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ABSTRACT 

Given two n x n complex matrices C and T, we prove that if the differentiable 

mapping q : U(n,C) + R2 defined by q(U) = tr(CU*TU) is of rank at most 
1 on a nonempty open set, then the C-numerical range W(C, T) of T is a line 

segment. The same conclusion holds whenever the interior of W(C, T) is empty. 

1. INTRODUCTION 

Let us denote by M,(C) the algebra of complex n x n matrices and by 

u(n, C), the group of unitary n x n matrices. Given two matrices C, T E 

i’&(C) the C-numerical range of T is the subset W(C, T) of the complex 

plane defined by W(C, T) = {tr(CU*TU); U E u(n, C)}, where tr(X) 
denotes the trace of the matrix X. When C is an orthogonal rank-one 

projection, the C-numerical range of T is the usual numerical range W(T) 

of T. 

Throughout the paper C is identified with R2 and the C-numerical 

range W(C, T) of T is considered as a subset of R2. 

In [3, Theorem 31, Marcus and Sandy gave a necessary and sufficient 

condition for the C-numerical range of T to be real. A necessary and 

sufficient condition for the C-numerical range of T to be either a point or 
a nondegenerate line segment was given by Chi-Kwong Li in [2, Theorems 

2.5, 2.71. 
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In this paper we obtain another necessary and sufficient condition for 
the set W(C, T) to be either a point or a line segment and an extension of 
these results. 

2. THE RANK OF THE MAPPING q 

Our study requires notions of differential geometry included in most 
textbooks. The reader may also consult References [8] and [4]. 

Consider the mapping q : U(n, C) + R2 defined by q(U) = tr(CU*TU). 
The C-numerical range of T is the set W(C,T) = q(U(n,C)). Both 
U(n, C) and R2 are real Cm manifolds, and q is a C” mapping. Let 
u(n, C) be the R-algebra of skew-Hermitian matrices. Let us denote by 
Tuq : Uu(n, C) + R2 the mapping tangent to q at U E U(n, C). 

In our first result, the brackets stand for the commutator, [X,Y] = 
XY - YX; lin(E) and dim(lin(E)) d enote respectively the linear subspace 
of R2 generated by a subset E of R2 and the dimension of lin(E); and i 
denotes a square root of -1. 

THEOREM 2.1. The mapping Tuq tangent to q at U E lJ(n, C) is given 
by Tuq(UA) = tr([C, U*TU]A), A E u(n, C). In particular, the ran,+ of the 
mapping q at U is &a(q) = dim(lin(W([C, U*TU]))). 

Proof. The proof rests on an easy computation. Consider A E u(n, C), 
and consider the one-parameter unitary group U(t) = exp(tA), t E R, 
where exp(X) denotes the exponential of the matrix X E i&(C). We have 

Tu(t)q(U(t)A) = {tr(Cexp(-tA)Texp(tA)))’ 
= tr(C(-A)exp(-tA)Texp(tA) + Cexp(-tA)TAexp(tA)) 

= tr([A,C]U(t)*TU(t)) = tr([C, U(t)*TU(t)]A). 

The formula Tuq(UA) = tr([C, U*TU]A), A E u(n, C), is now clear. On 
the other hand, for any matrix X E A&(C), we have 

lin(W(X)) = tr(X ’ iu(n, C)) = i tr(Xu(n, C)) 

and hence the range of the mapping Tuq tangent to q at U is given by 
Tuq(Uu(n, C)) = tr([C, U*TU]u(n, C)) = i lin(W([C, U’TU])). In par- 
ticular the rank of q at U is, as indicated in the theorem, rku(q) = 
dim(lin(W([C, U’TU]))). n 
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3. STUDY OF THE CASE WHERE W(C, T) IS A POINT 

The following lemma is well known [5, Corollary 0.14, p. 81: 

LEMMA 3.1. Consider the matrices A E M,.(C),B E MS(C), T E 
Mn(C), with T + s = n. If the matrix T commutes with the block diagonal 

matrix diag(A, B) and if the spectra of the matrices A and B are disjoint, 

then T is a block diagonal matrix diag(C, D) where C E MT(C) commutes 

with A, and D E MS(C) commutes with B. 

The unitary orbit of a matrix X is the subset of Mn(C) defined by 
{U*XU; U E U(n, C)}. We say that the unitary orbits of X and Y com- 
mute if [U*XU,V*YV] = 0 for any (U,V) E U(n,C) X U(n,C). Since 
we have 

[U*TU, V*TV] = U*[C, (VU*)*T(VU*)]U = V*[(UV*)*C(UV*),T]V, 

(3.1) 
it is clear that the unitary orbits of C and T commute if and only if 
[C,V*TV] = 0 f or any V E U(n,C), if and only if [U*CU,T] = 0 for 
any U E U(n,C). 

The equivalence between assertions (i) and (iii) in the following theorem 
is just Theorem 2.5 in [2]. 

THEOREM 3.2. FOT two matrices C, T E Mn(C) the following asser- 

tions are equivalent: 

(i) the C-numerical range W(C,T) of T is a point; 

(ii) the unitay orbits of C and T commute; 
(iii) C or T is a scalar matrix. 

Proof (i)*(ii): S ince the mapping q is constant, it is of rank zero, i.e., 
we have tr([C, U*TU]A) = 0 f or any A E u(n,C) and any U E U(n,C). 

By linearity of the trace, we get tr([C, U*TU]X) = 0 for any X E Mn(C), 
i.e., [C, U*TU] = 0. 

(ii)+(iii): Assume first that C is a nonscalar normal matrix, and let a 

be an eigenvalue of C; we may assume that C is the block diagonal matrix 
C = diag(A, B), where the spectrum of A is reduced to {a}, a not being 
an eigenvalue of B. We have A E MT(C), with 1 < T < n - 1. Let P 
be the orthogonal projection on the eigenspace of C corresponding to the 
eigenvalue a. We have [C, U*TU] = 0 for any U E U(n,C); hence, by 
Lemma 3.1, [P, U*TU] = 0 for any U E U(n, C), i.e., [U*PU, T] = 0 for 
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any U E U(n, C). Since the projection P is of rank r, clearly the matrix T 
commutes with any orthogonal projection of rank r. 

Consider now two rank-one orthogonal projections PI and PZ such that 
PIP, = 0, and let Q be a projection of rank T such that Pi < Q, P2 5 
I - Q. From the equality (I- Q)TQ = 0 we get Pz(I - Q)TQPl = 0, i.e. 
P2TPl = 0. The proof shows that for any rank-one orthogonal projection 
PI we have (I - Pl)TPl = 0, i.e., T is a scalar matrix. 

Suppose now that the matrix C is not normal and satisfies the equal- 
ity [C, l_J*TU] = 0 for any unitary matrix U. In particular we have 
tr([C,U*TU]C*) = 0, i.e., tr([C*,C]U’TU]) = 0 for any unitary matrix 
U. So we get W([C*,C],T) = (0). S ince the matrix C is not normal, 
the hermitian matrix [C’, C] is not scalar, and the proof of the implication 
(ii)+(iii), whenever the matrix C is assumed to be normal, shows that T 
is a scalar matrix. 

(iii)+(i): This implication is easy, since whenever C or T is a scalar 
matrix, the C-numerical range of T is W(C, T) = {(l/n)tr(C)tr(T)}. n 

4. STUDY OF THE CASE WHERE W(C, T) IS A LINE SEGMENT 

For a matrix X E Mn(C), we use the notation Xi,j, 1 5 i, j 2 n, to 
denote then n2 coefficients of X. For completeness, we will indicate the 
proof of the following lemma, which appears in [l, Lemma 51: 

LEMMA 4.1. For a matrix X E M,(C) the following assertions are 
equivalent: 

(i) the numerical range W(T) of T is a line segment; 
(ii) T t’ fi t sa zs es he equalities I(U*TU)1,21 = I(U*TU)z,l[ for any unitary 

matrix U E U(n, C). 

Proof (i)+(ii): Th e numerical range W(T) of T being a line segment, 
T is given by T = cd + PA with o, p E C, A E u(n, C); this is an easy 
consequence of the fact that a matrix is Hermitian if its numerical range is 
real. So we get (U*TU) 1,2 = P(U*AU)1,2 = -P(U*-4V2,1 = -(U*TU)2,1. 

(ii)+(i): The hypothesis implies the relations I(U*TU)i,jJ = J(U*TU)j,iJ 
for any unitary matrix U E U(n, C), and for any pair {i,j} with 1 5 i 5 
j 5 n. Let U be a unitary matrix such that U*TU is an upper triangu- 
lar matrix. Clearly U*TU is a diagonal matrix, and consequently T is a 
normal matrix. Now a computation shows that any three eigenvalues of T 
necessarily belong to the same straight line. n 
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We need a local version of Lemma 4.1: 

LEMMA 4.2. Let T be a complex n x n matrix. If there exists in U(n, C) 

a nonempty open set R such that: ](U*TU)l,a] = ](U*TU)2,1] for any uni- 

tary matrix U E Q, then these equalities are valid for any U E U(n, C), 
and hence the numerical range of T is a line segment. 

Proof. Let Uo E R. We may suppose that Uo is the unit matrix I, 

since the matrices T and U,*TUa both have the same numerical range. 
Consider U E U(n,C), and consider A E u(n,C) such that U = exp(A). 
Let U(t) = exp(tA) be th e one-parameter unitary group with generator 
A. Let 77 > 0 be a real such that U(t) E R for any t E] - v,q[. The 
real-analytic mapping 

t -+ t(U(t)*Tu(t))d - ](U(t)*TU(t))& 

being null in l-q, v[, is null in R. The first assertion is now clear, and the 
second one follows from Lemma 4.1. n 

In the sequel we may assume that neither C nor T is a scalar matrix, 
since otherwise W(C, T) is a point. 

THEOREM 4.3. If there exists a nonempty open subset R of U(n,C) 

such that the rank of the mapping q on R is at most 1, then the matrices 

C and T are normal. 

Proof. For any U E R and for any A E u(n, C) we have Tuq(UA) = 

tr( [A, C]U*TU). In particular, 

Tuq(U. i(C + C’)) = i tr( [C*, C]U*TU), 

Tuq(U(C* - C)) = tr([C*, C]U*TU). 

By hypothesis, the complex numbers z = tr([C*, C]U*TU) and iz belong 
to a common linear subspace of dimension 0 or 1 of R’. Necessarily we 
have tr( [C’, C]U*TU) = 0 for any matrix U E 0. Now we use the same 
argument of analyticity as in the proof of Lemma 4.2. Consider Ua E s1. 

Replacing the matrix T by U,*TUa, we may suppose that I E 0. Now 
given any matrix A E u(n,C), the analytic mapping from R to C given 
by t + tr([C*,C]exp(-tA)Texp(tA)) is null in some interval ] - 7, q[ with 
v > 0, and hence this function is null in R. So we get tr( [C”, C]U*TU) = 0 

for any matrix U E U(n,C), i.e., W([C*,C],T) = (0). Since T is not a 
scalar matrix, [C’, C] is a scalar matrix by Theorem 2.5 in [2] (cf. Theorem 
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3.2), i.e., [C’, C] = 0. So C is a normal matrix and by the same argument, 
T is also a normal matrix. n 

The equivalence between assertions (i) and (iv) in the following result 
is Theorem 2.7 in [2]. 

THEOREM 4.4. For two matrices C, T E M,(C) the following asser- 

tions are equivalent: 

(i) the C-numerical range W(C,T) of T is a line segment; 
(ii) the mapping q is of ranlc at most 1 on a nonempty open set R in 

U(n, C); 
(iii) the numerical range W([C, U’TU]) is a line segment for any U in a 

nonempty open set R in U(n, C); 

(iv) the numerical ranges W(C) and W(T) are line segments. 

Proof (i)=+(ii): Th is implication is clearly true with 0 = U(n, C). 

(ii)+(iii): This is clear by the equality obtained in Theorem 2.1: rku(q) 
= dim(lin(W([C, U*TU]))). 

(iii)+(iv) : Since condition (iii) implies condition (ii), we know by Theo- 
rem 4.3 that both matrices C and T are normal; on the other hand, we know 
by Lemma 4.1 that, for any unitary matrix U E 0, the matrix [C, U’TU] 

satisfies the relations I(V*[C, U*TU]V)1,2( = I(V*[C, U*TU]V)2,1( for any 
unitary matrix V E U(n, C). Let cl and c2 be two distinct eigenvalues 
of C. Choose V such that V*CV = D, where D = diag(dr, d2,. . . , d,) 

is the diagonal matrix with eigenvalues dr = cl, d2 = ~2, ds, . . , d,. Set 
UV = Ul. Now the matrix T satisfies the relations 

l([D, U;TU11)1,2t = I([D, WU11)2,11, u1 E UR. 

So we obtain I(dl - &)(U;TU1)1,21 = l(d2 - dl)(UtTUl)2,11. Hence the 
matrix T satisfies the relations 

IV-JPJ1)1,2l = I(U,*TU,),,,l, u1 E UR. 

By Lemma 4.2, the numerical range of T is a line segment. The same 
proof shows that the same conclusion holds for C. 

(iv)+(i): Under th e h ypothesis we have C = aI+PA, T = yI+SB, with 
o,/3,y, 6 E C and A, B E u(n,C). S o we have W(C,T) = C + &W(A, B), 

with < E C. Since for any U E U(n, C), we have 

tr(AU*BU) = tr(U*BUA) = tr(AU*BU), 
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we get: W(A, B) c R, and this inclusion implies that W(C, T) is a line seg- 
ment . n 

5. STUDY OF THE CASE WHERE W(C, T) IS NOWHERE DENSE 

The solution of this problem is obtained by a classical reduction to the 
case of 2 x 2 matrices. 

LEMMA 5.1. Suppose that C and T are the block triangular matrices 

C= [s” zi,j and T= [Til 2~1, 

where Cl1 and Tl1 are r x r matrices and Czz and T22 are s x s matrices, 
with r + s = n. The following inclusion is true: tr(C22Tzz) + W(C11, Tl1) 
c W(C,T). 

Proof. Consider the block diagonal matrix U E U(n, C) given by 

with VII E U(r,C), 

where I, denotes the unit s x s matrix. We have 

CU*TU = CI~U;~THU~~ * 
0 I C22T22 ’ 

The conclusion follows from the equality 

tr(CU*TU) = tr(CzTz) + tr(C1lU;lTllUll). 

As in our study of the case where W(C, T) is a line segment, a first step 
in our study of the case where W(C,T) is nowhere dense is to show that 
the matrices C and T are necessarily normal: 

THEOREM 5.2. If the C-numerical range W(C,T) of T is nowhere 
dense in R2, then the matrices C and T are normal. 

Proof The matrices C and T are n x n matrices, and when n = 
2 the result is an obvious consequences of the convexity of W(C,T)-a 
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fact established by Nam-Kiu Tsing in [7, Corollary of Theorem 2]-and of 
Theorem 4.4. The proof when n > 2 consists in a reduction to the case 
n = 2. Given two unitary matrices U, V E U(n, C), we have W(C, 3”) = 
W(U*CU, V’TV); so we may assume the matrices C and T both upper 
triangular. Let us consider C and T as block triangular matrices, as in 
Lemma 5.1, and, with the same notation as in that lemma, assume r = 2. 
Since W(C, T) . 1s nowhere dense, Lemma 5.1 shows that the set W(C11, Tl1) 
is nowhere dense; this set being convex, again by the above result of Nam- 
Kiu Tsing [7, Corollary of Theorem 21, it is clear that W(C11, Tl1) is a line 
segment. So the upper triangular matrices Cii and Tl1 are normal, hence 
diagonal. By repeating the same argument, we obtain the result. H 

Now we are in a position to prove our last result: 

THEOREM 5.3. If the C-numerical range W(C,T) of T is nowhere 
dense in R2, then W(C, T) is a line segment. 

Proof We may assume that neither C nor T is a scalar matrix. The- 
orem 5.2 shows that, under the hypothesis, C and T are normal matri- 
ces. Consequently, by a result due to Nam-Kiu Tsing [6], W(C,T) is a 
star-shaped subset of R2. Let zc be a center of the star W(C,T); let 
Vi E U(n,C) be a unitary matrix such that VI @ q-‘(zo), i.e., the point 
zi = q(U,) = tr(CU;TUl) is distinct from zc. Suppose that the mapping 
q : U(n, C) --f R2 is of rank 2 at Ul. There exists a one-parameter unitary 
group (U(t))tER such that the range of the mapping t + tr(CU(t)*TU(t)) 
from R to R2 is a curve containing the point zi and such that the tangent 
to this curve at zi is a straight line perpendicular to the straight line join- 
ing zc and zi. The fact that zs is a center of the star-shaped set W(C, T), 
which contains the curve just described, clearly contradicts the emptiness 
of the interior of W(C,T). We have proved that the mapping q has rank 
at most 1 on the open set R = U(n,C)\q-‘(zo). Since neither C nor T 
is a scalar matrix, this open set 0 is nonempty. Now Theorem 4.4 shows 
that W(C, T) is a line segment. n 

Saying that the compact set K = W(C,T) is nowwhere dense, or in 
other words, that its interior is empty, constitutes a global assumption on 
W(C, T). In order to replace this global assumption by a local one, similarly 
to what we did in Section 4 [cf. assertions (ii) and (iii) in Theorem 4.41, 
it is natural to ask for the shape of the C-numerical range W(C,T) of 
T whenever there exists an open subset R of R2 satisfying s1 n K # 0 
and int(0 n K) = 0, where int(X) denotes the interior of the subset X of 
R2. The existence of such an open set 52 means that the compact subset 
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K = W(C, T) of the plane is not regular, that is, K differs from the closure 

of its interior. This remark leads to the following question: 

PROBLEM. Whenever W(C, T) is not a line segment, is W(C, T) equal 

to the closure of its interior in R’? 

The problem is to know if, except when it is a line segment, W(C, T) is 

regular. Note that a nondegenerate line segment is relatively regular, i.e. 

regular for the topology of its supporting line. 

In conclusion let us remark that Theorem 5.3 appears in a paper by 

W. Y. Man [Linear and Multilinear Algebra 32:237-247 (1992), Theorem 

1.4, p. 2421. I thank Professor C.-K. Li, who brought my attention to that 

paper after my lecture at the meeting of the International Linear Algebra 

Society (ILAS) in Pensacola, Florida, in March 1993. 
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