On the C-Numerical Range of a Matrix

Jean Dazord*

Laboratoire de Probabilités et Statistique I.A.S.B.S.E. Université Claude Bernard-Lyon 1 43, boulevard du 11 Novembre 1918 69622 Villeurbanne Cedex, France

Submitted by Leiba Rodman

ABSTRACT

Given two $n \times n$ complex matrices C and T, we prove that if the differentiable mapping $q: U(n, \mathbb{C}) \to \mathbb{R}^2$ defined by $q(U) = \operatorname{tr}(CU^*TU)$ is of rank at most 1 on a nonempty open set, then the *C*-numerical range W(C, T) of *T* is a line segment. The same conclusion holds whenever the interior of W(C, T) is empty.

1. INTRODUCTION

Let us denote by $M_n(\mathbf{C})$ the algebra of complex $n \times n$ matrices and by $U(n, \mathbf{C})$, the group of unitary $n \times n$ matrices. Given two matrices $C, T \in M_n(\mathbf{C})$ the *C*-numerical range of *T* is the subset W(C,T) of the complex plane defined by $W(C,T) = \{\operatorname{tr}(CU^*TU); U \in U(n, \mathbf{C})\}$, where $\operatorname{tr}(X)$ denotes the trace of the matrix *X*. When *C* is an orthogonal rank-one projection, the *C*-numerical range of *T* is the usual numerical range W(T) of *T*.

Throughout the paper **C** is identified with \mathbf{R}^2 and the *C*-numerical range W(C,T) of *T* is considered as a subset of \mathbf{R}^2 .

In [3, Theorem 3], Marcus and Sandy gave a necessary and sufficient condition for the C-numerical range of T to be real. A necessary and sufficient condition for the C-numerical range of T to be either a point or a nondegenerate line segment was given by Chi-Kwong Li in [2, Theorems 2.5, 2.7].

*E-mail: DAZORD@algebre.univ-lyon1.fr.

LINEAR ALGEBRA AND ITS APPLICATIONS 212/213:21-29 (1994)

655 Avenue of the Americas, New York, NY 10010

0024-3795/94/\$7.00

²¹

[©] Elsevier Science Inc., 1994

In this paper we obtain another necessary and sufficient condition for the set W(C,T) to be either a point or a line segment and an extension of these results.

2. THE RANK OF THE MAPPING q

Our study requires notions of differential geometry included in most textbooks. The reader may also consult References [8] and [4].

Consider the mapping $q: U(n, \mathbb{C}) \to \mathbb{R}^2$ defined by $q(U) = \operatorname{tr}(CU^*TU)$. The *C*-numerical range of *T* is the set $W(C,T) = q(U(n,\mathbb{C}))$. Both $U(n,\mathbb{C})$ and \mathbb{R}^2 are real C^{∞} manifolds, and *q* is a C^{∞} mapping. Let $u(n,\mathbb{C})$ be the **R**-algebra of skew-Hermitian matrices. Let us denote by $T_Uq: Uu(n,\mathbb{C}) \to \mathbb{R}^2$ the mapping tangent to *q* at $U \in U(n,\mathbb{C})$.

In our first result, the brackets stand for the commutator, [X, Y] = XY - YX; lin(E) and dim(lin(E)) denote respectively the linear subspace of \mathbb{R}^2 generated by a subset E of \mathbb{R}^2 and the dimension of lin(E); and i denotes a square root of -1.

THEOREM 2.1. The mapping T_Uq tangent to q at $U \in U(n, \mathbb{C})$ is given by $T_Uq(UA) = tr([C, U^*TU]A), A \in u(n, \mathbb{C})$. In particular, the rank of the mapping q at U is $rk_U(q) = \dim(\lim(W([C, U^*TU])))$.

Proof. The proof rests on an easy computation. Consider $A \in u(n, \mathbb{C})$, and consider the one-parameter unitary group $U(t) = \exp(tA), t \in \mathbb{R}$, where $\exp(X)$ denotes the exponential of the matrix $X \in M_n(\mathbb{C})$. We have

$$T_{U(t)}q(U(t)A) = \{ \operatorname{tr}(C\exp(-tA)T\exp(tA)) \}' = \operatorname{tr}(C(-A)\exp(-tA)T\exp(tA) + C\exp(-tA)TA\exp(tA)) = \operatorname{tr}([A, C]U(t)^*TU(t)) = \operatorname{tr}([C, U(t)^*TU(t)]A).$$

The formula $T_Uq(UA) = tr([C, U^*TU]A), A \in u(n, \mathbb{C})$, is now clear. On the other hand, for any matrix $X \in M_n(\mathbb{C})$, we have

$$lin(W(X)) = tr(X \cdot iu(n, \mathbf{C})) = i tr(Xu(n, \mathbf{C}))$$

and hence the range of the mapping $T_U q$ tangent to q at U is given by $T_U q(Uu(n, \mathbf{C})) = \operatorname{tr}([C, U^*TU]u(n, \mathbf{C})) = i \operatorname{lin}(W([C, U^*TU]))$. In particular the rank of q at U is, as indicated in the theorem, $\operatorname{rk}_U(q) = \operatorname{dim}(\operatorname{lin}(W([C, U^*TU])))$.

C-NUMERICAL RANGE

3. STUDY OF THE CASE WHERE W(C,T) IS A POINT

The following lemma is well known [5, Corollary 0.14, p. 8]:

LEMMA 3.1. Consider the matrices $A \in M_r(\mathbf{C}), B \in M_s(\mathbf{C}), T \in M_n(\mathbf{C})$, with r + s = n. If the matrix T commutes with the block diagonal matrix diag(A, B) and if the spectra of the matrices A and B are disjoint, then T is a block diagonal matrix diag(C, D) where $C \in M_r(\mathbf{C})$ commutes with A, and $D \in M_s(\mathbf{C})$ commutes with B.

The unitary orbit of a matrix X is the subset of $M_n(\mathbf{C})$ defined by $\{U^*XU; U \in U(n, \mathbf{C})\}$. We say that the unitary orbits of X and Y commute if $[U^*XU, V^*YV] = 0$ for any $(U, V) \in U(n, \mathbf{C}) \times U(n, \mathbf{C})$. Since we have

$$[U^*TU, V^*TV] = U^*[C, (VU^*)^*T(VU^*)]U = V^*[(UV^*)^*C(UV^*), T]V,$$
(3.1)

it is clear that the unitary orbits of C and T commute if and only if $[C, V^*TV] = 0$ for any $V \in U(n, \mathbb{C})$, if and only if $[U^*CU, T] = 0$ for any $U \in U(n, \mathbb{C})$.

The equivalence between assertions (i) and (iii) in the following theorem is just Theorem 2.5 in [2].

THEOREM 3.2. For two matrices $C, T \in M_n(\mathbf{C})$ the following assertions are equivalent:

- (i) the C-numerical range W(C,T) of T is a point;
- (ii) the unitary orbits of C and T commute;
- (iii) C or T is a scalar matrix.

Proof. (i) \Rightarrow (ii): Since the mapping q is constant, it is of rank zero, i.e., we have $\operatorname{tr}([C, U^*TU]A) = 0$ for any $A \in u(n, \mathbb{C})$ and any $U \in U(n, \mathbb{C})$. By linearity of the trace, we get $\operatorname{tr}([C, U^*TU]X) = 0$ for any $X \in M_n(\mathbb{C})$, i.e., $[C, U^*TU] = 0$.

(ii) \Rightarrow (iii): Assume first that *C* is a nonscalar normal matrix, and let *a* be an eigenvalue of *C*; we may assume that *C* is the block diagonal matrix C = diag(A, B), where the spectrum of *A* is reduced to $\{a\}$, a not being an eigenvalue of *B*. We have $A \in M_r(\mathbf{C})$, with $1 \leq r \leq n-1$. Let *P* be the orthogonal projection on the eigenspace of *C* corresponding to the eigenvalue *a*. We have $[C, U^*TU] = 0$ for any $U \in U(n, \mathbf{C})$; hence, by Lemma 3.1, $[P, U^*TU] = 0$ for any $U \in U(n, \mathbf{C})$, i.e., $[U^*PU, T] = 0$ for

any $U \in U(n, \mathbb{C})$. Since the projection P is of rank r, clearly the matrix T commutes with any orthogonal projection of rank r.

Consider now two rank-one orthogonal projections P_1 and P_2 such that $P_1P_2 = 0$, and let Q be a projection of rank r such that $P_1 \leq Q, P_2 \leq I - Q$. From the equality (I - Q)TQ = 0 we get $P_2(I - Q)TQP_1 = 0$, i.e. $P_2TP_1 = 0$. The proof shows that for any rank-one orthogonal projection P_1 we have $(I - P_1)TP_1 = 0$, i.e., T is a scalar matrix.

Suppose now that the matrix C is not normal and satisfies the equality $[C, U^*TU] = 0$ for any unitary matrix U. In particular we have $\operatorname{tr}([C, U^*TU]C^*) = 0$, i.e., $\operatorname{tr}([C^*, C]U^*TU]) = 0$ for any unitary matrix U. So we get $W([C^*, C], T) = \{0\}$. Since the matrix C is not normal, the hermitian matrix $[C^*, C]$ is not scalar, and the proof of the implication $(ii) \Rightarrow (iii)$, whenever the matrix C is assumed to be normal, shows that Tis a scalar matrix.

(iii) \Rightarrow (i): This implication is easy, since whenever C or T is a scalar matrix, the C-numerical range of T is $W(C,T) = \{(1/n)tr(C)tr(T)\}$.

4. STUDY OF THE CASE WHERE W(C,T) IS A LINE SEGMENT

For a matrix $X \in M_n(\mathbf{C})$, we use the notation $X_{i,j}$, $1 \leq i, j \leq n$, to denote then n^2 coefficients of X. For completeness, we will indicate the proof of the following lemma, which appears in [1, Lemma 5]:

LEMMA 4.1. For a matrix $X \in M_n(\mathbb{C})$ the following assertions are equivalent:

- (i) the numerical range W(T) of T is a line segment;
- (ii) T satisfies the equalities $|(U^*TU)_{1,2}| = |(U^*TU)_{2,1}|$ for any unitary matrix $U \in U(n, \mathbb{C})$.

Proof. (i) \Rightarrow (ii): The numerical range W(T) of T being a line segment, T is given by $T = \alpha I + \beta A$ with $\alpha, \beta \in \mathbf{C}, A \in u(n, \mathbf{C})$; this is an easy consequence of the fact that a matrix is Hermitian if its numerical range is real. So we get $(U^*TU)_{1,2} = \beta(U^*AU)_{1,2} = -\beta(U^*AU)_{2,1} = -(U^*TU)_{2,1}$.

 $(ii) \Rightarrow (i)$: The hypothesis implies the relations $|(U^*TU)_{i,j}| = |(U^*TU)_{j,i}|$ for any unitary matrix $U \in U(n, \mathbb{C})$, and for any pair $\{i, j\}$ with $1 \le i \le j \le n$. Let U be a unitary matrix such that U^*TU is an upper triangular matrix. Clearly U^*TU is a diagonal matrix, and consequently T is a normal matrix. Now a computation shows that any three eigenvalues of Tnecessarily belong to the same straight line. We need a local version of Lemma 4.1:

LEMMA 4.2. Let T be a complex $n \times n$ matrix. If there exists in $U(n, \mathbb{C})$ a nonempty open set Ω such that: $|(U^*TU)_{1,2}| = |(U^*TU)_{2,1}|$ for any unitary matrix $U \in \Omega$, then these equalities are valid for any $U \in U(n, \mathbb{C})$, and hence the numerical range of T is a line segment.

Proof. Let $U_0 \in \Omega$. We may suppose that U_0 is the unit matrix I, since the matrices T and $U_0^*TU_0$ both have the same numerical range. Consider $U \in U(n, \mathbb{C})$, and consider $A \in u(n, \mathbb{C})$ such that $U = \exp(A)$. Let $U(t) = \exp(tA)$ be the one-parameter unitary group with generator A. Let $\eta > 0$ be a real such that $U(t) \in \Omega$ for any $t \in] -\eta, \eta[$. The real-analytic mapping

$$t \rightarrow |(U(t)^*TU(t))_{1,2}|^2 - |(U(t)^*TU(t))_{2,1}|^2,$$

being null in $]-\eta, \eta[$, is null in **R**. The first assertion is now clear, and the second one follows from Lemma 4.1.

In the sequel we may assume that neither C nor T is a scalar matrix, since otherwise W(C,T) is a point.

THEOREM 4.3. If there exists a nonempty open subset Ω of $U(n, \mathbb{C})$ such that the rank of the mapping q on Ω is at most 1, then the matrices C and T are normal.

Proof. For any $U \in \Omega$ and for any $A \in u(n, \mathbb{C})$ we have $T_U q(UA) = tr([A, C]U^*TU)$. In particular,

$$T_U q(U \cdot i(C + C^*)) = i \operatorname{tr}([C^*, C]U^*TU),$$

 $T_U q(U(C^* - C)) = \operatorname{tr}([C^*, C]U^*TU).$

By hypothesis, the complex numbers $z = \operatorname{tr}([C^*, C]U^*TU)$ and iz belong to a common linear subspace of dimension 0 or 1 of \mathbb{R}^2 . Necessarily we have $\operatorname{tr}([C^*, C]U^*TU) = 0$ for any matrix $U \in \Omega$. Now we use the same argument of analyticity as in the proof of Lemma 4.2. Consider $U_0 \in \Omega$. Replacing the matrix T by $U_0^*TU_0$, we may suppose that $I \in \Omega$. Now given any matrix $A \in u(n, \mathbb{C})$, the analytic mapping from \mathbb{R} to \mathbb{C} given by $t \to \operatorname{tr}([C^*, C] \exp(-tA)T \exp(tA))$ is null in some interval $] -\eta, \eta[$ with $\eta > 0$, and hence this function is null in \mathbb{R} . So we get $\operatorname{tr}([C^*, C]U^*TU) = 0$ for any matrix $U \in U(n, \mathbb{C})$, i.e., $W([C^*, C], T) = \{0\}$. Since T is not a scalar matrix, $[C^*, C]$ is a scalar matrix by Theorem 2.5 in [2] (cf. Theorem 3.2), i.e., $[C^*, C] = 0$. So C is a normal matrix and by the same argument, T is also a normal matrix.

The equivalence between assertions (i) and (iv) in the following result is Theorem 2.7 in [2].

THEOREM 4.4. For two matrices $C, T \in M_n(\mathbf{C})$ the following assertions are equivalent:

- (i) the C-numerical range W(C,T) of T is a line segment;
- (ii) the mapping q is of rank at most 1 on a nonempty open set Ω in U(n, C);
- (iii) the numerical range W([C, U*TU]) is a line segment for any U in a nonempty open set Ω in U(n, C);
- (iv) the numerical ranges W(C) and W(T) are line segments.

Proof. (i) \Rightarrow (ii): This implication is clearly true with $\Omega = U(n, \mathbf{C})$. (ii) \Rightarrow (iii): This is clear by the equality obtained in Theorem 2.1: $\mathrm{rk}_U(q) = \dim(\lim(W([C, U^*TU])))$.

(iii) \Rightarrow (iv): Since condition (iii) implies condition (ii), we know by Theorem 4.3 that both matrices C and T are normal; on the other hand, we know by Lemma 4.1 that, for any unitary matrix $U \in \Omega$, the matrix $[C, U^*TU]$ satisfies the relations $|(V^*[C, U^*TU]V)_{1,2}| = |(V^*[C, U^*TU]V)_{2,1}|$ for any unitary matrix $V \in U(n, \mathbb{C})$. Let c_1 and c_2 be two distinct eigenvalues of C. Choose V such that $V^*CV = D$, where $D = \text{diag}(d_1, d_2, \ldots, d_n)$ is the diagonal matrix with eigenvalues $d_1 = c_1, d_2 = c_2, d_3, \ldots, d_n$. Set $UV = U_1$. Now the matrix T satisfies the relations

$$|([D, U_1^*TU_1])_{1,2}| = |([D, U_1^*TU_1])_{2,1}|, \quad U_1 \in U\Omega.$$

So we obtain $|(d_1 - d_2)(U_1^*TU_1)_{1,2}| = |(d_2 - d_1)(U_1^*TU_1)_{2,1}|$. Hence the matrix *T* satisfies the relations

$$|(U_1^*TU_1)_{1,2}| = |(U_1^*TU_1)_{2,1}|, \qquad U_1 \in U\Omega.$$

By Lemma 4.2, the numerical range of T is a line segment. The same proof shows that the same conclusion holds for C.

(iv) \Rightarrow (i): Under the hypothesis we have $C = \alpha I + \beta A$, $T = \gamma I + \delta B$, with $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ and $A, B \in u(n, \mathbb{C})$. So we have $W(C, T) = \zeta + \beta \gamma W(A, B)$, with $\zeta \in \mathbb{C}$. Since for any $U \in U(n, \mathbb{C})$, we have

$$\overline{\operatorname{tr}(AU^*BU)} = \operatorname{tr}(U^*BUA) = \operatorname{tr}(AU^*BU),$$

we get: $W(A, B) \subset \mathbf{R}$, and this inclusion implies that W(C, T) is a line segment.

5. STUDY OF THE CASE WHERE W(C,T) IS NOWHERE DENSE

The solution of this problem is obtained by a classical reduction to the case of 2×2 matrices.

LEMMA 5.1. Suppose that C and T are the block triangular matrices

$$C = \begin{bmatrix} C_{11} & C_{12} \\ 0 & C_{22} \end{bmatrix} \text{ and } T = \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix},$$

where C_{11} and T_{11} are $r \times r$ matrices and C_{22} and T_{22} are $s \times s$ matrices, with r + s = n. The following inclusion is true: $tr(C_{22}T_{22}) + W(C_{11}, T_{11}) \subset W(C, T)$.

Proof. Consider the block diagonal matrix $U \in U(n, \mathbb{C})$ given by

$$U = \begin{bmatrix} U_{11} & 0\\ 0 & I_s \end{bmatrix}$$
 with $U_{11} \in U(r, \mathbf{C}),$

where I_s denotes the unit $s \times s$ matrix. We have

$$CU^*TU = \begin{bmatrix} C_{11}U_{11}^*T_{11}U_{11} & *\\ 0 & C_{22}T_{22} \end{bmatrix}.$$

The conclusion follows from the equality

$$\operatorname{tr}(CU^*TU) = \operatorname{tr}(C_{22}T_{22}) + \operatorname{tr}(C_{11}U_{11}^*T_{11}U_{11}).$$

As in our study of the case where W(C,T) is a line segment, a first step in our study of the case where W(C,T) is nowhere dense is to show that the matrices C and T are necessarily normal:

THEOREM 5.2. If the C-numerical range W(C,T) of T is nowhere dense in \mathbb{R}^2 , then the matrices C and T are normal.

Proof. The matrices C and T are $n \times n$ matrices, and when n = 2 the result is an obvious consequences of the convexity of W(C,T)—a

fact established by Nam-Kiu Tsing in [7, Corollary of Theorem 2]—and of Theorem 4.4. The proof when $n \geq 2$ consists in a reduction to the case n = 2. Given two unitary matrices $U, V \in U(n, \mathbb{C})$, we have $W(C, T) = W(U^*CU, V^*TV)$; so we may assume the matrices C and T both upper triangular. Let us consider C and T as block triangular matrices, as in Lemma 5.1, and, with the same notation as in that lemma, assume r = 2. Since W(C, T) is nowhere dense, Lemma 5.1 shows that the set $W(C_{11}, T_{11})$ is nowhere dense; this set being convex, again by the above result of Nam-Kiu Tsing [7, Corollary of Theorem 2], it is clear that $W(C_{11}, T_{11})$ is a line segment. So the upper triangular matrices C_{11} and T_{11} are normal, hence diagonal. By repeating the same argument, we obtain the result.

Now we are in a position to prove our last result:

THEOREM 5.3. If the C-numerical range W(C,T) of T is nowhere dense in \mathbb{R}^2 , then W(C,T) is a line segment.

Proof. We may assume that neither C nor T is a scalar matrix. Theorem 5.2 shows that, under the hypothesis, C and T are normal matrices. Consequently, by a result due to Nam-Kiu Tsing [6], W(C,T) is a star-shaped subset of \mathbb{R}^2 . Let z_0 be a center of the star W(C,T); let $U_1 \in U(n, \mathbb{C})$ be a unitary matrix such that $U_1 \notin q^{-1}(z_0)$, i.e., the point $z_1 = q(U_1) = \operatorname{tr}(CU_1^*TU_1)$ is distinct from z_0 . Suppose that the mapping $q: U(n, \mathbb{C}) \to \mathbb{R}^2$ is of rank 2 at U_1 . There exists a one-parameter unitary group $(U(t))_{t \in \mathbf{R}}$ such that the range of the mapping $t \to \operatorname{tr}(CU(t)^*TU(t))$ from **R** to \mathbf{R}^2 is a curve containing the point z_1 and such that the tangent to this curve at z_1 is a straight line perpendicular to the straight line joining z_0 and z_1 . The fact that z_0 is a center of the star-shaped set W(C,T), which contains the curve just described, clearly contradicts the emptiness of the interior of W(C,T). We have proved that the mapping q has rank at most 1 on the open set $\Omega = U(n, \mathbb{C}) \setminus q^{-1}(z_0)$. Since neither C nor T is a scalar matrix, this open set Ω is nonempty. Now Theorem 4.4 shows that W(C,T) is a line segment.

Saying that the compact set K = W(C, T) is nowwhere dense, or in other words, that its interior is empty, constitutes a global assumption on W(C, T). In order to replace this global assumption by a local one, similarly to what we did in Section 4 [cf. assertions (ii) and (iii) in Theorem 4.4], it is natural to ask for the shape of the *C*-numerical range W(C, T) of *T* whenever there exists an open subset Ω of \mathbb{R}^2 satisfying $\Omega \cap K \neq \emptyset$ and $\operatorname{int}(\Omega \cap K) = \emptyset$, where $\operatorname{int}(X)$ denotes the interior of the subset *X* of \mathbb{R}^2 . The existence of such an open set Ω means that the compact subset

C-NUMERICAL RANGE

K = W(C, T) of the plane is not regular, that is, K differs from the closure of its interior. This remark leads to the following question:

PROBLEM. Whenever W(C,T) is not a line segment, is W(C,T) equal to the closure of its interior in \mathbb{R}^2 ?

The problem is to know if, except when it is a line segment, W(C,T) is regular. Note that a nondegenerate line segment is relatively regular, i.e. regular for the topology of its supporting line.

In conclusion let us remark that Theorem 5.3 appears in a paper by W. Y. Man [*Linear and Multilinear Algebra* 32:237–247 (1992), Theorem 1.4, p. 242]. I thank Professor C.-K. Li, who brought my attention to that paper after my lecture at the meeting of the International Linear Algebra Society (ILAS) in Pensacola, Florida, in March 1993.

REFERENCES

- 1 G. Cassier and J. Dazord, Invariance per conjugaison unitaire pour des seminormes de type ℓ^p sur les matrices, J. Operator Theory, to appear.
- 2 Chi-Kwong Li, The C-convex matrices, Linear and Multilinear Algebra 21:303-312 (1987).
- 3 M. Marcus and M. Sandy, Conditions for the generalized numerical range to be real, *Linear Algebra Appl.* 71:219–239 (1985).
- 4 R. Narasimhan, Analysis on Real and Complex Manifolds, Masson, Paris, 1973.
- 5 H. Radjavi and P. Rosenthal, *Invariant Subspaces*, Springer-Verlag, New York, 1973.
- 6 Nam-Kiu Tsing, On the shape of the generalized numerical ranges, *Linear* and Multilinear Algebra 10:173-182 (1981).
- 7 ———, The constrained bilinear form and the C-numerical range, Linear Algebra Appl. 56:195-206 (1984).
- 8 V. S. Varadarajan, Lie Groups, Lie Algebras and Their Representations, Prentice-Hall, Englewood Cliffs, N.J., 1974.

Received 21 June 1993; final manuscript accepted 27 September 1993