On the C-Numerical Range of a Matrix

Jean Dazord*
Laboratoire de Probabilités et Statistique
I.A.S.B.S.E.
Université Claude Bernard-Lyon 1
43, boulevard du 11 Novembre 1918
69622 Villeurbanne Cedex, France

Submitted by Leiba Rodman

Abstract

Given two $n \times n$ complex matrices C and T, we prove that if the differentiable mapping $q: U(n, \mathbf{C}) \rightarrow \mathbf{R}^{2}$ defined by $q(U)=\operatorname{tr}\left(C U^{*} T U\right)$ is of rank at most 1 on a nonempty open set, then the C-numerical range $W(C, T)$ of T is a line segment. The same conclusion holds whenever the interior of $W(C, T)$ is empty.

1. INTRODUCTION

Let us denote by $M_{n}(\mathbf{C})$ the algebra of complex $n \times n$ matrices and by $U(n, \mathbf{C})$, the group of unitary $n \times n$ matrices. Given two matrices $C, T \in$ $M_{n}(\mathbf{C})$ the C-numerical range of T is the subset $W(C, T)$ of the complex plane defined by $W(C, T)=\left\{\operatorname{tr}\left(C U^{*} T U\right) ; U \in U(n, \mathbf{C})\right\}$, where $\operatorname{tr}(X)$ denotes the trace of the matrix X. When C is an orthogonal rank-one projection, the C-numerical range of T is the usual numerical range $W(T)$ of T.

Throughout the paper \mathbf{C} is identified with \mathbf{R}^{2} and the C-numerical range $W(C, T)$ of T is considered as a subset of \mathbf{R}^{2}.

In [3, Theorem 3], Marcus and Sandy gave a necessary and sufficient condition for the C-numerical range of T to be real. A necessary and sufficient condition for the C-numerical range of T to be either a point or a nondegenerate line segment was given by Chi-Kwong Li in [2, Theorems 2.5, 2.7].

[^0]In this paper we obtain another necessary and sufficient condition for the set $W(C, T)$ to be cither a point or a line segment and an extension of these results.

2. THE RANK OF THE MAPPING q

Our study requires notions of differential geometry included in most textbooks. The reader may also consult References [8] and [4].

Consider the mapping $q: U(n, \mathbf{C}) \rightarrow \mathbf{R}^{2}$ defined by $q(U)=\operatorname{tr}\left(C U^{*} T U\right)$. The C-numerical range of T is the set $W(C, T)=q(U(n, \mathbf{C}))$. Both $U(n, \mathbf{C})$ and \mathbf{R}^{2} are real C^{∞} manifolds, and q is a C^{∞} mapping. Let $u(n, \mathbf{C})$ be the \mathbf{R}-algebra of skew-Hermitian matrices. Let us denote by $T_{U} q: U u(n, \mathbf{C}) \rightarrow \mathbf{R}^{2}$ the mapping tangent to q at $U \in U(n, \mathbf{C})$.

In our first result, the brackets stand for the commutator, $[X, Y]=$ $X Y-Y X ; \operatorname{lin}(E)$ and $\operatorname{dim}(\operatorname{lin}(E))$ denote respectively the linear subspace of \mathbf{R}^{2} generated by a subset E of \mathbf{R}^{2} and the dimension of $\operatorname{lin}(E)$; and i denotes a square root of -1 .

Theorem 2.1. The mapping $T_{U} q$ tangent to q at $U \in U(n, \mathbf{C})$ is given by $T_{U} q(U A)=\operatorname{tr}\left(\left[C, U^{*} T U\right] A\right), A \in u(n, \mathbf{C})$. In particular, the rank of the mapping q at U is $r k_{U}(q)=\operatorname{dim}\left(\operatorname{lin}\left(W\left(\left[C, U^{*} T U\right]\right)\right)\right)$.

Proof. The proof rests on an easy computation. Consider $A \in u(n, \mathbf{C})$, and consider the one-parameter unitary group $U(t)=\exp (t A), t \in \mathbf{R}$, where $\exp (X)$ denotes the exponential of the matrix $X \in M_{n}(\mathbf{C})$. We have

$$
\begin{aligned}
T_{U(t)} q(U(t) A) & =\{\operatorname{tr}(C \exp (-t A) T \exp (t A))\}^{\prime} \\
& =\operatorname{tr}(C(-A) \exp (-t A) T \exp (t A)+C \exp (-t A) T A \exp (t A)) \\
& =\operatorname{tr}\left([A, C] U(t)^{*} T U(t)\right)=\operatorname{tr}\left(\left[C, U(t)^{*} T U(t)\right] A\right)
\end{aligned}
$$

The formula $T_{U} q(U A)=\operatorname{tr}\left(\left[C, U^{*} T U\right] A\right), A \in u(n, \mathbf{C})$, is now clear. On the other hand, for any matrix $X \in M_{n}(\mathbf{C})$, we have

$$
\operatorname{lin}(W(X))=\operatorname{tr}(X \cdot i u(n, \mathbf{C}))=i \operatorname{tr}(X u(n, \mathbf{C}))
$$

and hence the range of the mapping $T_{U} q$ tangent to q at U is given by $T_{U} q(U u(n, \mathbf{C}))=\operatorname{tr}\left(\left[C, U^{*} T U\right] u(n, \mathbf{C})\right)=i \operatorname{lin}\left(W\left(\left[C, U^{*} T U\right]\right)\right)$. In particular the rank of q at U is, as indicated in the theorem, $\operatorname{rk}_{U}(q)=$ $\operatorname{dim}\left(\operatorname{lin}\left(W\left(\left[C, U^{*} T U\right]\right)\right)\right)$.

3. STUDY OF THE CASE WHERE $W(C, T)$ IS A POINT

The following lemma is well known [5, Corollary 0.14, p. 8]:
Lemma 3.1. Consider the matrices $A \in M_{r}(\mathbf{C}), B \in M_{s}(\mathbf{C}), T \in$ $M_{n}(\mathbf{C})$, with $r+s=n$. If the matrix T commutes with the block diagonal matrix $\operatorname{diag}(A, B)$ and if the spectra of the matrices A and B are disjoint, then T is a block diagonal matrix diag (C, D) where $C \in M_{r}(\mathbf{C})$ commutes with A, and $D \in M_{s}(\mathbf{C})$ commutes with B.

The unitary orbit of a matrix X is the subset of $M_{n}(\mathbf{C})$ defined by $\left\{U^{*} X U ; U \in U(n, \mathbf{C})\right\}$. We say that the unitary orbits of X and Y commute if $\left[U^{*} X U, V^{*} Y V\right]=0$ for any $(U, V) \in U(n, \mathbf{C}) \times U(n, \mathbf{C})$. Since we have

$$
\begin{equation*}
\left[U^{*} T U, V^{*} T V\right]=U^{*}\left[C,\left(V U^{*}\right)^{*} T\left(V U^{*}\right)\right] U=V^{*}\left[\left(U V^{*}\right)^{*} C\left(U V^{*}\right), T\right] V \tag{3.1}
\end{equation*}
$$

it is clear that the unitary orbits of C and T commute if and only if $\left[C, V^{*} T V\right]=0$ for any $V \in U(n, \mathbf{C})$, if and only if $\left[U^{*} C U, T\right]=0$ for any $U \in U(n, \mathbf{C})$.

The equivalence between assertions (i) and (iii) in the following theorem is just Theorem 2.5 in [2].

Theorem 3.2. For two matrices $C, T \in M_{n}(\mathbf{C})$ the following assertions are equivalent:
(i) the C-numerical range $W(C, T)$ of T is a point;
(ii) the unitary orbits of C and T commute;
(iii) C or T is a scalar matrix.

Proof. (i) \Rightarrow (ii): Since the mapping q is constant, it is of rank zero, i.e., we have $\operatorname{tr}\left(\left[C, U^{*} T U\right] A\right)=0$ for any $A \in u(n, \mathbf{C})$ and any $U \in U(n, \mathbf{C})$. By linearity of the trace, we get $\operatorname{tr}\left(\left[C, U^{*} T U\right] X\right)=0$ for any $X \in M_{n}(\mathbf{C})$, i.e., $\left[C, U^{*} T U\right]=0$.
(ii) \Rightarrow (iii): Assume first that C is a nonscalar normal matrix, and let a be an eigenvalue of C; we may assume that C is the block diagonal matrix $C=\operatorname{diag}(A, B)$, where the spectrum of A is reduced to $\{a\}$, a not being an eigenvalue of B. We have $A \in M_{r}(\mathbf{C})$, with $1 \leq r \leq n-1$. Let P be the orthogonal projection on the eigenspace of C corresponding to the eigenvalue a. We have $\left[C, U^{*} T U\right]=0$ for any $U \in U(n, \mathbf{C})$; hence, by Lemma 3.1, $\left[P, U^{*} T U\right]=0$ for any $U \in U(n, \mathbf{C})$, i.e., $\left[U^{*} P U, T\right]=0$ for
any $U \in U(n, \mathbf{C})$. Since the projection P is of rank r, clearly the matrix T commutes with any orthogonal projection of rank r.

Consider now two rank-one orthogonal projections P_{1} and P_{2} such that $P_{1} P_{2}=0$, and let Q be a projection of rank r such that $F_{1} \leq Q, P_{2} \leq$ $I-Q$. From the equality $(I-Q) T Q=0$ we get $P_{2}(I-Q) T Q P_{1}=0$, i.e. $P_{2} T P_{1}=0$. The proof shows that for any rank-one orthogonal projection P_{1} we have $\left(I-P_{1}\right) T P_{1}=0$, i.e., T is a scalar matrix.

Suppose now that the matrix C is not normal and satisfies the equality $\left[C, U^{*} T U\right]=0$ for any unitary matrix U. In particular we have $\operatorname{tr}\left(\left[C, U^{*} T U\right] C^{*}\right)=0$, i.e., $\left.\operatorname{tr}\left(\left[C^{*}, C\right] U^{*} T U\right]\right)=0$ for any unitary matrix U. So we get $W\left(\left[C^{*}, C\right], T\right)=\{0\}$. Since the matrix C is not normal, the hermitian matrix $\left[C^{*}, C\right]$ is not scalar, and the proof of the implication (ii) \Rightarrow (iii), whenever the matrix C is assumed to be normal, shows that T is a scalar matrix.
(iii) \Rightarrow (i): This implication is easy, since whenever C or T is a scalar matrix, the C-numerical range of T is $W(C, T)=\{(1 / n) \operatorname{tr}(C) \operatorname{tr}(T)\}$.

4. STUDY OF THE CASE WHERE $W(C, T)$ IS A LINE SEGMENT

For a matrix $X \in M_{n}(\mathbf{C})$, we use the notation $X_{i, j}, 1 \leq i, j \leq n$, to denote then n^{2} coefficients of X. For completeness, we will indicate the proof of the following lemma, which appears in [1, Lemma 5]:

LEmma 4.1. For a matrix $X \in M_{n}(\mathbf{C})$ the following assertions are equivalent:
(i) the numerical range $W(T)$ of T is a line segment;
(ii) T satisfies the equalities $\left|\left(U^{*} T U\right)_{1,2}\right|=\left|\left(U^{*} T U\right)_{2,1}\right|$ for any unitary matrix $U \in U(n, \mathbf{C})$.

Proof. (i) \Rightarrow (ii): The numerical range $W(T)$ of T being a line segment, T is given by $T=\alpha I+\beta A$ with $\alpha, \beta \in \mathbf{C}, A \in u(n, \mathbf{C})$; this is an easy consequence of the fact that a matrix is Hermitian if its numerical range is real. So we get $\left(U^{*} T U\right)_{1,2}=\beta\left(U^{*} A U\right)_{1,2}=-\beta\left(U^{*} A U\right)_{2,1}=-\left(U^{*} T U\right)_{2,1}$.
(ii) \Rightarrow (i): The hypothesis implies the relations $\left|\left(U^{*} T U\right)_{i, j}\right|=\left|\left(U^{*} T U\right)_{j, i}\right|$ for any unitary matrix $U \in U(n, \mathbf{C})$, and for any pair $\{i, j\}$ with $1 \leq i \leq$ $j \leq n$. Let U be a unitary matrix such that $U^{*} T U$ is an upper triangular matrix. Clearly $U^{*} T U$ is a diagonal matrix, and consequently T is a normal matrix. Now a computation shows that any three eigenvalues of T necessarily belong to the same straight line.

We need a local version of Lemma 4.1:
Lemma 4.2. Let T be a complex $n \times n$ matrix. If there exists in $U(n, \mathbf{C})$ a nonempty open set Ω such that: $\left|\left(U^{*} T U\right)_{1,2}\right|=\left|\left(U^{*} T U\right)_{2,1}\right|$ for any unitary matrix $U \in \Omega$, then these equalities are valid for any $U \in U(n, \mathbf{C})$, and hence the numerical range of T is a line segment.

Proof. Let $U_{0} \in \Omega$. We may suppose that U_{0} is the unit matrix I, since the matrices T and $U_{0}^{*} T U_{0}$ both have the same numerical range. Consider $U \in U(n, \mathbf{C})$, and consider $A \in u(n, \mathbf{C})$ such that $U=\exp (A)$. Let $U(t)=\exp (t A)$ be the one-parameter unitary group with generator A. Let $\eta>0$ be a real such that $U(t) \in \Omega$ for any $t \in]-\eta, \eta[$. The real-analytic mapping

$$
t \rightarrow\left|\left(U(t)^{*} T U(t)\right)_{1,2}\right|^{2}-\left|\left(U(t)^{*} T U(t)\right)_{2,1}\right|^{2}
$$

being null in] $-\eta, \eta[$, is null in \mathbf{R}. The first assertion is now clear, and the second one follows from Lemma 4.1.

In the sequel we may assume that neither C nor T is a scalar matrix, since otherwise $W(C, T)$ is a point.

Theorem 4.3. If there exists a nonempty open subset Ω of $U(n, \mathbf{C})$ such that the rank of the mapping q on Ω is at most 1 , then the matrices C and T are normal.

Proof. For any $U \in \Omega$ and for any $A \in u(n, \mathbf{C})$ we have $T_{U} q(U A)=$ $\operatorname{tr}\left([A, C] U^{*} T U\right)$. In particular,

$$
\begin{aligned}
T_{U} q\left(U \cdot i\left(C+C^{*}\right)\right) & =i \operatorname{tr}\left(\left[C^{*}, C\right] U^{*} T U\right) \\
T_{U} q\left(U\left(C^{*}-C\right)\right) & =\operatorname{tr}\left(\left[C^{*}, C\right] U^{*} T U\right)
\end{aligned}
$$

By hypothesis, the complex numbers $z=\operatorname{tr}\left(\left[C^{*}, C\right] U^{*} T U\right)$ and $i z$ belong to a common linear subspace of dimension 0 or 1 of \mathbf{R}^{2}. Necessarily we have $\operatorname{tr}\left(\left[C^{*}, C\right] U^{*} T U\right)=0$ for any matrix $U \in \Omega$. Now we use the same argument of analyticity as in the proof of Lemma 4.2. Consider $U_{0} \in \Omega$. Replacing the matrix T by $U_{0}^{*} T U_{0}$, we may suppose that $I \in \Omega$. Now given any matrix $A \in u(n, \mathbf{C})$, the analytic mapping from \mathbf{R} to \mathbf{C} given by $t \rightarrow \operatorname{tr}\left(\left[C^{*}, C\right] \exp (-t A) T \exp (t A)\right)$ is null in some interval $]-\eta, \eta[$ with $\eta>0$, and hence this function is null in \mathbf{R}. So we get $\operatorname{tr}\left(\left[C^{*}, C\right] U^{*} T U\right)=0$ for any matrix $U \in U(n, \mathbf{C})$, i.e., $W\left(\left[C^{*}, C\right], T\right)=\{0\}$. Since T is not a scalar matrix, $\left[C^{*}, C\right]$ is a scalar matrix by Theorem 2.5 in [2] (cf. Theorem
3.2), i.e., $\left[C^{*}, C\right]=0$. So C is a normal matrix and by the same argument, T is also a normal matrix.

The equivalence between assertions (i) and (iv) in the following result is Theorem 2.7 in [2].

Theorem 4.4. For two matrices $C, T \in M_{n}(\mathbf{C})$ the following assertions are equivalent:
(i) the C-numerical range $W(C, T)$ of T is a line segment;
(ii) the mapping q is of rank at most 1 on a nonempty open set Ω in $U(n, \mathbf{C})$;
(iii) the numerical range $W\left(\left[C, U^{*} T U\right]\right)$ is a line segment for any U in a nonempty open set Ω in $U(n, \mathbf{C})$;
(iv) the numerical ranges $W(C)$ and $W(T)$ are line segments.

Proof. (i) \Rightarrow (ii): This implication is clearly true with $\Omega=U(n, \mathbf{C})$.
(ii) \Rightarrow (iii): This is clear by the equality obtained in Theorem 2.1: $\operatorname{rk}_{U}(q)$ $=\operatorname{dim}\left(\operatorname{lin}\left(W\left(\left[C, U^{*} T U\right]\right)\right)\right)$.
(iii) \Rightarrow (iv): Since condition (iii) implies condition (ii), we know by Theorem 4.3 that both matrices C and T are normal; on the other hand, we know by Lemma 4.1 that, for any unitary matrix $U \in \Omega$, the matrix $\left[C, U^{*} T U\right]$ satisfies the relations $\left|\left(V^{*}\left[C, U^{*} T U\right] V\right)_{1,2}\right|=\left|\left(V^{*}\left[C, U^{*} T U\right] V\right)_{2,1}\right|$ for any unitary matrix $V \in U(n, \mathbf{C})$. Let c_{1} and c_{2} be two distinct eigenvalues of C. Choose V such that $V^{*} C V=D$, where $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is the diagonal matrix with eigenvalues $d_{1}=c_{1}, d_{2}=c_{2}, d_{3}, \ldots, d_{n}$. Set $U V=U_{1}$. Now the matrix T satisfies the relations

$$
\left|\left(\left[D, U_{1}^{*} T U_{1}\right]\right)_{1,2}\right|=\left|\left(\left[D, U_{1}^{*} T U_{1}\right]\right)_{2,1}\right|, \quad U_{1} \in U \Omega
$$

So we obtain $\left|\left(d_{1}-d_{2}\right)\left(U_{1}^{*} T U_{1}\right)_{1,2}\right|=\left|\left(d_{2}-d_{1}\right)\left(U_{1}^{*} T U_{1}\right)_{2,1}\right|$. Hence the matrix T satisfies the relations

$$
\left|\left(U_{1}^{*} T U_{1}\right)_{1,2}\right|=\left|\left(U_{1}^{*} T U_{1}\right)_{2,1}\right|, \quad U_{1} \in U \Omega
$$

By Lemma 4.2, the numerical range of T is a line segment. The same proof shows that the same conclusion holds for C.
(iv) \Rightarrow (i): Under the hypothesis we have $C=\alpha I+\beta A, T=\gamma I+\delta B$, with $\alpha, \beta, \gamma, \delta \in \mathbf{C}$ and $A, B \in u(n, \mathbf{C})$. So we have $W(C, T)=\zeta+\beta \gamma W(A, B)$, with $\zeta \in \mathbf{C}$. Since for any $U \in U(n, \mathbf{C})$, we have

$$
\overline{\operatorname{tr}\left(A U^{*} B U\right)}=\operatorname{tr}\left(U^{*} B U A\right)=\operatorname{tr}\left(A U^{*} B U\right)
$$

we get: $W(A, B) \subset \mathbf{R}$, and this inclusion implies that $W(C, T)$ is a line segment.

5. STUDY OF THE CASE WHERE $W(C, T)$ IS NOWHERE DENSE

The solution of this problem is obtained by a classical reduction to the case of 2×2 matrices.

Lemma 5.1. Suppose that C and T are the block triangular matrices

$$
C=\left[\begin{array}{cc}
C_{11} & C_{12} \\
0 & C_{22}
\end{array}\right] \quad \text { and } \quad T=\left[\begin{array}{cc}
T_{11} & T_{12} \\
0 & T_{22}
\end{array}\right]
$$

where C_{11} and T_{11} are $r \times r$ matrices and C_{22} and T_{22} are $s \times s$ matrices, with $r+s=n$. The following inclusion is true: $\operatorname{tr}\left(C_{22} T_{22}\right)+W\left(C_{11}, T_{11}\right)$ $\subset W(C, T)$.

Proof. Consider the block diagonal matrix $U \in U(n, \mathbf{C})$ given by

$$
U=\left[\begin{array}{cc}
U_{11} & 0 \\
0 & I_{s}
\end{array}\right] \quad \text { with } \quad U_{11} \in U(r, \mathbf{C})
$$

where I_{s} denotes the unit $s \times s$ matrix. We have

$$
C U^{*} T U=\left[\begin{array}{cc}
C_{11} U_{11}^{*} T_{11} U_{11} & * \\
0 & C_{22} T_{22}
\end{array}\right] .
$$

The conclusion follows from the equality

$$
\operatorname{tr}\left(C U^{*} T U\right)=\operatorname{tr}\left(C_{22} T_{22}\right)+\operatorname{tr}\left(C_{11} U_{11}^{*} T_{11} U_{11}\right)
$$

As in our study of the case where $W(C, T)$ is a line segment, a first step in our study of the case where $W(C, T)$ is nowhere dense is to show that the matrices C and T are necessarily normal:

Theorem 5.2. If the C-numerical range $W(C, T)$ of T is nowhere dense in \mathbf{R}^{2}, then the matrices C and T are normal.

Proof. The matrices C and T are $n \times n$ matrices, and when $n=$ 2 the result is an obvious consequences of the convexity of $W(C, T)-\mathrm{a}$
fact established by Nam-Kiu Tsing in [7, Corollary of Theorem 2]--and of Theorem 4.4. The proof when $n \geq 2$ consists in a rcduction to the case $n=2$. Given two unitary matrices $U, V \in U(n, \mathbf{C})$, we have $W(C, T)=$ $W\left(U^{*} C U, V^{*} T V\right)$; so we may assume the matrices C and T both upper triangular. Let us consider C and T as block triangular matrices, as in Lemma 5.1, and, with the same notation as in that lemma, assume $r=2$. Since $W(C, T)$ is nowhere dense, Lemma 5.1 shows that the set $W\left(C_{11}, T_{11}\right)$ is nowhere dense; this set being convex, again by the above result of NamKiu Tsing [7, Corollary of Theorem 2], it is clear that $W\left(C_{11}, T_{11}\right)$ is a line segment. So the upper triangular matrices C_{11} and T_{11} are normal, hence diagonal. By repeating the same argument, we obtain the result.

Now we are in a position to prove our last result:
ThEOREM 5.3. If the C-numerical range $W(C, T)$ of T is nowhere dense in \mathbf{R}^{2}, then $W(C, T)$ is a line segment.

Proof. We may assume that neither C nor T is a scalar matrix. Theorem 5.2 shows that, under the hypothesis, C and T are normal matrices. Consequently, by a result due to Nam-Kiu Tsing [6], $W(C, T)$ is a star-shaped subset of R^{2}. Let z_{0} be a center of the star $W(C, T)$; let $U_{1} \in U(n, \mathbf{C})$ be a unitary matrix such that $U_{1} \notin q^{-1}\left(z_{0}\right)$, i.e., the point $z_{1}=q\left(U_{1}\right)=\operatorname{tr}\left(C U_{1}^{*} T U_{1}\right)$ is distinct from z_{0}. Suppose that the mapping $q: U(n, \mathbf{C}) \rightarrow \mathbf{R}^{2}$ is of rank 2 at U_{1}. There exists a one-parameter unitary group $(U(t))_{t \in \mathbf{R}}$ such that the range of the mapping $t \rightarrow \operatorname{tr}\left(C U(t)^{*} T U(t)\right)$ from \mathbf{R} to \mathbf{R}^{2} is a curve containing the point z_{1} and such that the tangent to this curve at z_{1} is a straight line perpendicular to the straight line joining z_{0} and z_{1}. The fact that z_{0} is a center of the star-shaped set $W(C, T)$, which contains the curve just described, clearly contradicts the emptiness of the interior of $W(C, T)$. We have proved that the mapping q has rank at most 1 on the open set $\Omega=U(n, \mathbf{C}) \backslash q^{-1}\left(z_{0}\right)$. Since neither C nor T is a scalar matrix, this open set Ω is nonempty. Now Theorem 4.4 shows that $W(C, T)$ is a line segment.

Saying that the compact set $K=W(C, T)$ is nowwhere dense, or in other words, that its interior is empty, constitutes a global assumption on $W(C, T)$. In order to replace this global assumption by a local one, similarly to what we did in Section 4 [cf. assertions (ii) and (iii) in Theorem 4.4], it is natural to ask for the shape of the C-numerical range $W(C, T)$ of T whenever there exists an open subset Ω of \mathbf{R}^{2} satisfying $\Omega \cap K \neq \emptyset$ and $\operatorname{int}(\Omega \cap K)=\emptyset$, where $\operatorname{int}(X)$ denotes the interior of the subset X of \mathbf{R}^{2}. The existence of such an open set Ω means that the compact subset
$K=W(C, T)$ of the plane is not regular, that is, K differs from the closure of its interior. 'Ihis remark leads to the following question:

Problem. Whenever $W(C, T)$ is not a line segment, is $W(C, T)$ equal to the closure of its interior in \mathbf{R}^{2} ?

The problem is to know if, except when it is a line segment, $W(C, T)$ is regular. Note that a nondegenerate line segment is relatively regular, i.e. regular for the topology of its supporting line.

In conclusion let us remark that Theorem 5.3 appears in a paper by W. Y. Man [Linear and Multilinear Algebra 32:237-247 (1992), Theorem 1.4, p. 242]. I thank Professor C.-K. Li, who brought my attention to that paper after my lecture at the meeting of the International Linear Algebra Society (ILAS) in Pensacola, Florida, in March 1993.

REFERENCES

1 G. Cassier and J. Dazord, Invariance per conjugaison unitaire pour des seminormes de type ℓ^{p} sur les matrices, J. Operator Theory, to appear.
2 Chi-Kwong iLi, The C-convex matrices, Linear and Multilinear Algebra 21:303-312 (1987).
3 M. Marcus and M. Sandy, Conditions for the generalized numerical range to be real, Linear Algebra Appl. 71:219-239 (1985).
4 R. Narasimhan, Analysis on Real and Complex, Manifolds, Masson, Paris, 1973.

5 H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer-Verlag, New York, 1973.
6 Nam-Kiu Tsing, On the shape of the generalized numerical ranges, Linear and Multilinear Algebra 10:173-182 (1981).
7 - The constrained bilinear form and the C-numerical range, Linear Algebra Appl. 56:195-206 (1984).
8 V. S. Varadarajan, Lie Groups, Lie Algebras and Their Representations, Prentice-Hall, Englewood Cliffs, N.J., 1974.

[^0]: *E-mail: DAZORD@algebre.univ-lyon1.fr.

