tests are also under differ-
ent stimulus control; while the light/dark preference test is controlled
by an approach/avoidance conflict (Blaser et al., 2010; Maximino et al.,
2010; Blaser and Peñalosa, 2011; Araujo et al., 2012), the novel
tank test is controlled by escape from the surface (Blaser and
Goldsteinholm, 2012; Luca andGerlai, 2012). These observations closely
parallel Gray's model in which anxiety involves defensive approach,
generating an approach–avoidance conflict, while fear involves defen-
sive avoidance, generating escape/withdrawal responses (Gray and
McNaughton, 2000; McNaughton and Corr, 2004). Interestingly, in-
creasing 5-HTergic transmission by blocking uptake has been shown
to reduce bottom-dwelling but increase white avoidance in adult
zebrafish (Sackerman et al., 2010; Maximino et al., 2013a), while 5-HT
depletion produces the opposite effect (Maximino et al., 2013a).

These behavioral observations suggest different stimulus control,
and coordinate well with the “dual role” of serotonin proposed by
Deakin and Graeff (1991), Graeff et al. (1997), and Guimarães et al.
(2010). However, the differences observed in the effects of fluoxetine
and pCPA in both tests (Maximino et al., 2013a) could also be due to
other factors, including, e.g., alterations in contrast discrimination
(in the case of dark preference) or effects on the swim bladder (in the
case of bottom-dwelling). To better discriminate these hypotheses, a
clearer fear-inducing stimulus is needed. A behavioral response to
an “alarm substance” released by the damaged skin of conspecifics
(conspecific alarm substance, CAS), dubbed Schrecksreaktion by Von
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Frisch (1938), has been proposed in zebrafish as amodel to study innate
fear (Jesuthasan and Mathuru, 2008; Gerlai, 2010). In addition to in-
creased bottom-dwelling (Egan et al., 2009), shoal cohesion (Speedie
and Gerlai, 2008) and erratic movements in the novel tank test and
group behavior task (Speedie and Gerlai, 2008; Egan et al., 2009;
Mathuru et al., 2012), CAS has been demonstrated to promote analgesia
in zebrafish (Maximino, 2011; Lima et al., 2012) aswell as in the piauçu
Leporinus macrocephalus (Alves et al., 2013). In this latter species,
acute treatment with fluoxetine (10 mg/kg) reverts the locomotory-
inhibiting effect of exposure to CAS (Barbosa et al., 2012). In the crucian
carp, Schrecksreaktion is in part mediated by structures which receive
primary and secondary olfactory projections which are conducted by
the medial bundle of the medial olfactory tract (Hamdani et al., 2000;
Døving and Lastein, 2009); in zebrafish, these projections integrate
into a circuit of amygdala-like structures in the telencephalon, as well
as hypothalamic structures (Gayoso et al., 2011, 2012). Serotonergic in-
nervation of such structures has been described in zebrafish (Kaslin and
Panula, 2001; Lillesaar et al., 2009), as well as monoamine oxidase
activity and immunoreactivity (Anichtchik et al., 2006), the presence
of 5-HT1A-like, 5-HT1B and 5-HT2C receptors (Norton et al., 2008;
Schneider et al., 2012), and serotonin transporters (Norton et al., 2008).

To better understand whether the serotonergic system participates in
the alarm response in zebrafish,we analyzed 5-HT content in the extracel-
lular fluid (ECF) of zebrafish exposed to conspecific skin extract, aswell as
the effects of the serotonin transporter antagonist fluoxetine and the 5-
HT1AR antagonistWAY100,635on thebehavioral responses of conspecific
skin extract in the light/dark assay and in a nocifensive behavior assay.

2. Methods

2.1. Drugs and reagents

Fluoxetine was bought from Roche (Brazil). WAY 100,635 maleate
was bought from Sigma (St. Louis, USA). HPLC standards (NE, Epi,
5-HT, 5-HIAA and DHBA) were bought from Sigma (St. Louis, USA).
HPLC-grade methanol was bought from Tedia (Fairfield, USA), and
biotechnology-grade sodium dodecyl sulfate was bought from Amresco
(Solon,USA). Reagents for hemoglobin quantificationwere bought from
LabTest (Brazil). All other reagents were of analytical-grade and bought
from Synth (Diadema, Brazil).

2.2. Animals

Wild-type longfin (n = 140) adult zebrafish were bought from a
local ornamental aquarium shop and collectively maintained in 40 L
tanks for at least two weeks before onset of experiments. The tanks
were kept at constant temperature (28 °C), oxygenation, and light
cycle (14:10 LD photoperiod). The animals were fed daily with Alcon
flake food, and twice a week with live brine shrimp.

2.3. Drug treatment

30min before exposure to either conspecific skin extract or water, the
animalswere cold-anesthetized and transferred to a sponge soaked in cold
water for intraperitoneal injection of 5 μl of either 2.5 mg/kg fluoxetine
hydrochloride, 0.003 mg/kg WAY 100635, or Cortland's salt solution (ve-
hicle). The animals were then transferred to a 2 L beaker to recover.

2.4. Behavioral assays

2.4.1. Alarm substance preparation and exposure
Alarm substance was produced from a conspecific skin extract as

described elsewhere (Speedie and Gerlai, 2008). Excess water was
removed from the skin of donor animals with a paper towel, after
which the animals were cold-anesthetized and quickly sacrificed by de-
capitationwith surgical scissors. 10–15 shallow cutsweremade on each
side of the trunk of 10 donorfish, afterwhich the cutswerewashedwith
Milli-Q water. During the collection process and until further use, the
solution was kept on ice. A total of 100 ml of alarm substance solution
was collected, and the aliquots were diluted to a 50% concentration. Ex-
posure was performed in a pre-treatment beaker (3.5 ml skin extract/l)
for 5 min, after which the fish were removed from the exposure beaker
and subjected to one of the behavioral tests.

2.4.2. Scototaxis
The light/dark assay was performed as described elsewhere (Araujo

et al., 2012). Briefly, the animals were transferred to the central compart-
ment of a black andwhite tank (15 cm×10 cm×45 cmh×d× l) for a 3-
min. acclimation period, after which the doors which delimit this
compartment were removed and the animal was allowed to freely
explore the apparatus for 15 min. While the whole experimental tank
was illuminated from above by a homogeneous light source, due to
the reflectivity of the apparatus walls and floor average illumination
(measured just above the water line) above the black compartment
was 225 ± 64.2 (mean ± S.D.) lx, while in the white compartment it
was 307 ± 96.7 lx. The following variables were recorded:

time on the white compartment: the time spent in the white half of
the tank (percentage of the trial);
squares crossed: the number of 10 cm2 squares crossed by the animal
in thewhite compartment; latency towhite: the time to first entry in
the white compartment (s);
entries in white compartment: the number of entries the animal
makes in the white compartment in the whole session;
erratic swimming: the number of “erratic swimming” events, defined
as a zig-zag, fast, unpredictable course of swimming of short
duration;
freezing: the proportional duration of freezing events (in % of time in
the white compartment), defined as complete cessation of move-
ments with the exception of eye and operculae movements;
thigmotaxis: the proportional duration of thigmotaxis events (in % of
time in thewhite compartment), defined as swimming in a distance
of 2 cm or less from the white compartment's walls;
risk assessment: the number of “risk assessment” events, defined as a
fast (b1 s) entry in the white compartment followed by re-entry in
the black compartment, or as a partial entry in the white compart-
ment (i.e., the pectoral fin does not cross the midline);

Video records of the experiments were manually registered by two
observers blind to treatment (inter-observer reliability N 0.85) using
X-Plo-Rat 2005 (http://scotty.ffclrp.usp.br).

2.4.3. Fear-induced analgesia
The nocifensive behavior assay was modified from methods pro-

posed elsewhere (Correia et al., 2011; Maximino, 2011; Alves et al.,
2013). The locomotor activity of individual animals (n= 8–10) was re-
corded for 10 min before drug treatment to produce a baseline, after
which the animals were subjected to drug treatment and exposure to
alarm substance as above. After that, the animals were removed from
the exposure beaker and quickly injected with 5 ml of Cortland's salt
solution with 1% acetic acid in the tail in a region near the adipose fin.
Immediately after injection, the animals were transferred to the obser-
vation tank (a 10 cm l × 10 cm w × 20 cm h Plexiglas tank containing
water from the home tank) and their behavior was video recorded for
10 min. Digitized video files were then analyzed and two categories
were scored: tail-beating (the number of tail-beat movements that did
not lead to propulsion in the water) and locomotion (number of 9 cm3

squares crossed). These latter measures were normalized on a fish-by-
fish basis to the means of their individual pre-treatment values and
expressed as percentages, so all locomotion data in this assay refers to
changes relative to pre-treatment values.

http://scotty.ffclrp.usp.br
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2.5. Physiological parameters

2.5.1. Sample preparation
After behavioral analyses, zebrafish were cold-euthanized and the

caudal fin and head were severed with a pair of fine scissors. Each fish
(n = 4 per group) was put into a homemade 0.5 ml microcentrifuge
tube that was previously perforated with sharp needles. This tube was
then placed into a 1.5 ml microcentrifuge tube containing 500 UI/ml
heparin. The assembly was then centrifuged at 50 g for 5 min at 11 °C.
After this step, another cut was made closely behind the existing
wound, removing the clot that had formed therein. Centrifugation was
repeated with the same parameters, yielding total blood at the bottom
tube (8.4 ± 1.1 μl) (Babaei et al., 2013).

While blood samples were prepared, another experimenter extract-
ed cerebrospinal fluid (CSF) from the severed heads. 0.5 ml of CSF was
extracted by quickly removing one brain from the skull and incubating
it in 2 ml of 50 mM TBS, pH 7.4, containing 90 mMNaCl, 2.5 mM CaCl2,
and 1 mM glutathione for 30 min at 4 °C (Pradel et al., 1999). This fluid
was then mixed with 0.5 ml of eluting solution, filtered through a
0.22 μm syringe filter and frozen at −20 °C until use.

2.5.2. Plasma glucose and hemoglobin levels
4 μl from the blood samples was thawed and used for glucose quanti-

fication, usingAccu-CheckAdvantage II bloodglucose strips and theAccu-
Check Advantage monitor (Roche Diagnostics, Germany). Another 4 μl
was addedwith 1ml of Drabkin's solution (LabTest, Brazil) andmeasured
spectrophotometrically at 540 nm; hemoglobin levels were compared
against a cyanohemoglobin standard curve. All values were corrected by
protein levels, according to the method of Zor and Selinger (1996).

2.5.3. HPLC analysis of monoamines
Serotonin, 5-HIAA, norepinephrine, epinephrine and 3,4-

dihydroxybenzylamine (DHBA) (50 mg) were dissolved in 100 mL of
eluting solution (HClO4 70% [0.2 N], 10 mg EDTA, 9.5 mg sodium
metabissulfite) and frozen at -20 °C, to later be used as standards. The
HPLC system consisted of a delivery pump (LC20-AT, Shimadzu), a 20
μL sample injector (Rheodyne), a degasser (DGA-20A5), and an analytical
column (Shimadzu Shim-Pack VP-ODS, 250 x 4.6 mm internal diameter).
The integrating recorder was a Shimadzu CBM-20A (Shimadzu, Kyoto,
Japan). An electrochemical detector (Model L-ECD-6A)with glassy carbon
was used at a voltage setting of +0.72 V, with a sensitivity set at 2 nA full
deflection. The mobile phase consisted of a solution of 70 mM phosphate
buffer (pH 2.9), 0.2mMEDTA, 34.6765mM SDS, 10% HPLC-grademetha-
nol and 20% sodiummetabissulfite as a conservative. The column temper-
ature was set at 17 °C, and the isocratic flow rate was 1.6 ml/min.

2.6. Statistical analysis

Categorical data (entries on white, squares crossed on white, erratic
swimming, risk assessment, tail-beating) were represented by boxplots
with Tukey's whiskers, and analyzed using Kruskal–Wallis ANOVAs.
Since latency estimates do not reach criteria for parametric analyses,
values were analyzed by the Mantel–Cox test and are represented as
Kaplan–Meier transformations in a survival plot (Jahn-Eimermacher
et al., 2011). The other data were represented as means ± standard
errors and analyzed by analyses of variance. p-Values b 0.05 were
considered statistically significant. In addition to p-values, replication
probabilities (Killeen, 2005) were also calculated for the contrasts,
using a built-in function from the R package ‘psych’ (v. 1.2.4).

3. Results

Alarm substance significantly reduced the time spent on the white
compartment of the light/dark test (Fig. 1A), an effect which was
avoided by pre-treatment with fluoxetine; fluoxetine itself decreased
this variable (F3, 39 = 5. 299, p = 0.004, prep = 0.914). Likewise,
alarm substance increased the latency to enter the white compartment
(Fig. 1B), an effect which once again was blocked by fluoxetine pre-
treatment (χ23 = 8.217, p = 0.0417, prep = 0.890). No effect was
observed in the number of entries in the white compartment (Fig. 1C;
H3 = 3.315, p = 0.3455, prep = 0.611) or number of squares crossed
in the white compartment (Fig. 1D; H3 = 2.343, p = 0.5043, prep =
0.497). Fluoxetine treatment and alarm substance increased freezing
(F3, 33= 11, p b 0.0001, prep = 0.978), while pre-treatment with fluox-
etine abolished the alarm substance-induced freezing (Fig. 1E).
The same was observed in relation to erratic swimming events (Fig. 1F;
H3 = 15.68, p = 0.0013, prep = 0.983); while fluoxetine itself increased
thigmotaxis (Fig. 1G), alarm substance did not alter this variable (F3, 33=
4.093, p = 0.0151, prep = 0.876). Finally, none of the treatments altered
risk assessment (H3 = 2.866, p = 0.4128, prep = 0.562).

In the nocifensive behavior test, alarm substance significantly de-
creased tail-beating caused by acetic acid injection at the 4–6 min
time block (F6, 108= 5.164, p= 0.0069, prep= 0.917 for the interaction
term); pre-treatment with fluoxetine did not block this effect (Fig. 2A).
Likewise, alarm substance blocked the decrease in activity at the 2–4
min and 8–10 min time blocks caused by acetic acid (F8, 135 = 2.242,
p = 0.028, prep = 0.781 for the interaction term). Again, pre-
treatment with fluoxetine did not block this effect (Fig. 2B).

TreatmentwithWAY 100,635 increased the time spent on thewhite
compartment (Fig. 3A), but did not block the decrease in this variable
in animals exposed to the alarm substance (F3, 35 = 19.92, p b 0.0001,
prep = 0.996). Likewise, pre-treatment with WAY 100,635 did not
decrease the alarm substance-elicited increase in latency to white
(Fig. 3B; χ2 = 9.048, p = 0.0278, prep = 0.912). No effects were
observed on entries onwhite nor squares crossed in thewhite compart-
ment (Fig. 3C and D; H3 b 6.72, p N 0.082, prep b 0.837). This drug
did not alter freezing duration (Fig. 3E), and did not have any effect on
the increase in freezing elicited by alarm substance (F3, 35 = 8.662,
p = 0.0002, prep = 0.963). A similar pattern was observed in erratic
swimming (Fig. 3F; H3 = 20.71, p b 0.0001, prep N 0.996) and thigmo-
taxis (Fig. 3G; F3, 35 = 7.12, p = 0.0009, prep = 0.946). At last, WAY
100,635 decreased risk assessment (Fig. 3H), but no other effects were
observed in this variable (H3 = 14.12, p = 0.0027, prep = 0.975).

Pre-treatment with WAY 100,635 reduced the analgesic effect of
alarm substance exposure on tail-beating (Fig. 4A) at the 4–6 and 6–8
min timeblocks (F8, 135= 14.28, p b 0.001, prep= 0.993 for the interac-
tion term) and completely blocked it on the activity decrease at the 2–4
and 8–10 min time blocks (F8, 135 = 2.941, p = 0.0228, prep = 0.830;
Fig. 4B).

Alarm substance, but not fluoxetine, increased blood glucose, hemo-
globin, epinephrine and norepinephrine levels (Table 1). Pre-treatment
with fluoxetine partially blocked the effects of alarm substance on blood
glucose and hemoglobin levels, and totally blocked the increases in
circulating epinephrine and norepinephrine levels. WAY 100,635 did
not have effects by itself, nor did it block the effects of alarm substance.

Finally, treatment with fluoxetine increased extracellular 5-HT con-
tent and blocked the alarm substance-elicited increase (Fig. 5A; F3, 31=
7.879, p = 0.0006, prep = 0.954). While fluoxetine did not produce an
effect on ECF 5-HIAA, it blocked the alarm substance-elicited increase
in this metabolite (Fig. 5B; F3, 31 = 5.219, p = 0.0055, prep = 0.909).
WAY 100,635 did not increase extracellular 5-HT nor 5-HIAA content
by itself, nor did it block the CAS-elicited increases (Fig. 5C and D;
F3, 31 N 2.9, p b 0.05, prep N 0.877).

4. Discussion

In the present work, it was demonstrated that alarm substance
increases scototaxis in adult zebrafish, also increasing the latency to
enter the white compartment, freezing and erratic swimming, but
not risk assessment or thigmotaxis. While most papers using the
light/dark test report only white avoidance (e.g., Gebauer et al., 2011;
Maximino et al., 2011; Norton et al., 2011; Steenbergen et al., 2011), it
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Fig. 2. Fluoxetine does not block the analgesic effect of CAS. (A) Number of tail-beating
events per time bin; (B) Normalized activity. **, p b 0.01 vs. control; *, p b 0.05 vs. control.
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has recently been demonstrated that risk assessment and thigmotaxis
are also sensitive to serotonergic drugs (e.g., risk assessment and
thigmotaxis; Maximino et al., 2013a). Moreover, zebrafish from the leop-
ard phenotype, which show decreased tissue serotonin in the brain and
increased serotoninmetabolism (Maximino et al., 2013b) also display in-
creased risk assessment, but not thigmotaxis. Finally, risk assessment and
thigmotaxis are also decreased by anxiolytic drugswith differentmolecu-
lar targets, while anxiogenic drugs increase these measures (Maximino
et al., in press). Overall, these results suggest that, while the light/dark
test seems to model conflict-induced anxiety (Maximino et al., in press),
the effects of fear-inducing stimuli such as acute alarm substance alter
specific behavioral measures which are not usually affected bymanipula-
tions which increase or decrease anxiety.

As reported elsewhere (Maximino, 2011), alarm substance also pro-
duced analgesia. Moreover, extracellular 5-HT and 5-HIAA levels in the
brainwere increased after exposure to Schreckstoff and blood glucose, he-
moglobin, epinephrine and norepinephrine levels were also increased;
these latter results suggest increased sympathetic activity, which can pre-
cede or parallel the increase in whole-body cortisol that is observed in
these animals after CAS exposure (Schirmer et al., 2013). Fluoxetine treat-
ment blocked the effects of alarm substance on the light/dark assay and
Fig. 1. Fluoxetine, at an anxiogenic dose, blocks the behavioral effects of alarm substance on
white compartment; (C) Number of entries in the white compartment; (D) Number of squar
compartment; (F) Frequency of erratic swimming events in the white compartment; (G) Pro
Black bars represent animals exposed to water, and gray bars animals exposed to conspecific a
on blood parameters, but did not block the fear-induced analgesia; con-
versely, WAY 100,635 did not block the effects of CAS on scototaxis or
blood parameters, but blocked fear-induced analgesia. Pre-treatment
with fluoxetine also blocked the alarm substance-elicited increase in 5-
HT and 5-HIAA, an effect which was not observed with WAY 100,635.

The role of serotonin transporter (SERT) on the behavioral responses
to fear stimuli has been investigated in rodents (Adamec et al., 2006;
Wellman et al., 2007; Ravinder et al., 2011), humans (Perkins et al.,
2009; Schruers et al., 2011) and fish (Beulig and Fowler, 2008;
Maximino et al., 2011; Roussigné et al., 2011; Barbosa et al., 2012). In
piauçu fish, pre-treatment with fluoxetine (10 mg/kg) decreases the
hypoactivity induced by exposure to conspecific skin extract (Barbosa
et al., 2012); the opposite effect was observed in Arabian killifish
(Barry, 2013). In mice, acute fluoxetine (5 mg/kg, but not higher
doses) increases escape responses in the Mouse Defense Test Battery
(Blanchard et al., 1997). Interestingly, while fluoxetine by itself
increased white avoidance in the scototaxis test in the present experi-
ments, it reversed the increase caused by alarm substance. The same
dose of fluoxetine was shown to decrease the exaggerated scototaxis
and risk assessment seen in leopard zebrafish in the light/dark test
(Maximino et al., 2013b). These results are consonant with the hypoth-
esis that, in zebrafish aswell as inmammals, 5-HT increases anxiety and
decreases fear (Graeff et al., 1996, 1997; Zangrossi et al., 2001; Hale and
Lowry, 2011; Maximino et al., in press), but suggest that the serotoner-
gic modulation of zebrafish defensive behavior shows complexities
which are not explainable solely by this ‘dual role’ hypothesis.

The dose of fluoxetine used in the present experiment was enough
to increase extracellular 5-HT levels, but the increase induced by
alarm substance was quantitatively equivalent to that caused by
blocking SERT, which could indicate that this effect was mediated by
an action on SERT to increase 5-HT levels. Moreover, SERT inhibition
also blocked the effects of alarm substance on both 5-HT levels and
scototaxis, which could indicate that this effect was mediated by an ac-
tion on SERT. Whether this results from an inhibition of 5-HT transport
or a reversal of uptake is yet unclear, and further studies are necessary
to test this hypothesis.

While fluoxetine treatment blocked the effects of conspecific alarm
substance on scototaxis, it was not able to block the antinociceptive
effect of the alarm reaction. Analgesia during and after presentation of
predators and partial predator stimuli has been described in rodents
(Kavaliers and Douglas, 1991; Wiedenmayer and Barr, 1995) and fish
(Maximino, 2011; Lima et al., 2012; Alves et al., 2013). In rodents, opioid
and non-opioid components of fear-induced analgesia have been de-
scribed, with the non-opioid component being mediated by GABAergic
and serotonergic mechanisms (Kavaliers and Douglas, 1991). While an
opioid component has been described in the piauçu fish (Alves et al.,
2013), the role of serotonin has not yet been described.While fluoxetine
did not block the antinociceptive effect of alarm substance, pre-
treatment with the 5-HT1AR antagonist WAY 100,635 had this effect.
While WAY 100,635 decreased scototaxis and risk assessment by itself,
it had no effect on the alarm substance-induced increase in white avoid-
ance, latency towhite, freezing, or erratic swimming.While 5-HT1Apartial
agonists and full antagonists have been described as decreasing anxiety-
like behavior in different tests and species (Zangrossi et al., 2001;
Herculano andMaximino, in press), the role of these receptors in fear re-
sponses is less certain. In zebrafish, scototaxis and geotaxis are equally de-
creased byWAY100,635 andbuspirone (Maximino et al., 2013a). 5-HT1A
receptor knockout mice show normal conditional fear (Groenink et al.,
2003), and 5-HT1A partial agonists do not affect one-way escape in the
the light/dark test. (A) Time spent on the white compartment; (B) Latency to enter the
es crossed in the white compartment; (E) Total duration of freezing events in the white
portion of time on white spent in thigmotaxis; (H) Frequency of risk assessment events.
larm substance (CAS). Different letters indicate statistically significant differences.

image of Fig.�2
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Fig. 4.WAY 100,635 blocks the analgesic effect of CAS. (A) Number of tail-beating events
per time bin; (B) Normalized activity. ***, p b 0.001 vs. control; **, p b 0.01 vs. control;
*, p b 0.05 vs. control.
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rat elevated T-maze (Zangrossi et al., 2001). Nonetheless, the 5-HT1A full
agonist 8-OH-DPAT decreases the threshold for periaqueductal gray
stimulation-induced escape responses (Jenck et al., 1989).
Fig. 3.WAY 100,635, at an anxiolytic dose, does not block the behavioral effects of CAS on the
compartment; (C) Number of entries in thewhite compartment; (D) Number of squares crossed
(F) Frequency of erratic swimming events in the white compartment; (G) Proportion of time on
animals exposed to water, and gray bars animals exposed to conspecific alarm substance (CAS).

Table 1
Fluoxetine, but not WAY 100,635, blocks sympathetic activation elicited by CAS, as measured b

Parameter Control CAS

Fluoxetine
Blood glucose (mg/dl) 50.3 ± 16.25 121.8 ± 48.6⁎⁎

Hemoglobin (mmol/l) 4.4 ± 1.4 8.3 ± 0.9⁎⁎

Norepinephrine (pg/ml) 803.4 ± 82.7 1245.7 ± 128.3⁎⁎

Epinephrine (pg/ml) 400.1 ± 120.1 1015.1 ± 123.7⁎⁎⁎

WAY 100,635
Blood glucose (mg/dl) 51.3 ± 3.1 132.1 ± 23.1⁎⁎

Hemoglobin (mmol/l) 4.8 ± 0.3 9.1 ± 1.3⁎⁎⁎

Norepinephrine (pg/ml) 798.7 ± 81.1 1232.1 ± 118.3⁎⁎⁎

Epinephrine (pg/ml) 403.5 ± 98.7 1021.9 ± 98.1⁎⁎⁎

⁎⁎⁎ p b 0.001 vs. control.
⁎⁎ p b 0.01 vs. control.
⁎ p b 0.05 vs. control.
From a pharmacological point of view, 5-HT1A partial agonists ef-
fectively act as full antagonists at postsynaptic sites and full agonists
at presynaptic sites. In rats, microinjection of 8-OH-DPAT in the
amygdala does not block stress-induced analgesia (Nunes-de-
Souza et al., 2000), but decreases one-way escape in the elevated
T-maze (Guimarães et al., 2010); reduction of one-way escape is
also observed with microinjection in the periaqueductal gray, while
microinjection of 8-OH-DPAT in the hippocampus and lateral sep-
tum increases inhibitory avoidance in the elevated T maze
(Guimarães et al., 2010). Since 5-HT levels were not altered by
WAY 100,635 in the present experiments, it is suggested that post-
synaptic 5-HT1A receptors mediate fear-induced analgesia, but not
other behavioral effects of alarm substance.

Fluoxetine treatment also blocked the sympathetic burst elicited
by CAS, while WAY 100,635 had no such effect. These results sug-
gest that the fear-like reaction to CAS is mediated by a serotonin-
induced sympathetic activation, and that this reaction is not
mediated by the 5HT1A receptor. These results are consistent with
the observation that treatment with WAY 100,635 reduces condi-
tioned ultrasonic vocalizations in rats without altering plasmatic
ACTH, corticosterone, prolactin or glucose levels (Groenink et al.,
1996). They are also consistent with the observation that footshock-
induced analgesia is independent on sympathetic nervous system
activity (Watkins et al., 1982).

Overall, these results suggest that, in zebrafish, fear-induced in-
creases in defensive behavior and sympathetic activation are mediated
by the serotonin transporter, while fear-induced analgesia is mediated
by the 5-HT1A receptor. The precise site of action of these drugs,
however, awaits further experiments. The present work underlies the
evolutionary conservation of the role of serotonin in fear-like behavior
in vertebrates, opening avenues for future investigations in the genetic
underpinnings of these functions.
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y blood catecholamine (epinephrine and norepinephrine), hemoglobin and glucose levels.

Drug CAS + drug Statistical analysis

48.1 ± 16.09 75.3 ± 19.21⁎ F3, 15 = 9.052, p = 0.0021
4.32 ± 0.3 6.7 ± 0.7⁎ F3, 15 = 29.14, p b 0.0001

851.5 ± 87.7 769.7 ± 79.3 F3, 15 = 11.83, p = 0.0007
357.4 ± 103.1 451.1 ± 58.1 F3, 15 = 29.53, p b 0.0001

57.5 ± 8.3 142.1 ± 31.2⁎⁎ F3, 15 = 17.54, p = 0.0001
3.9 ± 1.5 10.2 ± 0.8⁎⁎⁎ F3, 15 = 29.9, p b 0.0001

815.1 ± 58.9 1313.6 ± 129.4⁎⁎⁎ F3, 15 = 54.4, p b 0.0001
420.1 ± 101.7 997.1 ± 81.4⁎⁎⁎ F3, 15 = 42.24, p b 0.0001
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Fig. 5. Fluoxetine, but not WAY 100,635, blocks the CAS-elicited increases in extracellular serotonin in the brain. Extracellular 5-HT levels in water- (black bars) and CAS-exposed (gray
bars) animals treated with (A) fluoxetine or (C) WAY 100,635; extracellular 5-HIAA levels in water- (black bars) and CAS-exposed (gray bars) animals treated with (B) fluoxetine or
(D) WAY 100,635.
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