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Abstract

In this paper, we show that a generituple of mrinput p-output linear systems is simul-
taneously pole assignablerif< m + p and the McMillan degrees of the systems are not too
different. We also obtain upper bounds for the degrees of the compensators which simulta-
neously assign the characteristic polynomials ofrthgple of closed loop systems. The upper
bounds are obtained for each of the two casesmax(m, p) and maxm, p) <r <m + p.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

The main objective of this paper is to find the smallest possible intggeich
that the closed-loop characteristic polynomials of a gemetiple of linear systems
of degreesiy, . .., n,, respectively, can be arbitrarily assigned by a single dynamic
compensator of degree not exceedipguch a problem has been studied by many
authors [2,5-9,15-17]. Saeks and Murray [15] considered pairs of single input single
output systems and showed that a generic pair of single input, single output systems
is not simultaneously stabilizable (hence not simultaneously pole assignable) by a

* Corresponding author.
E-mail addressegghosh@netra.wustl.edu (B.K. Ghosh), mdxia@ttacs.ttu.edu (X.A. Wang).
1 Research supported in part by NSF grant ECS 9720357, ECS 9976174 and NSF grant 9400965.

0024-3795/02/$ - see front matter2002 Elsevier Science Inc. All rights reserved.
PIl: S0024-3795(01)00507-9


https://core.ac.uk/display/81191271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

412 B.K. Ghosh, X.A. Wang / Linear Algebra and its Applications 351-352 (2002) 411-433

dynamic compensator. Motivated by this negative result, Vidyasagar and Viswanad-
ham [17] considered the problem of simultaneous stabilizatiomfmput, p-output
systems, and showed that a generic paip of m systems is simultaneously stabil-
izable if maxm, p) > 1. At that time, it was unclear that whether a genefiaple

of plants can be simultaneously stabilizable i 2. In 1983, Ghosh and Byrnes

[8] showed that the number of systemsgcould be chosen as large as raxp),

and they showed that a generidguple of p x m systems is simultaneously pole
assignable (hence stabilizabley ik max(m, p). Furthermore they also showed that

if min(m, p) = 1, thenr < max(m, p) is a necessary and sufficient condition for
generic simultaneous pole assignment and generic simultaneous stabilization. On
the other hand, by counting the dimension of the space of compensators, we can
easily verify that ifr > m + p, a single compensator cannot simultaneously assign
the closed-loop poles of a generid¢uple of systems to the roots of an arbitrary

tuple of characteristic polynomials. Therefore a problem that remained open since
1983 is that whether or not a generituple of p x m plants is simultaneously pole
assignable when mim, p) > 1 and maxm, p) < r < m + p. Recently, we report-

ed in [9] that the answer to such a question is affirmative if at leastmip) of the
McMillan degrees of the systems are not ‘too different’, specifically, if

‘ V‘f + 2 l=mingm. py+1 L2/ MG, p) | J

m+p-—r

<1

. ni, + er:min(m,p)—i-l Lnil/ min(m, 121
m+p—r

for 1 < j < k < min(m, p), where|x| is the largest integer less than or equakto
However, because of the restriction on the length of the paper, we were unable to
provide the proof in [9]. This paper serves as a follow-up and we prove the above-
mentioned result by providing an upper bound for the degree of the simultaneous
pole-assigning compensators. We also improve Ghosh and Byrnes’ result in this pa-
per by providing a new upper bound for the degree of the pole-assigning compensator
for the case < max(m, p).

The paper is organized as follows. In Section 2, we provide some definitions
and preliminary results about polynomial matrices. In Section 3, we formulate the
simultaneous pole assignment problem under the behavioral framework [19,20], and
define a simultaneous pole assignment map. The main results are proved in Section 4.

2. Polynomial matrices
In this section, we provide some preliminary results about polynomial matrices.

Our main reference is [4]. LeM (s) be ap x (m + p) polynomial matrix overC
with m > 0. Theith row degreeof M (s) is defined as the highest polynomial degree
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among all the entries in thigh row. Thehigh degree coefficient matriof M (s),
denoted byM,, is defined to be the matrix consisting of the coefficients of the mo-
nomials whose degrees equal the corresponding row degreedcMdlan degree

of a full rank, nonsquare polynomial matrix is defined to be the highest degree of its
full size minors. A matrixM (s) is calledrow properif My has full rank, and it is
calledirreducibleif the full size minors ofM (s) are relatively prime.

Proposition 2.1 [4]. Let M (s) be a full rank(overC[s]), p x (m + p) polynomial
matrix. Then there exists a unimodularx p polynomial matrixU (s) such that
U (s)M (s) is row propet and there exists @ x p polynomial matrixF (s) such that
M(s) = F(s)M1(s) and M (s) is irreducible.

A p x (m + p) polynomial M (s) is calledminimalif its rows form a minimal
basis of the row space; i.e., they form a basis, and the sum of the row degrees is
minimal among all the bases of the row space.

Proposition 2.2 [4]. A p x (m + p) polynomial matrixM (s) is minimal if, and only
if, it is row proper and irreducible.

The row degrees of a minimal basis of the row spacH ¢f) are called thé&orney
indicesof M (s).

Remark 2.3. The Forney indices we defined in this paper were calezhecker
indicesby Fornay in [4] and by some other authors at that time. However, it is cus-
tomary now to call the row degrees of a row proper matrix, which is unimodular
row equivalent taV/ (s), as the Kronecker indices &f (s) (see [12,13,18]). I (s)

is irreducible, then the Forney indices and the Kronecker indices are equal to each
other.

Proposition 2.4 [4]. Let M (s) be ap x (m + p) polynomial matrix and lety(s) =

x(s)M(s) be a polynomialm + p)-tuple.

1.1f M(s) isirreducible thenx(s) must be a polynomial p-tuple.

2.1f M(s) is row proper andx(s) = (x1(s), ..., x,(s)) is a polynomial p-tuplg
then

degy(s) = { degyx; + the ith row degree of M(g).

max
1<i<k

Similar terminologies are also defined for + p) x p matrices if we inter-
change “row” and “column”. LeM (s) be a minimal matrix. Adual matrixof M (s),
denoted byM - (s), is an(m + p) x m minimal polynomial matrix such that

M(s)M*(s) = 0.
The Forney indices af/*(s) are called thelual Forney indice®f M (s).
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Proposition 2.5 [4]. The sum of the Forney indices equals the sum of the dual Forney
indices.

Note that the set of alp x (m + p) polynomial matrices of row degrees at most
(11, - -, ip) can be considered &'*tFTrpTP)mTr) “and the set of all matrices
of row degreesus, ..., i) is a Zariski open set of (“1tFrpFP)0ntp)

Proposition 2.6. Let £ be the set of alp x (m + p) polynomial matrices of row
degrees(uy, ..., up). Setn = u1 +--- 4+ up, and letk = [n/m| be the largest
integer< n/m, andd = n — km be the remainder of n divided by m. There exists a
nonempty Zariski open s&f C 2 of minimal matrices such that

1. every matrixM (s) in ¥ has the dual Forney indices

vgr=1{k, ...,k k+1,... k+1}, 2.1)
—— S —————
m—d d
and

2. for all M(s) € &, the coefficients of the polynomials M~ (s) are rational
functions with nonzero denominatarsf coefficients of the polynomials M(s).

Proof. Consider the equatioM (s)x(s) = 0, wherex(s) = xo + x15 + - - - + x;
is (m + p)-tuple column vector of column degred_et
X0
zi=|: (2.2)
Xi

be a vector consisting of the coefficientsxak). By setting eacts-power term of
each entry oM (s)x(s) to be 0, we have a system of

14
dwj+i+D=n+pi+1
j=1

homogeneous linear equationszpfiven by

Aizi =0.
Note thatA; is an (n + p(i + 1)) x (( +1)(m + p)) matrix, and that we have
n+pi+1) <@+ 1@m+ p)if, and only if,

i >k.

Therefore the matrid/ (s) has dual Forney indices, if, and only if, the columns of
Ay_1 are linearly independent. Such a condition certainly defines a Zariski open sub-
set. Furthermore this Zariski open set is nonempty because one can easily construct a
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controllable and observable system of McMillan degregth observability indices
(11, ..., np) and controllability indices, defined by (2.1). For such a system, there
exist right and left co-prime factorizatiods(s) = D;l(s)N,(s) = N;(s)D;(s) such
that

[D,(s), —N,(s)] and [N’(s)}

Dy(s)

are minimal with row and column degreéss, ..., u,) andv, [4], respectively,
i.e.,[D,(s), —N-(s)] has dual Forney indiceas,.

To show the second statement, let us whte= [Ay1, Ax2], whereA;, and Ao
are(m+ pk+1)x (n+ pk+1) and(n + pk + 1)) x (m — d), respectively.
If Ag1is nonsingular, then the column vectors of

_Ak_llAkZ
1

form a basis of the solution space af.z; = 0, which in turn give usn — d in-
dependent polynomial vectors of degieef the solution ofM (s)x(s) = 0. When
d # 0, we need to find the othdrsolutions. By re-arranging the order of equations,
if necessary, we have

A E
whereH is the highest degree coefficient mati, of M (s). We partitionH into
H = [Hi, H, H3], whereHy, H>, andHs arep x p, p xd, p x (m —d) matri-
ces, respectively, and partitidh = [E1, E2, E3] correspondingly. We rewrite

Apan — Ayt A E1 Ez E3
1=l 0 0 H H» Hz|’

and if H1 is nonsingular, the independent columns
Ajf (ExHy "Hy — Ep)
0
~H{'H,
1
0

are solutions ofx+1zx+1 = 0, which in turn gives us additiondlindependent poly-
nomial vectors of degrele+ 1.

It follows that if Ayx1 and H1 are nonsingular, the coefficients of the matrix
ML(s) = No+ Nis + - - - + Ngs® + Nyg155H1 can be written as

—A A2 AGELH Hy — Ep)
0

NO ]m—d
L= 0 —H'H,
Ni+1 0 Iy

0 0
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The set defined by déf; + 0 is clearly nonempty. We claim that the set defined
by detA;; # 0 is also nonempty. Note that ¥ (s) has the dual Forney indices
Vg, thenM - (s) has onlym — d columns of degrek, and thereforet, has full rank

n + p(k + 1). Let N(s) be the sub-matrix af/ - (s) consisting of then — d columns

of degreek. Then N, has full rankm — d. Let M~ (s) be the matrix obtained by
interchanging the rows OMJ‘(S) such that the lasts — p rows of corresponding
Ny, are linearly independens/ (s) be the corresponding matrix obtained by inter-
changing the columns dlf (s) correspondingly, and le€ be the(k + 1)(m + p) x

(m — d) matrix consisting of the coefficients &f(s) as defined in (2.2). Then from
the equatiom;C = 0 we have

Az = —Ak1C1C2_1,
where C1 and C» are sub-matrices o€ consisting of the firsts + (k + 1)p =

(k +1)(m + p) — (m — d) rows, respectively, the lagtn — d) rows. The relation
indicates that the columns dfi» are in the column space dfi1. Therefore

rank Ag1 = rank Ay = n + (k + 1) p,
and detd;; #0. O

The set of all unimodular column equivalence classesof p) x m irreducible
polynomial matrices of McMillan degreeis a quasiprojective variety [11]. In this
quasi-projective variety, the equivalence classes with the Forney indjogsfined
in (2.1) form a nonempty Zariski open set, and the set of all the other equivalence
classes has strictly smaller dimension [13]. For this reason we call the Forney indices
v, defined in (2.1) thgeneric dual indicesf 2.

Proposition 2.7 [4]. Let M (s) be ap x (m + p) minimal polynomial matrix.

1. There exists am x (m + p) minimal polynomial matrixV (s) such that

(M (s)]

| N(s) |
is unimodular.

2. For suchM (s) and N (s), there exist dual matricesf+(s) and N+ (s) such that

(M(s)] .1 1, _[1, ©
NG| [N*(s) M (s)]_[g Im]'

Proposition 2.8. Let M(s) and N(s) be p x (m 4+ p) andm x (m + p) minimal
polynomial matricesrespectively. Then there exist nonzero constasitsc,, and
c3, such that

N(s)
= codet[ M+ (s), N*(5)]
= c3detN (s)M™*(s).

det[M (S)} = crdetM(s)NL(s)
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Proof. Clearly it is sufficient to prove that

det[%((j))} = 1 detM (s)NL(s).

Let [N1(s), Q(s)] be the unimodular matrix defined in Proposition 2.7 whose
sub-matrices satisfiy (s) N1 (s) = 0 andN (s) Q(s) = I,,. It follows that

det[%éj))} =c1 det([%gﬂ [N1(s), Q(s)])

1L
=c1det[M(s)év (s) M(SI)Q(S)}

= c1detM (s)N*(s),

wherec1 = (defN-L(s), Q). O

3. Simultaneous pole assignment map

Let us consider a linear system

x = Ax+ Bu,
y = Cx+ Du,

together with a dynamic compensator

z=Ez+Fy,
u = Hz+ Ky.

The closed loop system is described as

(d/dn)1 — A 0 -B 07 [x
C 0 D —I||z|_ 0
0 (d/dyi—E 0 —F||ul| ™
0 H -1 K ||y
and the closed loop characteristic polynomial is given by
sl — A 0 —B 0
C 0 D —1
et o  _-E 0 -F
0 H —1 K

provided that it is a nonzero polynomial. The map sending each dynamic compensa-
tor to the corresponding characteristic polynomial of the closed loop system is called
thepole assignment map
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There is also a higher-order representation of the pole assignment niapdj
and(E, H) are observable, then the polynomial matrices

[s1 — A sl — E
. c | H

are minimal. It follows from Proposition 2.7 that there exists a unimodular matrix

[ M11(s)  Maio(s) 0 0
Maa(s)  Moo(s) 0 0
0 0 Ni(s)  Nia(s)
| 0 0 N21(s)  N2a(s)
such that
M11(s)  M12(s) 0 0 sl — A 0 —B 0
Mo1(s)  Moo(s) 0 0 C 0 D —1
0 0 N11(s)  N12(s) 0 sl — FE 0 —F
0 0 No1(s)  Noo(s) 0 H —1 K
I, O * *
. 0 0 Pi(s) Pos)
|0 I, * *
0 0 Ri(s) Ras)

Therefore the closed loop poles are the zeros of the polynomial

Pi(s)  Pa(s)| _ P(s)
det[Rl(s) Rz(s)] = det[R(s)] .

Remark 3.1. The rational functions- P, *(s) P1(s) and— Ry *Ra(s) are left factor-
izations of the transfer functions of the plant and compensator. They are left co-prime

factorizations if, and only if, the first-order representations are also controllable. If
we define

~[;]

then P(d/dt)w(r) = 0 and R(d/df)w(z) = O are known as th&ernel representa-
tions(also autoregressive representations as described in [20]) of the plants and com-
pensators.

Using Proposition 2.8, it follows that iR (s) is irreducible, then the closed loop
poles are also the zeros of d&ts) R (s).

Remark 3.2. If we write

L T01s)
k)= [sz]
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where Q2(s) is p x p, then Ql(s)Qz_l(s) is a right co-prime factorization of the
transfer function of the compensator. The representatiogn = R (d/dr)v(z) is
called theimage representatiofalso moving average representation as described in
[19]) of the compensators, whetdr) = M (d/dr)w(z) has been defined using the
polynomial matrixM (s) such that

R(s)
M(s)
is unimodular. Such a representation is well known under behavioral framework.

Two p x (m + p) polynomial matricesP (s) and ﬁ(s) are calledrational uni-
modular row equivalenif there exists ap x p rational matrixU (s), detU(s) is a
nonzero constant, such that

P(s) = U(s)P(s).

Rational unimodular column equivalenisedefined the similar way.
Let K}, be the set of all rational unimodular row equivalence classgs »of

(m + p) polynomial matrices of McMillan degre€ n, andI?Z,m be the set of all ra-
tional unimodular column equivalence classes$mf+ p) x p polynomial matrices

of McMillan degree< g. Thenk, ,, andI?Z,m are projective varieties, and they are
compactifications of the set of atirinput, p-output systems of McMillan degrees

at mostn and the set of alp-input, m-output dynamic compensators of McMillan
degrees at mogf (see [11,14]). Furthermore, if a polynomial matrix is irreducible,
then its rational unimodular equivalence class coincides with its polynomial unimod-
ular equivalence class. Therefore, there is a one to one correspondence between the
equivalence classes of irreducible polynomial matrices and controllable and observ-
able systems. The set of all equivalence classes of irreducible polynomial matrices
is certainly a nonempty Zariski open subsetdf ,,.

Remark 3.3. The projective variety) ,, has singularities. There is also a smooth
compactification of the set of affrinput, p-output systems of McMillan degrees at
mostn called the Grothendieck Quot-scheme. In terms of matrices this is achieved
through the concept of homogenous autoregrassive systems as introduced in [10].

Let us consider a set ofcontrollable and observable systems described in kernel
representations by

Pi(d/dnHw() =0, i=1,...,r,

for some irreducible polynomial matricé%(s) € K,’ifm of McMillan degreen;, and
let a compensator be given in image representation by

w(t) = Q(d/dnv(r)

for an irreducible polynomial matrixQ(s) € IEZ,m. It follows from above that the
closed loop systems are given by
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P;(d/d)Q(d/dv(r) =0, i=1,...,r,

and the closed loop characteristic polynomials are given by
detP;(s)Q(s), i=1,...,r,

provided that none of them are identically zero polynomials.

Definition 3.4. The simultaneous pole assignment n;iapkg’m — Pt . x
P14 is defined by

%(0) = (detPi(s)Q(s), . .., detP, () Q(s)), (3.1)

where a polynomiakg + ais + - - - + axs* is identified with a pointag, az, .. ., ax)
e Pk,

Note thaty is a rational map, and it is not defined at the point wherePda)
Q(s) = 0 for somei.

Definition 3.5. A compensatorQ(s) € I?Z,m is called a simultaneous dependent
compensator if

detP;(s)Q(s) =0, i=1,...,r

Proposition 3.6 [9]. If r < max(m, p), then a simultaneous dependent compensator
of degree at most g exists where q is the smallest integer which satisfies

g + (lg/ min(m, p)| + 1)(max(m, p) —r) > ZL”i/ min(m, p)],  (3.2)
i=1

where|x | is the largest integex x.

Remark 3.7. From the proof of Proposition 3.6 in [9] we claim that (assum&
m) the simultaneous dependent compensat@r) in Proposition 3.6 consists qf
columns of lowest degrees of

ar(s)]"

o, (s)
where eachy; (s) corresponds to the lowest degree row in the minimal polynomial
matrix P; (s).
The simultaneous dependent compensatomfetr p can be constructed likewise
if we use the image representations of the systems (whictwase p) x m polyno-
mial matrices) and kernel representations of the compensators (whighare: +
p) polynomial matrices).
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Proposition 3.8 [9]. If min(m, p) < r < m + p — 1, then a simultaneous dependent
compensator of degree at most

B mm(f:’p) ni + 3 —mingm, py+1[n/ MinGm, p)]
1= m+p-—r

i=1
exists.

Remark 3.9. The simultaneous dependent compensator in Proposition 3.8 is con-
structed as follows. Without any loss of generality assumephdtm. Fori = p +

1,...,r, leto;(s) be the row ofP; (s) with lowest degree, and far=1, ..., p, let
B:i be the lowest degree column vector of
Pi(s) 1
apr1(s)
ar(s)
Then we conclude thad = [B1(s), ..., B, (s)] is a dependent compensator. We may

have to replace any linearly dependent vector by an arbitrary vector in the dual space
of spanfa 1, ..., ar}.

We can also define an affine simultaneous pole assignment map/} &k the
set of all(m + p) x p polynomial matrices whose sum of row degrees is at most
Then every equivalence classKf, ,, has a matrix in#,.

Definition 3.10. The affine simultaneous pole assignment map
X %q s Rm+~~+m+rq+r

is defined by
x(Q) = (x1(0). ..., x-(Q))
= (detPl(s)Q(s), ..., detP, (s)Q(s)), (3.3)
where apolynomialg + a1s + - - - + axs* isidentified withapointag, ax, . . ., ax) €
Rk+1.

Remark 3.11. Clearly x is onto (almost onto) if, and only ify is onto (almost
onto).

The importance of the simultaneous dependent compensator is indicated by the
next result. Lety = (vy, ..., v,) be the column degrees of a matrix.id,, and let
[ =[g/plande = g — Ip. Let us also define

P < i <i<p—
gﬂiz{Q(s)E%q v < fl<i<p-e }

v, <I4+1 ifp—e4+1<i<p (34)
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Then%ﬁ is an affine space of dimensigm + p)(p + q).

Proposition 3.12. The simultaneous pole assignment map is onto if there is a simul-
taneous dependent compensafi) € /%f, such that the Jacobian
dy, : //5 — RMTtTtnetrgtr
0 -
of x at Q(s) is onto.
Proof. Under the given conditiony maps a small neighborhood @f(s) in //§

onto a small neighborhood of 0 by the inverse function theorem. Sinsehomo-
geneous, the whol@"1 #7447 js contained iny (.#3). O

Proposition 3.13. ForeachQ(s) € ./}.theJacobiad y, : ./§ — R+ tmtratr
is given by

dy,(X($)) = (tr (RL($)X (), ..., tr (R-(5)X(5))),
where

Ri(s) = adj(P;(s) Q(s)) P; (s).

The proof of this result is similar to the proof of Theorem 3.10 in [14].

4. Generic simultaneous pole assignability

We are now ready to prove the main results of this paper. We prove two lemmas
about polynomial matrices first. A subset is called generic if it contains a nonempty
Zariski open set. The elements in a generic set are called generic elements.

Lemma4.l. Let P(s) be ap x (m + p) minimal polynomial matrixand let r be

a positive integer less than, v1, ..., v, be any nonnegative integerand Q (s) be
anr x (m + p) polynomial matrix of row degrees, ..., v, such that

o(s)

P(s)

is a minimal polynomial matrix. Then the set of all suglis)’s form a nonempty
Zariski open subset of the affine space ofrakt (m + p) polynomial matrices of
row degreesy, ..., vy.

Proof. Certainly a set of such polynomial matric@%s) would form a Zariski open
subset. So we only need to show that this set is nonempty. It is sufficient to prove the
result forr = 1, and also forn = 2 because we can always consider the sub-matrix
of P(s) consisting ofp + 2 columns. Furthermore, we can prove the result for

P(s)T (4.1)
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for someT € GL(m + p) instead ofP(s) itself. So without loss of generality, we

assume that:

1. The polynomial matrixP(s) = [N (s), —D(s)] defines a kernel representation of
an 2-input,p-output, controllable, observable, strictly proper linear system of de-
green, wheren is the sum of the row degrees Bi(s).

2. The system is controllable through the first input channel. One can always achieve
this by applying output feedback and changing the basis of input space [3]. This
operation is equivalent to transformation of the type (4.1).

Let

X = AX—+ biu1 + bouo,
y=Cx

be a state space representation of the sygtém with controllable(A, b1).
It is sufficient to show that for any, there exists a dynamic compensator

;=Fz+ Gy, zeR
up = hz

such that the combined system
X A boh | | x b
[-lée [ le)e
(4.2)
y|_|C O]fx
)= AL

is controllable and observable.

The above result is obviously true for= 0. So we consider the case wheg 1.
The combined system is observable wites= 0 and when(F, i) is observable. So
it is observable for the generi@, G, h). We now show that wheh = 0, we can
always choos€& andG such that

(A, B):= ([GAC 1?’} ’ [%D

is controllable. By applying state feedback (which will not change the controlla-
bility) we can assumel” = 0. Let 0< k < n — 1 be the largest number such that
CAFby = 0. It follows that

A i
A'b = [A*bl], i<n,

and

0

P '
A'b |:Z.];:O Fi—k=1+iGCA~ip,

], n<i<n+v-—-1
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By changing the basis of the output space if necessary, let us write
a
CA%1=[;], a+0.

We now choose

[1/a --- O
G=1 : .
0o ... 0
and
[0 0 .- 0 §
§ 0 ... 0 O
F=|0 §
o ... 0 O
|10 0 --- &8 O
We obtain

Fiik*lGCAkbl = 3iikilel,

where 1< [ < v is the integer such that=i — k modv, ande; is thelth standard
basis ofR". So we infer that

k
Z FR=iGeA=Iby|i=n,...,n+ 1
j=0

=pF“%q+0®»h=m“qn+w}

are linearly independent for smal) i.e., the pair(A, b) is controllable. Therefore,
we conclude that system (4.2) is controllable and observable for the generic triplet
(F,G,h). O

Lemma4.2. Let Q(s) be an(m + p) x p minimal polynomial matrix of column
degreesu; < --- < up. Then forr < p and for the generic minimal x (m + p)
matrix P (s) of row degrees1 > --- > v, P(s)Q(s) is irreducible with McMillan
degree

Mp—r+1+"'+//l«p+vl+"'+vr.
The same is also true for the generic miningxls) if a minimal P (s) is given.

Proof. A full size minor of P(s)Q(s) is a sum of products of full size minors of
P(s) with » x r minors of Q(s). Since the maximum degree ofx r minors of
0(s)iS fp—r41+ -+ pp, the maximum degree of full size minors Bf(s) O (s)

IS pp—ry1+ -+ up +v1+---+ v, either for a fixedQ (s) and the generi® (s),
or for a fixed P (s) and the generi@(s).
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Let R(s) = Q=. It follows from Lemma 4.1 that
P(s)
[R (s)] .3)
is minimal either for a fixedQ (s) and the generid (s), or for a fixed P(s) and

the genericQ(s). Let [Q(s), U(s)] be unimodular such thaR(s)U (s) = I,,, (see
Proposition 2.7). Then the matrix

P(s) P($)0Gs)
[R(s)} [0(). T()] = [ 0 ,m]

has full rankm + r for all s, which means that the full size minors Bfs) Q(s) are
relatively prime. O

We are now ready to obtain an improved estimate for the degrees of pole assigning
compensators for the generituple of systems when < max(m, p).

Theorem 4.3. Letr < max(m, p), and g be the smallest integer satisfying the in-
equality

q + (Lg/ min(m, p)] 4+ 1)(max(m, p) —r) > ZLH:’/ min(m, p)]. (4.4)
i=1
Then a generic r-tuple of m-inpup-output systems of McMillan degreg, i =
1, ..., r, respectivelycan be arbitrarily pole assigned by a compensator of degree
at most q.

Proof. Without any loss of generality we assume< m. The systems ik ', with
Forney indices

wi=+21....ki+Lki,....ki), ki=|ni/pl, di=n;—kip (4.5)

— ———
d; p—d;

form a nonempty Zariski open set. Each such system has a kernel representation
P;(s) with row degreesu;. The set of allr-tuple of polynomial matrices of row
degrees at mogt;, i = 1, ..., r, is an affine spacé. The simultaneous dependent
compensator constructed as in Remark 3.7 is a rational function of poiftsand
therefore the condition of Proposition 3.12 defines a Zariski open sét dmis in
turn defines a Zariski open set &f,%, x --- x K}, To finish the proof, we only
need to show that this open set is nonempty; i.e., we need to constrdapke of
minimal polynomial matricesPy(s), ..., P,(s)) such that:
1. EachP, (s) has row degreeg; as defined by (4.5).
2. If a; (s) are the last rows oP; (s), then

ai1(s)
o= . (46)

arkS)
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is minimal and has the generic dual indices

WLy e Vmpr) = (Lo L L1, L+ D), 4.7)
——— —————
m+p—r—e e

where
Rt tk
N m+p-—r

e=ki+---+k —Ilim+p—r).

and

3. dyx, is onto, whereQ is formed by thep columns of the lowest degreesmft.
We first derive a simple formulation afy , . Sincew; (s) Q(s) = 0, it follows from
Proposition 3.13 that

dyo(X(s)) = (1) X ()n1(5), . .., & ()X ()7, (5)),
wheren; (s) is the only nonzero column of adpP; (s) O (s)). If we write
oy [P
Pi(s) = I:ai(s)] s

then the Jacobian becomes
dx, (X (s)) = <det[ﬁ1“)Q“)] o det[ﬁ’(s)Q(s)D ,

a1(s)X (s) o (s) X (s)
Based on such formulation dfx,, we construct Pi(s), . .., P,(s)) in two steps:
1. Choosey; (s) such thatp defined by
za(s)
= ¢(X(5)) == a(s)X(s)
Zr(s)

is onto the space of atl x p polynomial matrices whosigth entry has degree at
mostk; + v;, wherey; is defined through (4.7).

2. ChooseP; (s) such that eacly; defined by

Vi (2i(s)) = zi ()i (s) = det[ﬁ (s)Q(S)}

zi(s)
is onto the space of all polynomials of degree at mgst g.
Choose amv of row degrees; = |n;/pl, i =1,...,r, such that it is minimal,

and has the generic dual indices (4.7). Let

al = [ﬁl(s)’ R ﬂﬂH—p—r(s)]
be of column degree@y, ..., vuyp—r), and define

() = [B1(), .-, Bp(9)].
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Then the degreq of Q(s) is the smallest integer satisfying (3.2) (see the proof of
Theorem 3.2 in [9]) and

l=v1=1q/p].
For X (s) = [x1(s), ..., x,(s)] € 4%, where.#% is defined by (3.4), define linear
mapsd)i : R(m+[7)(vi+1) N Rr(vi+l)+z;=lk_/:

¢i(xi) = a(s)xi(s), i=1...,p.
By [1] ¢; has a rank (oveR)

m+p) i+ =Y i+1-v).

Vji<v;

Note that when; =1

Z(Vi+1—vj~)=m+p—r—e

Vj<vi

and

rankg; =(m+p)l+1)—m—p+r+e
=(+Dr+Ilm+p—r)+e

.
= (v + Dr +ij.
j=1

Whenv; =1 + 1, we obtain
Z(vi—l—l—vj):Z(m—l—p—r)—e
Vj<V;

and

rankg, = (m+ p)(+2)—2m+p—r)+e
=l+2dr+im+p—r)+e

.
=i +Dr+) k;.
j=1
In either casep; is onto the space of all colummvectors whose degree of th¢h
entry is at mosk; + v; (= R FDTi=1ki) S0¢ (X (5)) = (¢1(x1). - ... dp(xp))
is onto.
Next we choose a minima; (s) of row degrees

i+ 1. ki+ 1k k) (4.8)
d; p—1-d;

such that?; (s)0(s) is irreduAcibIe with McMillan degree; + g — |n;/p] — lq/p]
(see Lemma 4.2). Note th&, Q;, has full rank, because its full size minors are the
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coefficients of the monomials afti*4~l"/Pl=L4/r} of the corresponding full size
minors of P;(s) O(s), and therefore not all of them are zero. Let us define

Zi = {zi(s) = zia(s), ..., zip(5)) | degzij(s) < ki + vj ).
We show that the linear mafy : 2; — R T4+1 defined by
i — e Pi®)O()
Wl (zi(s)) = det[ 2 () i|

is onto the space of all polynomials of degree:; + ¢. Note that%; = RP&i+D+q,
So we need to show that

dimkery; = p—1—d,.
If z; (s) € kery;, then by Proposition 2.4

zi(s) = [a1(9), -, ap-1(9)] Pi(5) Q(s)
for some polynomialga; (s)}. We claim thaiz;(s) = 0 for j < d;, anda;(s) = a;
for j > d;. If not, then

degy(s) := deg[ax(s), ..., ap-1(s)]Pi(s) > ki.
Sincey;, € row spaceﬁi]h, one must havey, O, # 0. Assume that thgh entry of
yr Qp is nonzero. Then deg (s) > k; + v; andz; (s) ¢ Z;. Therefore

kery; ={[0,...,0,a4,+1, ... ap_l]ﬁi ()Q0(s)}
anddimkery; = p—1—d;. O

Theorem 4.3 improves the results of [6,8]. In particular, when(mjp) = 1,
inequality (4.4) reduces to

g(maxm, p)+1—r)+maxm, p) —r > Zni, (4.9)
i=1

which is precisely the inequality obtained in [8]. On the other hand when
max(m, p), the smallest degree of the compensator which simultaneously pole
assigns a maxz, p) plants generically is given by

p
)
= LminGn, p)
which should be compared with the smallest degree obtained in [8] givEifbyn;.
Thus, Theorem 4.3 improves the result derived by Ghosh and Byrnes [6].

In our next result we show that a generituple of systems is simultaneously pole
assignable when > m + p if the McMillan degrees of at least mim, p) systems
are not “too different”. It also gives an estimate for the degrees of pole assigning
compensators for the generituple of systems when méx, p) <r <m + p.
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Theorem 4.4. If max(m, p) < r < m + p and(re-label the plants if necessary

N N .
LLJ—LLHgl for1< j < k < min(m, p), (4.10)
m+p-—r m+p-—r

where

’
nj
N |
i=min(m, p)+1 mln(m,p)

then the generic r-tuple of m-input systems of degiees = 1, .. ., r, respectively
can be arbitrarily pole assigned by a compensator of degree less than or equal to

_mirim,p) ni+ N
61— = Lm+p-rl

Proof. Without loss of generality, we assume thak m. By Propositions 2.6 and
3.12, and Remark 3.9, such systems certainly form a Zariski open subset. So we only
need to show that it is nonempty; i.e., we need to constructtaple of minimal
polynomial matrices of row degreges, i =1,...,r (as defined by (4.5)), such
that the Jacobiad x, described in Proposition 3.12 is onto for the simultaneous
dependent compensatgr(s) constructed as in Remark 3.9.

Let O(s) be constructed as in Remark 3.9. Thenifer 1, ..., p, theith column
of P;(s)Q(s) is zero, and foi = p+1, ..., r, the last row ofP;(s) Q(s) is zero.
Therefored x,, (X) = (dx1(X), ..., dx,(X)) has the form

dxi(X) = (=)P7 det[ Pi(5) Qi (), Pi(s)xi(s)] for1<i < p,
and
¥ — det] Pi©)Q(s) ,
dyi(X) = detl:oti(s)X(s)i| forp<i<r,
whereQ,»(s) is the(m + p)x(p—-1 sub-matrix ofQ(s) formed by removing the
ith column ofQ(s), andP; (s) isthe(p — 1) x (m + p) sub-matrix ofP (s) consist-
ing of the firstp — 1 rows of P; (s).

We construct the-tuple of systems in three steps:
1. Choose minimal

O[p+l(s)
o= :
ay(s)
of row degreeg|n,41/p], ..., n-/p]} such that they have the dual Forney in-
dicesv = (v1, ..., Vig2p—r)
1 forl<i<m+2p—r—e,
V=41 form+2p—r—e<i<m+2p—r,

where
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IZMLJ’ N = Z {EJ and e=N—I(m+2p—r).

m+2p—r i Lp

2. Choose minimab;(s), i = 1, ..., p, of row degrees;, and consequently deter-
mine Q(s) such that the corresponding
dxi(X) = (=17~ det[ P (s) Qi (s), Pi(s)xi(s)]
is onto if {x;} are restricted to the cqlumn spacendf.
3. Choosdp — 1) x (m + p) minimal P; (s) of row degrees
wi=k+1.. k+Lk,....k), ki=l|ni/pl, di=n; —kip
d; p—d;i—1
fori=p+1,...,r such thatP; (s)Q(s) is irreducible with McMillan degree
ni +q — ni/pl — Lq/p], and define
Pi(s)

, i=p+1,...,r
ai(S)] P

Pi(s) = [

The existence of sualy and£;(s), i = p+ 1, ..., r, and surjectivity of the cor-
respondingl x; are proved in the proof of Theorem 4.3. So we only need to show
existence of theP; (s) in the second step.

ChooseP;(s), i =1, ..., p, such that

@)

Pi(s) = [S(?))} (4.11)

is minimal with dual Forney indices
(pis s pispi + 1., pi + 1),
———
m+p—r—=5; i

ni + N
pi = Ll—J, Si=n;+N—pim+p—r). (4.12)
m+p-—r

(2) O(s) = [q1(s), - - .., gp(s)] is minimal, wherey; (s) is the first column ofP:- (s)
of column degrees (4.12).
3) P; (S)Qi(s) is irreducible with McMillan degree
ni +q — ni/pl — pi.

Certainly the generid; (s) satisfies (1). The set of aflP; (s)} satisfying (2) is
Zariski open, and one can always start fr@his) to construct the corresponding
{P;(s)}. So the generi¢P; (s)} also satisfies (2). By Lemma 4.2 for a fix@ (s),
the generid?, (s) satisfies (3) (note thad; (s) is independent of; (s)). Therefore, we
can start from g-tuple{P; (s)} satisfying (1) and (2), and make a small perturbation
so that (3) are satisfied by af (s).
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Let
Z1:= {x(s) € col. spana-| degx(s) < p;}.
We now show that for such; (s),
dxi(X) = (=1)P 7 det[Pi() 0i(s), Pi(9)xi ()],  x(s) € L1,
is onto the space of all polynomial of degr€e:; + ¢, where

p
q = Z,Oi-
j=1

We compute the dimension of kék; over R. As in the proof of Theorem 4.3, an
x(s) is in the ke x; if, and only if, P;(s)x(s) = P;(s)Q;(s)a(s) for some polyno-
mial column vector (s) such that
degQ; (s)a(s) < pi,
ie.,
x(s) = Qi(s)a(s) + y(s)
for somey(s) of degree< p; in the column space aP:-(s). So
dim kerdy; = dim %> + dim ¥3,
where
P2 := {x(s) € col. spanQ; (s) | degx(s) < pi}
and
Z3:= {x(s) € col. spanPi(s) | degx(s) < pi}.

By the assumption of the theorem, we h@we— p;| < 1. So by Proposition 2.4 we
write

dim Z2=> (pi —p; + 1)
JFL
=ppi—q+p-—1

Similarly, since1'3l.L (s) has column degrees (4.12)

dm ¥3=@m+p—r)pi+1) —n; — N.
Therefore,

dimkerdy, =m+2p—r)(pi+1) —g—n; —1—N.
The dimension of#1 (overR) is given by

m+2p—r
dim &1 = Z (i —v;j+1
=1
=m+2p—r)pi+1) —N.
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Therefore,
dim ¥1 —dimkerdy, =n; +q+1

anddy; isonto. O

5. Conclusion

This paper settles an outstanding open problem initiated by Saeks and Murray
[15] and by Vidyasagar and Viswanadham [17].

Problem 5.1. How many linear time invarianz-input p-output plants of degrees
ni, i =1,...,r, can be simultaneously stabilized or simultaneously pole assigned
generically by a lineartime invariant nonswitching dynamic compensator?

“Less than the sum of the number of inputs and outputs”

is the answer to the above problem provided by this paper. Moreover, in this case,
there is always an upper bound on the degree of the simultaneously pole assigning
compensator.
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