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Abstract

In this paper, we show that a genericr-tuple ofm-input p-output linear systems is simul-
taneously pole assignable ifr < m+ p and the McMillan degrees of the systems are not too
different. We also obtain upper bounds for the degrees of the compensators which simulta-
neously assign the characteristic polynomials of ther-tuple of closed loop systems. The upper
bounds are obtained for each of the two casesr � max(m, p) and max(m, p) < r < m+ p.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

The main objective of this paper is to find the smallest possible integerq such
that the closed-loop characteristic polynomials of a genericr-tuple of linear systems
of degreesn1, . . . , nr , respectively, can be arbitrarily assigned by a single dynamic
compensator of degree not exceedingq. Such a problem has been studied by many
authors [2,5–9,15–17]. Saeks and Murray [15] considered pairs of single input single
output systems and showed that a generic pair of single input, single output systems
is not simultaneously stabilizable (hence not simultaneously pole assignable) by a
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dynamic compensator. Motivated by this negative result, Vidyasagar and Viswanad-
ham [17] considered the problem of simultaneous stabilization form-input,p-output
systems, and showed that a generic pair ofp ×m systems is simultaneously stabil-
izable if max(m, p) > 1. At that time, it was unclear that whether a genericr-tuple
of plants can be simultaneously stabilizable ifr > 2. In 1983, Ghosh and Byrnes
[8] showed that the number of systems,r, could be chosen as large as max(m, p),
and they showed that a genericr-tuple of p ×m systems is simultaneously pole
assignable (hence stabilizable) ifr � max(m, p). Furthermore they also showed that
if min(m, p) = 1, thenr � max(m, p) is a necessary and sufficient condition for
generic simultaneous pole assignment and generic simultaneous stabilization. On
the other hand, by counting the dimension of the space of compensators, we can
easily verify that ifr � m+ p, a single compensator cannot simultaneously assign
the closed-loop poles of a genericr-tuple of systems to the roots of an arbitraryr-
tuple of characteristic polynomials. Therefore a problem that remained open since
1983 is that whether or not a genericr-tuple ofp ×m plants is simultaneously pole
assignable when min(m, p) > 1 and max(m, p) < r < m+ p. Recently, we report-
ed in [9] that the answer to such a question is affirmative if at least min(m, p) of the
McMillan degrees of the systems are not ‘too different’, specifically, if∣∣∣∣∣

⌊
nij +∑r

l=min(m,p)+1�nil /min(m, p)�
m+ p − r

⌋

−
⌊
nik +∑r

l=min(m,p)+1�nil /min(m, p)�
m+ p − r

⌋∣∣∣∣∣ � 1

for 1 � j < k � min(m, p), where�x� is the largest integer less than or equal tox.
However, because of the restriction on the length of the paper, we were unable to
provide the proof in [9]. This paper serves as a follow-up and we prove the above-
mentioned result by providing an upper bound for the degree of the simultaneous
pole-assigning compensators. We also improve Ghosh and Byrnes’ result in this pa-
per by providing a new upper bound for the degree of the pole-assigning compensator
for the caser � max(m, p).

The paper is organized as follows. In Section 2, we provide some definitions
and preliminary results about polynomial matrices. In Section 3, we formulate the
simultaneous pole assignment problem under the behavioral framework [19,20], and
define a simultaneous pole assignment map. The main results are proved in Section 4.

2. Polynomial matrices

In this section, we provide some preliminary results about polynomial matrices.
Our main reference is [4]. LetM(s) be ap × (m+ p) polynomial matrix overC
withm > 0. Theith row degreeofM(s) is defined as the highest polynomial degree
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among all the entries in theith row. Thehigh degree coefficient matrixof M(s),
denoted byMh, is defined to be the matrix consisting of the coefficients of the mo-
nomials whose degrees equal the corresponding row degrees. TheMcMillan degree
of a full rank, nonsquare polynomial matrix is defined to be the highest degree of its
full size minors. A matrixM(s) is calledrow proper if Mh has full rank, and it is
calledirreducible if the full size minors ofM(s) are relatively prime.

Proposition 2.1 [4]. LetM(s) be a full rank(overC[s]), p × (m+ p) polynomial
matrix. Then there exists a unimodularp × p polynomial matrixU(s) such that
U(s)M(s) is row proper, and there exists ap × p polynomial matrixF(s) such that
M(s) = F(s)M1(s) andM1(s) is irreducible.

A p × (m+ p) polynomialM(s) is calledminimal if its rows form a minimal
basis of the row space; i.e., they form a basis, and the sum of the row degrees is
minimal among all the bases of the row space.

Proposition 2.2 [4]. Ap × (m+ p) polynomial matrixM(s) is minimal if, and only
if, it is row proper and irreducible.

The row degrees of a minimal basis of the row space ofM(s) are called theForney
indicesofM(s).

Remark 2.3. The Forney indices we defined in this paper were calledKronecker
indicesby Fornay in [4] and by some other authors at that time. However, it is cus-
tomary now to call the row degrees of a row proper matrix, which is unimodular
row equivalent toM(s), as the Kronecker indices ofM(s) (see [12,13,18]). IfM(s)
is irreducible, then the Forney indices and the Kronecker indices are equal to each
other.

Proposition 2.4 [4]. LetM(s) be ap × (m+ p) polynomial matrix, and lety(s) =
x(s)M(s) be a polynomial(m+ p)-tuple.
1. If M(s) is irreducible, thenx(s) must be a polynomial p-tuple.
2. If M(s) is row proper andx(s) = (x1(s), . . . , xp(s)) is a polynomial p-tuple,

then

degy(s) = max
1�i�k

{
degxi + the ith row degree of M(s)

}
.

Similar terminologies are also defined for(m+ p)× p matrices if we inter-
change “row” and “column”. LetM(s) be a minimal matrix. Adual matrixofM(s),
denoted byM⊥(s), is an(m+ p)×m minimal polynomial matrix such that

M(s)M⊥(s) = 0.

The Forney indices ofM⊥(s) are called thedual Forney indicesofM(s).
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Proposition 2.5 [4]. The sum of the Forney indices equals the sum of the dual Forney
indices.

Note that the set of allp × (m+ p) polynomial matrices of row degrees at most
(µ1, . . . , µp) can be considered asC(µ1+···+µp+p)(m+p), and the set of all matrices
of row degrees(µ1, . . . , µp) is a Zariski open set ofC(µ1+···+µp+p)(m+p).

Proposition 2.6. Let P be the set of allp × (m+ p) polynomial matrices of row
degrees(µ1, . . . , µp). Setn = µ1 + · · · + µp, and let k = �n/m� be the largest
integer� n/m, andd = n− km be the remainder of n divided by m. There exists a
nonempty Zariski open setS ⊂ P of minimal matrices such that
1. every matrixM(s) in S has the dual Forney indices

νg := { k, . . . , k︸ ︷︷ ︸
m−d

, k + 1, . . . , k + 1︸ ︷︷ ︸
d

}
, (2.1)

and
2. for all M(s) ∈ S, the coefficients of the polynomials inM⊥(s) are rational

functions, with nonzero denominators, of coefficients of the polynomials inM(s).

Proof. Consider the equationM(s)x(s) = 0, wherex(s) = x0 + x1s + · · · + xis
i

is (m+ p)-tuple column vector of column degreei. Let

zi =


x0
...

xi


 (2.2)

be a vector consisting of the coefficients ofx(s). By setting eachs-power term of
each entry ofM(s)x(s) to be 0, we have a system of

p∑
j=1

(µj + i + 1) = n+ p(i + 1)

homogeneous linear equations ofzi given by

Aizi = 0.

Note thatAi is an (n+ p(i + 1))× ((i + 1)(m+ p)) matrix, and that we have
n+ p(i + 1) < (i + 1)(m+ p) if, and only if,

i � k.

Therefore the matrixM(s) has dual Forney indicesνg if, and only if, the columns of
Ak−1 are linearly independent. Such a condition certainly defines a Zariski open sub-
set. Furthermore this Zariski open set is nonempty because one can easily construct a



B.K. Ghosh, X.A. Wang / Linear Algebra and its Applications 351–352 (2002) 411–433415

controllable and observable system of McMillan degreen with observability indices
(µ1, . . . , µp) and controllability indicesνg defined by (2.1). For such a system, there
exist right and left co-prime factorizationsG(s) = D−1

r (s)Nr(s) = Nl(s)Dl(s) such
that [

Dr(s),−Nr(s)
]

and

[
Nl(s)

Dl(s)

]
are minimal with row and column degrees(µ1, . . . , µp) andνg [4], respectively;
i.e., [Dr(s),−Nr(s)] has dual Forney indicesνg.

To show the second statement, let us writeAk = [Ak1, Ak2], whereAk1 andAk2
are (n+ p(k + 1))× (n+ p(k + 1)) and (n+ p(k + 1))× (m− d), respectively.
If Ak1 is nonsingular, then the column vectors of[−A−1

k1Ak2
I

]
form a basis of the solution space ofAkzk = 0, which in turn give usm− d in-
dependent polynomial vectors of degreek of the solution ofM(s)x(s) = 0. When
d /= 0, we need to find the otherd solutions. By re-arranging the order of equations,
if necessary, we have

Ak+1 =
[
Ak E

0 H

]
,

whereH is the highest degree coefficient matrixMh of M(s). We partitionH into
H = [H1, H2, H3], whereH1, H2, andH3 arep × p, p × d, p × (m− d) matri-
ces, respectively, and partitionE = [E1, E2, E3] correspondingly. We rewrite

Ak+1 =
[
Ak1 Ak2 E1 E2 E3
0 0 H1 H2 H3

]
,

and ifH1 is nonsingular, the independent columns

A−1
k1 (E1H

−1
1 H2 − E2)

0
−H−1

1 H2
I

0




are solutions ofAk+1zk+1 = 0, which in turn gives us additionald independent poly-
nomial vectors of degreek + 1.

It follows that if Ak1 andH1 are nonsingular, the coefficients of the matrix
M⊥(s) = N0 +N1s + · · · +Nks

k +Nk+1s
k+1 can be written as



N0
...

Nk+1


 =




−A−1
k1Ak2 A−1

k1 (E1H
−1
1 H2 − E2)

Im−d 0
0 −H−1

1 H2
0 Id
0 0


 .
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The set defined by detH1 /= 0 is clearly nonempty. We claim that the set defined
by detAk1 /= 0 is also nonempty. Note that ifM(s) has the dual Forney indices
νg, thenM⊥(s) has onlym− d columns of degreek, and thereforeAk has full rank
n+ p(k + 1). LetN(s) be the sub-matrix ofM⊥(s) consisting of them− d columns
of degreek. ThenNh has full rankm− d. Let M̃⊥(s) be the matrix obtained by
interchanging the rows ofM⊥(s) such that the lastm− p rows of corresponding
Ñh are linearly independent,̃M(s) be the corresponding matrix obtained by inter-
changing the columns ofM(s) correspondingly, and letC be the(k + 1)(m+ p)×
(m− d) matrix consisting of the coefficients of̃N(s) as defined in (2.2). Then from
the equationÃkC = 0 we have

Ãk2 = −Ãk1C1C
−1
2 ,

whereC1 and C2 are sub-matrices ofC consisting of the firstn+ (k + 1)p =
(k + 1)(m+ p)− (m− d) rows, respectively, the last(m− d) rows. The relation
indicates that the columns of̃Ak2 are in the column space of̃Ak1. Therefore

rankÃk1 = rankÃk = n+ (k + 1)p,

and detÃk1 /= 0. �

The set of all unimodular column equivalence classes of(m+ p)×m irreducible
polynomial matrices of McMillan degreen is a quasi�projective variety [11]. In this
quasi-projective variety, the equivalence classes with the Forney indicesνg defined
in (2.1) form a nonempty Zariski open set, and the set of all the other equivalence
classes has strictly smaller dimension [13]. For this reason we call the Forney indices
νg defined in (2.1) thegeneric dual indicesof P.

Proposition 2.7 [4]. LetM(s) be ap × (m+ p) minimal polynomial matrix.
1. There exists anm× (m+ p) minimal polynomial matrixN(s) such that[

M(s)

N(s)

]
is unimodular.

2. For suchM(s) andN(s), there exist dual matricesM⊥(s) andN⊥(s) such that[
M(s)

N(s)

] [
N⊥(s) M⊥(s)

] =
[
Ip 0
0 Im

]
.

Proposition 2.8. LetM(s) andN(s) bep × (m+ p) andm× (m+ p) minimal
polynomial matrices, respectively. Then there exist nonzero constants, c1, c2, and
c3, such that

det

[
M(s)

N(s)

]
= c1 detM(s)N⊥(s)

= c2 det
[
M⊥(s), N⊥(s)

]
= c3 detN(s)M⊥(s).
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Proof. Clearly it is sufficient to prove that

det

[
M(s)

N(s)

]
= c1 detM(s)N⊥(s).

Let [N⊥(s),Q(s)] be the unimodular matrix defined in Proposition 2.7 whose
sub-matrices satisfyN(s)N⊥(s) = 0 andN(s)Q(s) = Im. It follows that

det

[
M(s)

N(s)

]
= c1 det

([
M(s)

N(s)

] [
N⊥(s),Q(s)

])

= c1 det

[
M(s)N⊥(s) M(s)Q(s)

0 Im

]
= c1 detM(s)N⊥(s),

wherec1 = (det[N⊥(s),Q(s)])−1. �

3. Simultaneous pole assignment map

Let us consider a linear system

ẋ = Ax+ Bu,

y = Cx+ Du,

together with a dynamic compensator

ż= Ez+ Fy,

u= Hz+ Ky.

The closed loop system is described as

(d/dt)I − A 0 −B 0

C 0 D −I
0 (d/dt)I − E 0 −F
0 H −I K





x

z

u

y


 = 0

and the closed loop characteristic polynomial is given by

det



sI − A 0 −B 0
C 0 D −I
0 sI − E 0 −F
0 H −I K




provided that it is a nonzero polynomial. The map sending each dynamic compensa-
tor to the corresponding characteristic polynomial of the closed loop system is called
thepole assignment map.
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There is also a higher-order representation of the pole assignment map. If(A,C)

and(E,H) are observable, then the polynomial matrices[
sI − A

C

]
,

[
sI − E

H

]
are minimal. It follows from Proposition 2.7 that there exists a unimodular matrix


M11(s) M12(s) 0 0
M21(s) M22(s) 0 0

0 0 N11(s) N12(s)

0 0 N21(s) N22(s)




such that

M11(s) M12(s) 0 0
M21(s) M22(s) 0 0

0 0 N11(s) N12(s)

0 0 N21(s) N22(s)





sI − A 0 −B 0
C 0 D −I
0 sI − E 0 −F
0 H −I K




=



In 0 ∗ ∗
0 0 P1(s) P2(s)

0 Iq ∗ ∗
0 0 R1(s) R2(s)


 .

Therefore the closed loop poles are the zeros of the polynomial

det

[
P1(s) P2(s)

R1(s) R2(s)

]
:= det

[
P(s)

R(s)

]
.

Remark 3.1. The rational functions−P−1
2 (s)P1(s) and−R−1

1 R2(s) are left factor-
izations of the transfer functions of the plant and compensator. They are left co-prime
factorizations if, and only if, the first-order representations are also controllable. If
we define

w =
[
u

y

]
,

thenP(d/dt)w(t) = 0 andR(d/dt)w(t) = 0 are known as thekernel representa-
tions(also autoregressive representations as described in [20]) of the plants and com-
pensators.

Using Proposition 2.8, it follows that ifR(s) is irreducible, then the closed loop
poles are also the zeros of detP(s)R⊥(s).

Remark 3.2. If we write

R⊥(s) =
[
Q1(s)

Q2(s)

]
,
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whereQ2(s) is p × p, thenQ1(s)Q
−1
2 (s) is a right co-prime factorization of the

transfer function of the compensator. The representationw(t) = R⊥(d/dt)v(t) is
called theimage representation(also moving average representation as described in
[19]) of the compensators, wherev(t) = M(d/dt)w(t) has been defined using the
polynomial matrixM(s) such that[

R(s)

M(s)

]
is unimodular. Such a representation is well known under behavioral framework.

Two p × (m+ p) polynomial matricesP(s) and P̂ (s) are calledrational uni-
modular row equivalentif there exists ap × p rational matrixU(s), detU(s) is a
nonzero constant, such that

P(s) = U(s)P̂ (s).

Rational unimodular column equivalenceis defined the similar way.
Let Kn

p,m be the set of all rational unimodular row equivalence classes ofp ×
(m+ p) polynomial matrices of McMillan degree� n, andK̃q

p,m be the set of all ra-
tional unimodular column equivalence classes of(m+ p)× p polynomial matrices
of McMillan degree� q. ThenKn

p,m andK̃q
p,m are projective varieties, and they are

compactifications of the set of allm-input, p-output systems of McMillan degrees
at mostn and the set of allp-input, m-output dynamic compensators of McMillan
degrees at mostq (see [11,14]). Furthermore, if a polynomial matrix is irreducible,
then its rational unimodular equivalence class coincides with its polynomial unimod-
ular equivalence class. Therefore, there is a one to one correspondence between the
equivalence classes of irreducible polynomial matrices and controllable and observ-
able systems. The set of all equivalence classes of irreducible polynomial matrices
is certainly a nonempty Zariski open subset ofKn

p,m.

Remark 3.3. The projective varietyKn
p,m has singularities. There is also a smooth

compactification of the set of allm-input,p-output systems of McMillan degrees at
mostn called the Grothendieck Quot-scheme. In terms of matrices this is achieved
through the concept of homogenous autoregrassive systems as introduced in [10].

Let us consider a set ofr controllable and observable systems described in kernel
representations by

Pi(d/dt)w(t) = 0, i = 1, . . . , r,

for some irreducible polynomial matricesPi(s) ∈ Kni
p,m of McMillan degreeni , and

let a compensator be given in image representation by

w(t) = Q(d/dt)v(t)

for an irreducible polynomial matrixQ(s) ∈ K̃q
p,m. It follows from above that the

closed loop systems are given by
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Pi(d/dt)Q(d/dt)v(t) = 0, i = 1, . . . , r,

and the closed loop characteristic polynomials are given by

detPi(s)Q(s), i = 1, . . . , r,

provided that none of them are identically zero polynomials.

Definition 3.4. The simultaneous pole assignment mapχ̂ : K̃q
p,m → Pn1+q × · · · ×

Pnr+q is defined by

χ̂(Q) = ( detP1(s)Q(s), . . . , detPr(s)Q(s)
)
, (3.1)

where a polynomiala0 + a1s + · · · + aks
k is identified with a point(a0, a1, . . . , ak)

∈ Pk.

Note thatχ̂ is a rational map, and it is not defined at the point where detPi(s)

Q(s) = 0 for somei.

Definition 3.5. A compensatorQ(s) ∈ K̃q
p,m is called a simultaneous dependent

compensator if

detPi(s)Q(s) ≡ 0, i = 1, . . . , r.

Proposition 3.6 [9]. If r � max(m, p), then a simultaneous dependent compensator
of degree at most q exists where q is the smallest integer which satisfies

q + (�q/min(m, p)� + 1
)(

max(m, p)− r
)

�
r∑
i=1

�ni/min(m, p)�, (3.2)

where�x� is the largest integer� x.

Remark 3.7. From the proof of Proposition 3.6 in [9] we claim that (assumep �
m) the simultaneous dependent compensatorQ(s) in Proposition 3.6 consists ofp
columns of lowest degrees of


α1(s)
...

αr (s)




⊥

,

where eachαi(s) corresponds to the lowest degree row in the minimal polynomial
matrixPi(s).

The simultaneous dependent compensator form < p can be constructed likewise
if we use the image representations of the systems (which are(m+ p)×m polyno-
mial matrices) and kernel representations of the compensators (which arem× (m+
p) polynomial matrices).
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Proposition 3.8 [9]. If min(m, p) < r � m+ p − 1, then a simultaneous dependent
compensator of degree at most

q =
min(m,p)∑
i=1

⌊
ni +∑r

j=min(m,p)+1[nj/min(m, p)]
m+ p − r

⌋

exists.

Remark 3.9. The simultaneous dependent compensator in Proposition 3.8 is con-
structed as follows. Without any loss of generality assume thatp � m. For i = p +
1, . . . , r, let αi(s) be the row ofPi(s) with lowest degree, and fori = 1, . . . , p, let
βi be the lowest degree column vector of


Pi(s)

αp+1(s)
...

αr (s)




⊥

.

Then we conclude thatQ = [β1(s), . . . , βp(s)] is a dependent compensator. We may
have to replace any linearly dependent vector by an arbitrary vector in the dual space
of span{αp+1, . . . , αr }.

We can also define an affine simultaneous pole assignment map. LetMq be the
set of all(m+ p)× p polynomial matrices whose sum of row degrees is at mostq.
Then every equivalence class ofK̃q

p,m has a matrix inMq .

Definition 3.10. The affine simultaneous pole assignment map

χ : Mq → Rn1+···+nr+rq+r

is defined by

χ(Q)= (χ1(Q), . . . , χr(Q)
)

= (detP1(s)Q(s), . . . ,detPr(s)Q(s)
)
, (3.3)

whereapolynomiala0 + a1s + · · · + aks
k is identifiedwithapoint(a0, a1, . . . , ak) ∈

Rk+1.

Remark 3.11. Clearly χ̂ is onto (almost onto) if, and only if,χ is onto (almost
onto).

The importance of the simultaneous dependent compensator is indicated by the
next result. Letν = (ν1, . . . , νp) be the column degrees of a matrix inMq , and let
l = [q/p] ande = q − lp. Let us also define

M
g
q =

{
Q(s) ∈ Mq

∣∣∣∣ νi � l if 1 � i � p − e

νi � l + 1 if p − e + 1 � i � p

}
. (3.4)
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ThenMg
q is an affine space of dimension(m+ p)(p + q).

Proposition 3.12. The simultaneous pole assignment map is onto if there is a simul-
taneous dependent compensatorQ(s) ∈ M

g
q such that the Jacobian

dχ
Q

: Mg
q → Rn1+···+nr+rq+r

of χ atQ(s) is onto.

Proof. Under the given condition,χ maps a small neighborhood ofQ(s) in M
g
q

onto a small neighborhood of 0 by the inverse function theorem. Sinceχ is homo-
geneous, the wholeRn1+···+nr+rq+r is contained inχ(Mg

q). �

Proposition 3.13. ForeachQ(s) ∈ M
g
q,theJacobiandχ

Q
: Mg

q → Rn1+···+nr+rq+r
is given by

dχ
Q
(X(s)) = (tr (R1(s)X(s)), . . . , tr (Rr(s)X(s))

)
,

where

Ri(s) = adj
(
Pi(s)Q(s)

)
Pi(s).

The proof of this result is similar to the proof of Theorem 3.10 in [14].

4. Generic simultaneous pole assignability

We are now ready to prove the main results of this paper. We prove two lemmas
about polynomial matrices first. A subset is called generic if it contains a nonempty
Zariski open set. The elements in a generic set are called generic elements.

Lemma 4.1. Let P(s) be ap × (m+ p) minimal polynomial matrix, and let r be
a positive integer less thanm, ν1, . . . , νr be any nonnegative integers, andQ(s) be
an r × (m+ p) polynomial matrix of row degreesν1, . . . , νr such that[

Q(s)

P (s)

]
is a minimal polynomial matrix. Then the set of all suchQ(s)’s form a nonempty
Zariski open subset of the affine space of allr × (m+ p) polynomial matrices of
row degreesν1, . . . , νr .

Proof. Certainly a set of such polynomial matricesQ(s) would form a Zariski open
subset. So we only need to show that this set is nonempty. It is sufficient to prove the
result forr = 1, and also form = 2 because we can always consider the sub-matrix
of P(s) consisting ofp + 2 columns. Furthermore, we can prove the result for

P(s)T (4.1)
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for someT ∈ GL(m+ p) instead ofP(s) itself. So without loss of generality, we
assume that:
1. The polynomial matrixP(s) = [N(s),−D(s)] defines a kernel representation of

an 2-input,p-output, controllable, observable, strictly proper linear system of de-
green, wheren is the sum of the row degrees ofP(s).

2. The system is controllable through the first input channel. One can always achieve
this by applying output feedback and changing the basis of input space [3]. This
operation is equivalent to transformation of the type (4.1).
Let

ẋ = Ax+ b1u1 + b2u2,

y = Cx

be a state space representation of the systemP(s) with controllable(A, b1).
It is sufficient to show that for anyν, there exists a dynamic compensator

ż = Fz+ Gy, z ∈ Rν,

u2 = hz

such that the combined system

˙[x
z

]
=
[
A b2h

GC F

] [
x

z

]
+
[
b1
0

]
u1[

y

u2

]
=
[
C 0
0 h

] [
x

z

] (4.2)

is controllable and observable.
The above result is obviously true forν = 0. So we consider the case whenν � 1.

The combined system is observable whenG = 0 and when(F, h) is observable. So
it is observable for the generic(F,G, h). We now show that whenh = 0, we can
always chooseF andG such that

(Â, b̂) :=
([

A 0
GC F

]
,

[
b1
0

])
is controllable. By applying state feedback (which will not change the controlla-
bility) we can assumeAn = 0. Let 0� k � n− 1 be the largest number such that
CAkb1 /= 0. It follows that

Âi b̂ =
[
Aib1

∗
]
, i < n,

and

Âi b̂ =
[

0∑k
j=0F

i−k−1+jGCAk−j b1

]
, n � i � n+ ν − 1.



424 B.K. Ghosh, X.A. Wang / Linear Algebra and its Applications 351–352 (2002) 411–433

By changing the basis of the output space if necessary, let us write

CAkb1 =
[
a
...

]
, a /= 0.

We now choose

G =



1/a · · · 0
...

...

0 · · · 0




and

F =




0 0 · · · 0 δ

δ 0 · · · 0 0

0 δ
. . .

...
...

...
...

. . . 0 0
0 0 · · · δ 0


 .

We obtain

F i−k−1GCAkb1 = δi−k−1el,

where 1� l � ν is the integer such thatl = i − k modν, andel is thelth standard
basis ofRν . So we infer that


k∑
j=0

F i−k−1+jGCAk−j b1
∣∣ i = n, . . . , n+ ν1




=
{
δi−k−1(el +O(δ))

∣∣ i = n, . . . , n+ ν1

}
are linearly independent for smallδ, i.e., the pair(Â, b̂) is controllable. Therefore,
we conclude that system (4.2) is controllable and observable for the generic triplet
(F,G, h). �

Lemma 4.2. LetQ(s) be an(m+ p)× p minimal polynomial matrix of column
degreesµ1 � · · · � µp. Then forr < p and for the generic minimalr × (m+ p)

matrixP(s) of row degreesν1 � · · · � νr , P (s)Q(s) is irreducible with McMillan
degree

µp−r+1 + · · · + µp + ν1 + · · · + νr .

The same is also true for the generic minimalQ(s) if a minimalP(s) is given.

Proof. A full size minor ofP(s)Q(s) is a sum of products of full size minors of
P(s) with r × r minors ofQ(s). Since the maximum degree ofr × r minors of
Q(s) is µp−r+1 + · · · + µp, the maximum degree of full size minors ofP(s)Q(s)
isµp−r+1 + · · · + µp + ν1 + · · · + νr either for a fixedQ(s) and the genericP(s),
or for a fixedP(s) and the genericQ(s).
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LetR(s) = Q⊥. It follows from Lemma 4.1 that[
P(s)

R(s)

]
(4.3)

is minimal either for a fixedQ(s) and the genericP(s), or for a fixedP(s) and
the genericQ(s). Let [Q(s), U(s)] be unimodular such thatR(s)U(s) = Im (see
Proposition 2.7). Then the matrix[

P(s)

R(s)

] [
Q(s), T (s)

] =
[
P(s)Q(s) ∗

0 Im

]
has full rankm+ r for all s, which means that the full size minors ofP(s)Q(s) are
relatively prime. �

We are now ready to obtain an improved estimate for the degrees of pole assigning
compensators for the genericr-tuple of systems whenr � max(m, p).

Theorem 4.3. Let r � max(m, p), and q be the smallest integer satisfying the in-
equality

q + (�q/min(m, p)� + 1
)
(max(m, p)− r) �

r∑
i=1

�ni/min(m, p)�. (4.4)

Then a generic r-tuple of m-input, p-output systems of McMillan degreeni, i =
1, . . . , r, respectively, can be arbitrarily pole assigned by a compensator of degree
at most q.

Proof. Without any loss of generality we assumep � m. The systems inKni
p,m with

Forney indices

µi := (ki + 1, . . . , ki + 1︸ ︷︷ ︸
di

, ki, . . . , ki︸ ︷︷ ︸
p−di

), ki = �ni/p�, di = ni − kip (4.5)

form a nonempty Zariski open set. Each such system has a kernel representation
Pi(s) with row degreesµi . The set of allr-tuple of polynomial matrices of row
degrees at mostµi, i = 1, . . . , r, is an affine spaceA. The simultaneous dependent
compensator constructed as in Remark 3.7 is a rational function of points inA, and
therefore the condition of Proposition 3.12 defines a Zariski open set onA. This in
turn defines a Zariski open set ofKn1

p,m × · · · ×K
nr
p,m. To finish the proof, we only

need to show that this open set is nonempty; i.e., we need to construct ar-tuple of
minimal polynomial matrices(P1(s), . . . , Pr(s)) such that:
1. EachPr(s) has row degreesµi as defined by (4.5).
2. If αi(s) are the last rows ofPi(s), then

α :=


α1(s)
...

αr (s)


 (4.6)
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is minimal and has the generic dual indices

(ν1, . . . , νm+p−r ) := ( l, . . . , l︸ ︷︷ ︸
m+p−r−e

, l + 1, . . . , l + 1︸ ︷︷ ︸
e

), (4.7)

where

l =
⌊
k1 + · · · + kr

m+ p − r

⌋
and

e = k1 + · · · + kr − l(m+ p − r).

3. dχ
Q

is onto, whereQ is formed by thep columns of the lowest degrees ofα⊥.
We first derive a simple formulation ofdχ

Q
. Sinceαi(s)Q(s) = 0, it follows from

Proposition 3.13 that

dχ
Q
(X(s)) = (α1(s)X(s)η1(s), . . . , αr(s)X(s)ηr(s)

)
,

whereηi(s) is the only nonzero column of adj(Pi(s)Q(s)). If we write

Pi(s) =
[
P̂i(s)

αi(s)

]
,

then the Jacobian becomes

dχ
Q
(X(s)) =

(
det

[
P̂1(s)Q(s)

α1(s)X(s)

]
, . . . ,det

[
P̂r (s)Q(s)

αr(s)X(s)

])
.

Based on such formulation ofdχ
Q

, we construct(P1(s), . . . , Pr(s)) in two steps:
1. Chooseαi(s) such thatφ defined by


z1(s)
...

zr (s)


 = φ(X(s)) := α(s)X(s)

is onto the space of allr × p polynomial matrices whoseij th entry has degree at
mostki + νj , whereνj is defined through (4.7).

2. ChooseP̂i(s) such that eachψi defined by

ψi(zi(s)) := zi(s)ηi(s) = det

[
P̂i(s)Q(s)

zi(s)

]
is onto the space of all polynomials of degree at mostni + q.
Choose anα of row degreeski = �ni/p�, i = 1, . . . , r, such that it is minimal,

and has the generic dual indices (4.7). Let

α⊥ = [β1(s), . . . , βm+p−r (s)
]

be of column degrees(ν1, . . . , νm+p−r ), and define

Q(s) = [β1(s), . . . , βp(s)
]
.
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Then the degreeq of Q(s) is the smallest integer satisfying (3.2) (see the proof of
Theorem 3.2 in [9]) and

l = ν1 = �q/p�.
ForX(s) = [x1(s), . . . , xp(s)] ∈ M

q
p, whereMq

p is defined by (3.4), define linear

mapsφi : R(m+p)(νi+1) → Rr(νi+1)+∑r
j=1 kj :

φi(xi) = α(s)xi(s), i = 1, . . . , p.

By [1] φi has a rank (overR)

(m+ p)(νi + 1)−
∑
νj�νi

(νi + 1 − νj ).

Note that whenνi = l∑
νj�νi

(νi + 1 − νj ) = m+ p − r − e

and

rankφi = (m+ p)(l + 1)−m− p + r + e

= (l + 1)r + l(m+ p − r)+ e

= (νi + 1)r +
r∑
j=1

kj .

Whenνi = l + 1, we obtain∑
νj�νi

(νi + 1 − νj ) = 2(m+ p − r)− e

and

rankφi = (m+ p)(l + 2)− 2(m+ p − r)+ e

= (l + 2)r + l(m+ p − r)+ e

= (νi + 1)r +
r∑
j=1

kj .

In either caseφi is onto the space of all columnr-vectors whose degree of thej th
entry is at mostkj + νi (= Rr(νi+1)+∑r

j=1 kj ). Soφ(X(s)) = (φ1(x1), . . . , φp(xp))

is onto.
Next we choose a minimal̂Pi(s) of row degrees

(ki + 1, . . . , ki + 1︸ ︷︷ ︸
di

, ki, . . . , ki︸ ︷︷ ︸
p−1−di

) (4.8)

such thatP̂i(s)Q(s) is irreducible with McMillan degreeni + q − �ni/p� − �q/p�
(see Lemma 4.2). Note that̂PhQh has full rank, because its full size minors are the
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coefficients of the monomials ofsni+q−�ni/p�−�q/p� of the corresponding full size
minors ofP̂i(s)Q(s), and therefore not all of them are zero. Let us define

Zi = {zi(s) = (zi1(s), . . . , zip(s))
∣∣ degzij (s) � ki + νj

}
.

We show that the linear mapψi : Zi → Rni+q+1 defined by

ψi(zi(s)) = det

[
P̂i(s)Q(s)

zi(s)

]
is onto the space of all polynomials of degree� ni + q. Note thatZi = Rp(ki+1)+q .
So we need to show that

dim kerψi = p − 1 − di.

If zi(s) ∈ kerψi , then by Proposition 2.4

zi(s) = [a1(s), . . . , ap−1(s)
]
P̂i(s)Q(s)

for some polynomials{aj (s)}. We claim thataj (s) = 0 for j � di, andaj (s) = aj
for j > di . If not, then

degy(s) := deg
[
a1(s), . . . , ap−1(s)

]
P̂i(s) > ki.

Sinceyh ∈ row space[P̂i]h, one must haveyhQh /= 0. Assume that thejth entry of
yhQh is nonzero. Then degzij (s) > ki + νj andzi(s) �∈ Zi . Therefore

kerψi = {[0, . . . ,0, adi+1, . . . , ap−1
]
P̂i(s)Q(s)

}
and dim kerψi = p − 1 − di . �

Theorem 4.3 improves the results of [6,8]. In particular, when min(m, p) = 1,
inequality (4.4) reduces to

q(max(m, p)+ 1 − r)+ max(m, p)− r �
r∑
i=1

ni, (4.9)

which is precisely the inequality obtained in [8]. On the other hand whenr =
max(m, p), the smallest degree of the compensator which simultaneously pole
assigns a max(m, p) plants generically is given by

r∑
i=1

⌊
ni

min(m, p)

⌋
,

which should be compared with the smallest degree obtained in [8] given by
∑r
i=1 ni .

Thus, Theorem 4.3 improves the result derived by Ghosh and Byrnes [6].
In our next result we show that a genericr-tuple of systems is simultaneously pole

assignable whenr > m+ p if the McMillan degrees of at least min(m, p) systems
are not “too different”. It also gives an estimate for the degrees of pole assigning
compensators for the genericr-tuple of systems when max(m, p) < r < m+ p.
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Theorem 4.4. If max(m, p) < r < m+ p and(re-label the plants if necessary)∣∣∣∣
⌊
nj +N

m+ p − r

⌋
−
⌊
nk +N

m+ p − r

⌋∣∣∣∣ � 1 for 1 � j < k � min(m, p), (4.10)

where

N =
r∑

i=min(m,p)+1

⌊
ni

min(m, p)

⌋
,

then the generic r-tuple of m-input systems of degreesni, i = 1, . . . , r, respectively,
can be arbitrarily pole assigned by a compensator of degree less than or equal to

q =
min(m,p)∑
i=1

⌊
ni +N

m+ p − r

⌋
.

Proof. Without loss of generality, we assume thatp � m. By Propositions 2.6 and
3.12, and Remark 3.9, such systems certainly form a Zariski open subset. So we only
need to show that it is nonempty; i.e., we need to construct anr-tuple of minimal
polynomial matrices of row degreesµi, i = 1, . . . , r (as defined by (4.5)), such
that the Jacobiandχ

Q
described in Proposition 3.12 is onto for the simultaneous

dependent compensatorQ(s) constructed as in Remark 3.9.
LetQ(s) be constructed as in Remark 3.9. Then fori = 1, . . . , p, theith column

of Pi(s)Q(s) is zero, and fori = p + 1, . . . , r, the last row ofPi(s)Q(s) is zero.
Therefore,dχ

Q
(X) = (dχ1(X), . . . , dχr(X)) has the form

dχi(X) = (−1)p−i det
[
Pi(s)Q̂i(s), Pi(s)xi(s)

]
for 1 � i � p,

and

dχi(X) = det

[
P̂i(s)Q(s)

αi(s)X(s)

]
for p < i � r,

whereQ̂i(s) is the(m+ p)× (p − 1) sub-matrix ofQ(s) formed by removing the
ith column ofQ(s), andP̂i(s) is the(p − 1)× (m+ p) sub-matrix ofP(s) consist-
ing of the firstp − 1 rows ofPi(s).

We construct ther-tuple of systems in three steps:
1. Choose minimal

α :=


αp+1(s)

...

αr (s)




of row degrees{�np+1/p�, . . . , �nr/p�} such that they have the dual Forney in-
dicesν = (ν1, . . . , νm+2p−r )

νi =
{
l for 1 � i � m+ 2p − r − e,

l + 1 form+ 2p − r − e < i � m+ 2p − r,

where
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l =
⌊

N

m+ 2p − r

⌋
, N =

r∑
i=p+1

⌊
ni

p

⌋
and e = N − l(m+ 2p − r).

2. Choose minimalPi(s), i = 1, . . . , p, of row degreesµi , and consequently deter-
mineQ(s) such that the corresponding

dχi(X) = (−1)p−i det
[
Pi(s)Q̂i(s), Pi(s)xi(s)

]
is onto if {xi} are restricted to the column space ofα⊥.

3. Choose(p − 1)× (m+ p) minimal P̂i(s) of row degrees

µi := (ki + 1, . . . , ki + 1︸ ︷︷ ︸
di

, ki, . . . , ki︸ ︷︷ ︸
p−di−1

), ki = �ni/p�, di = ni − kip

for i = p + 1, . . . , r such thatP̂i(s)Q(s) is irreducible with McMillan degree
ni + q − �ni/p� − �q/p�, and define

Pi(s) =
[
P̂i(s)

αi(s)

]
, i = p + 1, . . . , r.

The existence of suchαi andP̂i(s), i = p + 1, . . . , r, and surjectivity of the cor-
respondingdχi are proved in the proof of Theorem 4.3. So we only need to show
existence of thePi(s) in the second step.

ChoosePi(s), i = 1, . . . , p, such that
(1)

P̄i(s) :=
[
Pi(s)

α(s)

]
(4.11)

is minimal with dual Forney indices

(ρi, . . . , ρi︸ ︷︷ ︸
m+p−r−δi

, ρi + 1, . . . , ρi + 1︸ ︷︷ ︸
δi

),

ρi =
⌊
ni +N

m+ p − r

⌋
, δi = ni +N − ρi(m+ p − r). (4.12)

(2) Q(s) = [q1(s), . . . , qp(s)] is minimal, whereqi(s) is the first column ofP̄⊥
i (s)

of column degrees (4.12).
(3) Pi(s)Q̂i(s) is irreducible with McMillan degree

ni + q − �ni/p� − ρi.

Certainly the genericPi(s) satisfies (1). The set of all{Pi(s)} satisfying (2) is
Zariski open, and one can always start fromQ(s) to construct the corresponding
{Pi(s)}. So the generic{Pi(s)} also satisfies (2). By Lemma 4.2 for a fixed̂Qi(s),
the genericPi(s) satisfies (3) (note that̂Qi(s) is independent ofPi(s)). Therefore, we
can start from ap-tuple{Pi(s)} satisfying (1) and (2), and make a small perturbation
so that (3) are satisfied by allPi(s).
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Let

L1 := {x(s) ∈ col. spanα⊥| degx(s) � ρi
}
.

We now show that for suchPi(s),

dχi(X) = (−1)p−i det
[
Pi(s)Q̂i(s), Pi(s)xi(s)

]
, x(s) ∈ L1,

is onto the space of all polynomial of degree� ni + q, where

q =
p∑
j=1

ρi.

We compute the dimension of kerdχi over R. As in the proof of Theorem 4.3, an
x(s) is in the kerdχi if, and only if,Pi(s)x(s) = Pi(s)Q̂i(s)a(s) for some polyno-
mial column vectora(s) such that

degQ̂i(s)a(s) � ρi,

i.e.,

x(s) = Q̂i(s)a(s)+ y(s)

for somey(s) of degree� ρi in the column space of̄P⊥
i (s). So

dim ker dχi = dimL2 + dimL3,

where

L2 := {x(s) ∈ col. spanQ̂i(s) | degx(s) � ρi
}

and

L3 := {x(s) ∈ col. spanP̄⊥
i (s) | degx(s) � ρi

}
.

By the assumption of the theorem, we have|ρi − ρj | � 1. So by Proposition 2.4 we
write

dim L2 =
∑
j /=i
(ρi − ρj + 1)

= pρi − q + p − 1.

Similarly, sinceP̄⊥
i (s) has column degrees (4.12)

dim L3 = (m+ p − r)(ρi + 1)− ni −N.

Therefore,

dim ker dχi = (m+ 2p − r)(ρi + 1)− q − ni − 1 −N.

The dimension ofL1 (overR) is given by

dim L1 =
m+2p−r∑
j=1

(ρi − νj + 1)

= (m+ 2p − r)(ρi + 1)−N.
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Therefore,

dim L1 − dim ker dχi = ni + q + 1

anddχi is onto. �

5. Conclusion

This paper settles an outstanding open problem initiated by Saeks and Murray
[15] and by Vidyasagar and Viswanadham [17].

Problem 5.1. How many linear time invariantm-input p-output plants of degrees
ni, i = 1, . . . , r, can be simultaneously stabilized or simultaneously pole assigned
generically by a linear, time invariant, nonswitching, dynamic compensator?

“Less than the sum of the number of inputs and outputs”

is the answer to the above problem provided by this paper. Moreover, in this case,
there is always an upper bound on the degree of the simultaneously pole assigning
compensator.
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