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ABSTRACT

Given two n X n complex matrices C and T', we prove that if the differentiable
mapping ¢ : U(n,C) — R? defined by ¢(U) = tr(CU*TU) is of rank at most
1 on a nonempty open set, then the C-numerical range W{(C,T) of T is a line
segment. The same conclusion holds whenever the interior of W{C,T) is empty.

1. INTRODUCTION

Let us denote by M,,(C) the algebra of complex n X n matrices and by
U(n, C), the group of unitary n x n matrices. Given two matrices C,T €
M, (C) the C-numerical range of T is the subset W(C,T) of the complex
plane defined by W(C,T) = {tr(CU*TU);U € U{(n,C)}, where tr(X)
denotes the trace of the matrix X. When C is an orthogonal rank-one
projection, the C-numerical range of 1" is the usual numerical range W (T")
of T.

Throughout the paper C is identified with R? and the C-numerical
range W(C,T) of T is considered as a subset of R2.

In [3, Theorem 3}, Marcus and Sandy gave a necessary and sufficient
condition for the C-numerical range of T' to be real. A necessary and
sufficient condition for the C-numerical range of T to be either a point or
a nondegenerate line segment was given by Chi-Kwong Li in |2, Theorems
2.5, 2.7).
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In this paper we obtain another necessary and sufficient condition for
the set W(C,T) to be cither a point or a line segment and an extension of
these results.

2. THE RANK OF THE MAPPING ¢

Our study requires notions of differential geometry included in most
textbooks. The reader may also consult References [8] and [4].

Consider the mapping q : U(n, C) — R? defined by q(U) = tr(CU*TU).
The C-numerical range of T" is the set W(C,T) = ¢(U(n,C)). Both
U(n,C) and R? are real C*™ manifolds, and ¢ is a C°° mapping. Let
u(n, C) be the R-algebra of skew-Hermitian matrices. Let us denote by
Tuq : Uu(n,C) — R? the mapping tangent to g at U € U(n, C).

In our first result, the brackets stand for the commutator, [X,Y] =
XY - YX; lin(E) and dim(lin(E)) denote respectively the linear subspace
of R? generated by a subset E of R? and the dimension of lin(E); and 4
denotes a square root of —1.

THEOREM 2.1.  The mapping Ty q tangent to g at U € U(n, C) is given
by Tyq(UA) = tr([C,U*TU]A), A € u(n, C). In particular, the rank of the
mapping q at U is rky (q) = dim(lin{W ([C, U*TU)))}).

Proof. 'The proof rests on an easy computation. Consider A € u(n, C),
and consider the one-parameter unitary group U(t) = exp(t4), t € R,
where exp(X) denotes the exponential of the matrix X € M,,(C). We have

Tywme(U(t)A) = {tr(Cexp(—tA)T exp(tA))}
tr(C(—A) exp(~tA)T exp(tA) + C exp(—tA)T Aexp(tA))
tr([A, CJURY*TU(t)) = tr([C, U () TU (t)| A).

li

il

The formula Tyq(UA) = tr([C,U*TU]A), A € u(n,C), is now clear. On
the other hand, for any matrix X € M,(C), we have

lin(W (X)) = tr{X - iu{n, C)) = ¢ tr(Xu(n,C))

and hence the range of the mapping Ty ¢ tangent to ¢ at U is given by
Tyq(Uu(n,C)) = te([C,U*TUu(n, C)) = ¢ lin(W([C,U*TU})). In par-
ticular the rank of ¢ at U is, as indicated in the theorem, rky(g) =
dim(lin(W ([C, U*TUY))). [ |
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3. STUDY OF THE CASE WHERE W(C,T) IS A POINT

The following lemma is well known [5, Corollary 0.14, p. 8]:

LEMMA 3.1. Consider the matrices A € M,(C),B € M;(C), T €
M, (C), with r + s = n. If the matriz T' commutes with the block diagonal
matriz diag( A, B} and if the spectra of the matrices A and B are disjoint,
then T is a block diagonal matriz diag(C, D) where C € M, (C) commutes
with A, and D € M,(C) commutes with B.

The unitary orbit of a matrix X is the subset of M,(C) defined by
{U*XU;U € U(n,C)}. We say that the unitary orbits of X and Y com-
mute if [U*XU,V*YV] = 0 for any (U, V) € U(n,C) x U(n,C). Since
we have

[U*TU, V*TV] = U*[C,(VU**T(VUU = V*[(UV*)*C(UV*), T}V,
(3.1)
it is clear that the unitary orbits of C' and T commute if and only if
[C,V*TV] = 0 for any V € U(n,C), if and only if [U*CU,T} = 0 for
any U € U(n, C).
The equivalence between assertions (1) and (iii) in the following theorem
is just Theorem 2.5 in [2].

THEOREM 3.2. For two matrices C,T € M,(C) the following asser-
tions are equivalent:

(i) the C-numerical range W(C,T) of T is a point;
(ii) the unitary orbits of C and T commute;
(iii) C or T is a scalar matriz.

Proof. (i)=(ii): Since the mapping g is constant, it is of rank zero, i.e.,
we have tr([C,U*TU]A) = 0 for any A € u{n,C) and any U € U(n,C).
By linearity of the trace, we get tr([C,U*TU]|X) =0 for any X € M,(C),
ie., [C,U*TU] = 0.

(ii)=-(iii): Assume first that C is a nonscalar normal matrix, and let a
be an eigenvalue of C’; we may assume that C' is the block diagonal matrix
C = diag(4, B), where the spectrum of A is reduced to {a}, a not being
an eigenvalue of B. We have A € M, (C), with1 <7 <n—1. Let P
be the orthogonal projection on the eigenspace of C corresponding to the
eigenvalue a. We have [C,U*TU] = 0 for any U € U(n,C); hence, by
Lemma 3.1, [P,U*TU] = 0 for any U € U(n,C), ie., [U*PU,T] = 0 for
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any U € U(n,C). Since the projection P is of rank r, clearly the matrix T
commutes with any orthogonal projection of rank r.

Consider now two rank-one orthogonal projections P; and P, such that
PP, = 0, and let @ be a projection of rank r such that 4 < @, P, <
I — Q. From the equality (I — Q)I'Q = 0 we get P,(I — Q)TQP, =0, ie.
P,TP; = 0. The proof shows that for any rank-one orthogonal projection
P, we have (I — P,)TP; =0, i.e., T is a scalar matrix.

Suppose now that the matrix C' is not normal and satisfies the equal-
ity [C,U*TU] = 0 for any unitary matrix U. In particular we have
tr([C,U*TUC*) = 0, ie., tr([C*,CIU*TU]) = 0 for any unitary matrix
U. So we get W(|C*,C],T) = {0}. Since the matrix C is not normal,
the hermitian matrix [C*, C] is not scalar, and the proof of the implication
(ii}=>(iii), whenever the matrix C' is assumed to be normal, shows that T'
is a scalar matrix.

(iii)=(i): This implication is easy, since whenever C or T is a scalar
matrix, the C-numerical range of T is W(C,T) = {(1/n)tr(C)tr(T)}. R

4. STUDY OF THE CASE WHERE W(C,T) IS A LINE SEGMENT

For a matrix X € M,(C), we use the notation X;;, 1 <14, j < n, to
denote then n? coefficients of X. For completeness, we will indicate the
proof of the following lemma, which appears in (1, Lemma 5

LEMMA 4.1. For a matriz X € M,(C) the following assertions are
equivalent:

(i) the numerical range W (T') of T is a line segment;
(ii) T satisfies the equalities [(U*TU)1 2| = |{(U*TU)2,1| for any unitary
matrix U € U(n, C).

Proof. (i)=-(ii): The numerical range W(T') of T being a line segment,
T is given by T = al + A with a,f8 € C, A € u(n,C); this is an easy
consequence of the fact that a matrix is Hermitian if its numerical range is
real. So we get (U*TU)LQ = ﬂ(U*AU)l,g = —,B(U*AU)z,l = —(U*TU)le.

(ii)=(i): The hypothesis implies the relations [(U*TU); ;| = (U*TU); ;|
for any unitary matrix U € U(n,C), and for any pair {i,j} with 1 <4 <
7 < n. Let U be a unitary matrix such that U*TU is an upper triangu-
lar matrix. Clearly U*TU is a diagonal matrix, and consequently T is a
normal matrix. Now a computation shows that any three eigenvalues of T
necessarily belong to the same straight line. [ |



C-NUMERICAL RANGE 25
We need a local version of Lemma 4.1:

LEMMA 4.2. LetT be a complex nxn matriz. If there ezists in U(n, C)
a nonempty open set Q such that: [(U*TU); 3| = |[(U*TU)2,| for any uni-
tary matriz U € Q, then these equalities are valid for any U € U(n,C),
and hence the numerical range of T is a line segment.

Proof. Let Uy € 2. We may suppose that Uy is the unit matrix I,
since the matrices T and UgTUp both have the same numerical range.
Consider U € U(n,C), and consider A € u(n,C) such that U = exp(A).
Let U(t) = exp(tA) be the one-parameter unitary group with generator
A. Let 7 > 0 be a real such that U(t) € Q for any ¢ €] — n,n[. The
real-analytic mapping

t > [U@R TU®)1 2l — (UE) TU )21,

being null in |-, 7|, is null in R. The first assertion is now clear, and the
second one follows from Lemma, 4.1. n

In the sequel we may assume that neither C nor T is a scalar matrix,
since otherwise W(C,T) is a point.

THEOREM 4.3. If there exists a nonempty open subset Q of U(n,C)
such that the rank of the mapping q on Q is at most 1, then the matrices
C and T are normal.

Proof. For any U € Q) and for any A € u(n,C) we have Tyq(UA) =
tr([A, CJU*TU). In particular,

Tyq(U -i(C +C*)) = i tr([C*, CU*TU),
Tuq(U(C* - C)) = tr([C*,CIU*TU).

By hypothesis, the complex numbers z = tr([C*, C|U*TU) and iz belong
to a common linear subspace of dimension 0 or 1 of R?. Necessarily we
have tr([C*, CJU*TU) = 0 for any matrix U € . Now we use the same
argument of analyticity as in the proof of Lemma 4.2. Consider Uy € €.
Replacing the matrix 7" by UjTUy, we may suppose that I € Q. Now
given any matrix A € u(n,C), the analytic mapping from R to C given
by t — tr([C*, Clexp(—tA)T exp(tA)) is null in some interval ] — n, n[ with
1 > 0, and hence this function is null in R. So we get tr([C*, CJU*TU) = 0
for any matrix U € U(n, C), i.e., W([C*,C],T) = {0}. Since T is not a
scalar matrix, [C*, C] is a scalar matrix by Theorem 2.5 in [2] (cf. Theorem
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3.2), i.e., [C*,C] = 0. So C is a normal matrix and by the same argument,
T is also a normal matrix. [ ]

The equivalence between assertions (i) and (iv) in the following result
is Theorem 2.7 in [2].

THEOREM 4.4. For two matrices C,T € M,(C) the following asser-
tions are equivalent:

(i) the C-numerical range W(C,T) of T is a line segment;
(ii) the mapping q is of rank at most 1 on a nonempty open set §} in
U(n,C);
(iil) the numerical range W ([C,U*TU)) is a line segment for any U in a
nonempty open set 0 in U(n, C);
(iv) the numerical ranges W (C) and W(T') are line segments.

Proof. (i)=-(ii): This implication is clearly true with Q = U(n, C).

(ii)=>(iii): This is clear by the equality obtained in Theorem 2.1: rky;(q)
= dim(lin{W ([C, U*TUY))).

(iii)=>(iv): Since condition (iii) implies condition (ii), we know by Theo-
rem 4.3 that both matrices C and T" are normal; on the other hand, we know
by Lemma 4.1 that, for any unitary matrix U € Q, the matrix [C,U*TU]
satisfies the relations |(V*[C,U*TU|V ), 2| = |(V*[C,U*TU|V)3,1]| for any
unitary matrix V € U(n,C). Let ¢; and ¢; be two distinct eigenvalues
of C. Choose V such that V*CV = D, where D = diag(dy,ds,...,d,)
is the diagonal matrix with eigenvalues dy = ¢;,d2 = ca2,ds,...,dn. Set
UV = U;. Now the matrix T satisfies the relations

I([D, U TU 1,2l = [([D, U TU1])2,1ls U € U

So we obtain I(dl — dz)(U;TU1)1,2| = |(d2 — dl)(UfTU1)2,1|. Hence the
matrix T satisfies the relations

((UFTUy) 2] = (U TUL)2,11, U, € UQ.

By Lemma 4.2, the numerical range of T is a line segment. The same
proof shows that the same conclusion holds for C.

(iv)=(i): Under the hypothesis we have C = al+8A,T = vI+6B, with
o,,7,6 € Cand A, B € u(n,C). So we have W(C,T) = ¢ + gYW (A, B),
with ¢ € C. Since for any U € U(n, C), we have

tr(AU*BU) = tr(U* BU A) = tr(AU*BU),
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we get: W(A, B) C R, and this inclusion implies that W(C, T') is a line seg-
ment. u

5. STUDY OF THE CASE WHERE W(C,T) IS NOWHERE DENSE

The solution of this problem is obtained by a classical reduction to the
case of 2 x 2 matrices.

LEMMA 5.1.  Suppose that C and T are the block triangular matrices

| Cu Ci2 | T T
C—[O 022] and T—[O Tos |

where Cy; and Thq are 7 x v matrices and Cqe and Tso are s X s matrices,
with 7 + s = n. The following inclusion is true: tr(CagTa2) + W(C11, T11)
cC W(C,T).

Proof. Consider the block diagonal matrix U € U(n, C) given by

U= [U(;l ?] with Uy EU(T,C),

where I, denotes the unit s x s matrix. We have

CuUyyT1Un *
0 CoToa |-

CU*TU = [
The conclusion follows from the equality
tI‘(CU*TU) = tI‘(ngTzz) + tr(CnUflTllUu).
|

As in our study of the case where W(C,T) is a line segment, a first step
in our study of the case where W(C,T) is nowhere dense is to show that
the matrices C and T are necessarily normal:

THEOREM 5.2. If the C-numerical range W(C,T) of T is nowhere
dense in R2, then the matrices C and T are normal.

Proof The matrices C and T are n X n matrices, and when n =
2 the result is an obvious consequences of the convexity of W(C,T)—a
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fact established by Nam-Kiu Tsing in [7, Corollary of Theorem 2]—and of
Theorem 4.4. The proof when n > 2 consists in a reduction to the case
n = 2. Given two unitary matrices U,V € U(n,C), we have W(C,T) =
W(U*CU,V*TV); so we may assume the matrices C and 7" both upper
triangular. Let us consider C and T as block triangular matrices, as in
Lemma. 5.1, and, with the same notation as in that lemma, assume r = 2.
Since W (C, T) is nowhere dense, Lemma 5.1 shows that the set W(Cy1,7T11)
is nowhere dense; this set being convex, again by the above result of Nam-
Kiu Tsing [7, Corollary of Theorem 2], it is clear that W(C1y,T11) is a line
segment. So the upper triangular matrices C1; and T}, are normal, hence
diagonal. By repeating the same argument, we obtain the result. [

Now we are in a position to prove our last result:

THEOREM 5.3. If the C-numerical range W(C,T) of T is nowhere
dense in R? then W(C,T) is a line segment.

Proof. We may assume that neither C nor 7T is a scalar matrix. The-
orem 5.2 shows that, under the hypothesis, C and T are normal matri-
ces. Consequently, by a result due to Nam-Kiu Tsing [6], W(C,T) is a
star-shaped subset of R%. Let 2y be a center of the star W(C,T); let
U, € U(n,C) be a unitary matrix such that U; & ¢~1(z), i.e., the point
z1 = q(Uy) = tr(CU{TUy) is distinct from zp. Suppose that the mapping
q:U(n,C) — R2? is of rank 2 at U;. There exists a one-parameter unitary
group (U(t))ter such that the range of the mapping ¢t — tr(CU(t)*TU(t))
from R to R? is a curve containing the point z; and such that the tangent
to this curve at 2; is a straight line perpendicular to the straight line join-
“ing 2o and z;. The fact that z is a center of the star-shaped set W(C,T),
which contains the curve just described, clearly contradicts the emptiness
of the interior of W(C,T). We have proved that the mapping ¢ has rank
at most 1 on the open set @ = U(n,C)\qg~!(2). Since neither C nor T
is a scalar matrix, this open set Q is nonempty. Now Theorem 4.4 shows
that W(C,T) is a line segment. [ |

Saying that the compact set K = W(C,T) is nowwhere dense, or in
other words, that its interior is empty, constitutes a global assumption on
W (C,T). In order to replace this global assumption by a local one, similarly
to what we did in Section 4 [cf. assertions (ii) and (iii) in Theorem 4.4],
it is natural to ask for the shape of the C-numerical range W(C,T) of
T whenever there exists an open subset € of R? satisfying Q N K # 0
and int(Q N K) = @), where int(X) denotes the interior of the subset X of
R?. The existence of such an open set ) means that the compact subset



C-NUMERICAL RANGE 29

K =W(C,T) of the plane is not regular, that is, K differs from the closure
of its interior. This remark leads to the following question:

PROBLEM. Whenever W(C,T) is not a line segment, is W(C, T') equal
to the closure of its interior in R*?

The problem is to know if, except when it is a line segment, W(C, T) is
regular. Note that a nondegenerate line segment is relatively regular, i.e.
regular for the topology of its supporting line.

In conclusion let us remark that Theorem 5.3 appears in a paper by
W. Y. Man [Linear and Multilinear Algebra 32:237-247 (1992), Theorem
1.4, p. 242]. 1 thank Professor C.-K. Li, who brought my attention to that
paper after my lecture at the meeting of the International Linear Algebra
Society (ILAS) in Pensacola, Florida, in March 1993.
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