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The purpose of this paper is to construct fairly long geometric Goppa codes over
F
q

with rather good parameters by fibre products of some Kummer coverings. This
paper also extends the results of Stepanov [1] and Stepanov and O® zbudak [2].
( 1999 Academic Press
1. INTRODUCTION

Let F
p
LF

q
be a Galois extension of prime field F

p
. Weil [18] proved that if

F(x, y)3F
q
[x, y] is an absolutely irreducible polynomial and if N

q
denotes the

number of F
q
-rational points of the curve defined by the equation F (x, y)"0,

then

DN
q
!(q#1) D42gq1@2,

where g is the genus of the curve. Now let F (x, y)"ys!f (x), where f is
a polynomial in F

q
[x]. As a corollary we have that if m is the number of

distinct roots of f in its splitting field over F
q
, s is a non-trivial multiplicative

character of exponent s, and f is not an sth power of a polynomial, then

K +
x3F

q

s ( f (x)) K4(m!1)q1@2.

By Goppa construction (see, for example, [8, 9]) we get linear [n, k, d]
q

codes associated to a smooth projective curve X of genus g"g (X) defined
over a finite field F . Let P"MP ,2, P N be a set of F -rational points of
q 1 n q
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X and set

D
0
"P

1
#2#P

n
.

Let D be a F
q
-rational divisor on X whose support is disjoint from D

0
.

Consider the following vector F
q
-space of rational functions on X,

¸(D)"Mh3F
q
(X)*D (h)#D50NXM0N,

and denote its dimension over F
q

by l (D). The linear [n, k, d] code
C"C(D

0
, D) associated to the pair (D

0
, D) is the image of the linear evalu-

ation map

Ev :¸ (D)PFn
q
, h> (h (x

1
),2, h (x

n
)).

Such a q-ary linear code is called a geometric Goppa code. If degD(n then
Ev is an embedding, and hence k"dimC"l (D) and by the Riemann—Roch
theorem,

k5degD!g#1;

in particular, if 2g!2(degD(n, then

k"degD!g#1.

Moreover we have

d5n!degD.

Stepanov [3] proved the existence of a square-free polynomial f (x)3F
p
[x]

of degree 52((N#1)log 2/log p#1) for which

N
+
i/1
A
f (x)

p B"N,

where M1,2, NNLF
p

and ( )
p
) is the Legendre symbol and (p, 2)"1. Later,

O® zbudak [4] extended this to arbitrary non-trivial characters of arbitrary
finite fields. Let s be a multiplicative character of exponent s. Considering
only the irreducible monic polynomials and applying Dirichlet’s pigeonhole
principle as in [3] or [4], we get the existence of square-free polynomial
f3F

q
[x] of degree on the order of sq log s/logq where s ( f (a))"1 for each
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a3F
q
. Application of Goppa’s construction to the curve

ys"f (x)

providing a Kummer covering of the affine line A1F
q
gives the following result

which is valid for any finite field.

THEOREM 1. ¸et F
q
be a finite field of characteristic p, s be an integer s52,

s D (q!1), and c be the infimum of the set

C"Gx : a non-negative real number D there exists an integer n such that

qx(q!2)

(q!1) (s!1) (1#1/sq (s!1))
5n5

q log s

log q
#xH.

¸et r be an integer satisfying

s(s!1)
q log s

log q
#c !2s(r(sq.

¹hen there exists a linear code [n, k, d]
q
with parameters

n"sq,

k"r!
s(s!1)

2

q log s

log q
#c #s,

d5sq!r.

¹herefore the relative parameters R"k/n and d"d/n satisfy

R51!d!

s (s!1)

2

q log s

log q
#c !s

sq
.

Remark 1. This result is significant especially when q is prime. The
number of F

q
-rational affine points in A2F

q
of the curve ys"f (x) is N

q
"sq; the

genus of the curve is

g"
s (s!1)

2

q log s

log q
#c !s#1 and

N
q

g
&

2 log q

(s!1)log s
.
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If F
q
is not a prime field, using Galois structure of F

q
over a proper subfield

F
q{
-
@ F

q
, we get much larger N

q
/g ratios (see Theorem 2). Note that the length

of the codes are sq'q.
In [5] Stepanov introduced some special sums Sl(s)"+a3F

ql
s( f (a)) with

a non-trivial quadratic character s whose absolute values are very close to
Weil’s upper bound by explicitly representing the polynomial f (x). Later,
Gluhov [6, 7] generalized Stepanov’s approach to the case of arbitrary
multiplicative characters.

Applying similar polynomials for the corresponding fields to the fibre
products of Kummer coverings

yk
i
"f

i
(x), 14i4s, (1)

where k D (q!1), we obtain the following result. Namely the polynomials we
apply are f

i
(x)"f

1
(x#c), c3A, a corresponding subset of F

ql
, where f

1
is

given in Table I for the corresponding cases below.

THEOREM 2. ¸et l'2 be a positive integer, F
ql

a finite field of character-
istic p, k an integer k52, k D (q!1). If s is an integer satisfying the correspond-
ing conditions given in ¹able II, then there exists A

j
LF

ql
for the respective

cases j"1,2, 6 such that the affine curves given by (1) and ¹able I have
N

ql
"ksql many F

ql
-rational points and genera g

j
as given in ¹able II, respec-

tively.
¹herefore if r is an integer satisfying the conditions given in ¹able III, we get

linear [n, k, d]ql codes with the corresponding parameters given in ¹able III.
Moreover the relative parameters R"k

n
and d"d

n
satisfy

R51!d!J (n, s, k, q),

where J (n, s, k, q) is given in ¹able I».

Remark 2. The parameters of the codes of Theorem 2 are rather good.
First of all the lengths are in the order of ksql, which are far larger than
ql"the number of elements of the field, and the parameters are near to
Singleton bound at the same time. It is possible to calculate the minimum
distance in some cases directly. For example we have such codes:

(i) Over F
27
MF

3
if 6(r(54, then it gives [54, r!3, d]

27
code,

where d554!r. If r is even, then d"54!r (see Stichtenoth [12, Remark
2.2.5]).

(ii) Over F
64
MF

4
if 18(r(192, then it gives [192, r!9, d]

64
code,

where d5192!r. If r,0 mod 3, then d"192!r.
(iii) Over F

1331
MF

11
if 11600(r(133100, then it gives [133100, k,

d]
1331

code, where k5r!11600 and d5133100!r.



TABLE I

Case 1: p'2, v: odd f
1
(x)"(1#xq(l~1)@2~1)k1 (1#xq(l`1)@2~1)k2

Case 2: p'2, v,2 mod 4 f
1
(x)"(1#xql@2~1~1)k1 (1#xql@2`1~1)k2

Case 3: p'2, v,0 mod 4 f
1
(x)"A

1#xql@2~1~1

1#xq!1 B
k
1

A
1#xql@2`1~1

1#xq!1 B
k
2

Case 4: p"2, v : odd f
1
(x)"A

1#xq(l~1)@2~1

1#xq!1 B
k
1

A
1#xq(l`1)@2~1

1#xq!1 B
k
2

Case 5: p"2, v,2 mod 4 f
1
(x)"A

1#xql@2~1~1

1#xq2~1 B
k
1

A
1#xql@2`1~1

1#xq2~1 B
k
2

Case 6: p"2, v,0 mod 4 f
1
(x)"A

1#xl@2~1~1

1#xq!1 B
k
1

A
1#xql@2`1~1

1#xq~1 B
k
2

Note. The field F
qv
, l'2, p: the characteristic of the field, k: a positive integer such that

kD (q!1), k"k
1
#k

2
, where k

1
, k

2
are positive integer with gcd (k, k

1
)"1.

TABLE II

Case Conditions on s Genus, g
j
, j"1,2, 6

j"1,2, 6

Case 1

p'2 14s4
2k(ql#1)

(k!1) (q(l~1)@2(q#1)!2)
ks~1

2
((k!1)s(q(l~1)@2(q#1)!2)!2k)#1

l: odd

Case 2

p'2 14s4
2k(ql#1)

(k!1) (ql@2~1(q2#1)!2)
ks~1

2
((k!1)s(ql@2~1(q2#1)!2)!2k)#1

l,2 mod 4

Case 3

p'2 14s4
2k(ql#1)

(k!1) (ql@2~1(q2#1)!2q)
ks~1

2
((k!1)s(ql@2~1(q2#1)!2q)!2k)#1

l,2 mod 4

Case 4

p"2 14s4
2k(ql#1)

(k!1) (q(l~1)@2(q#1)!2q)
ks~1

2
((k!1)s(q(l~1)@2(q#1)!2q)!2k)#1

l: odd

Case 5

p"2 14s4
2k(ql#1)

(k!1) (ql@2~1(q2#1)!2q2)
ks~1

2
((k!1)s(ql@2~1(q2#1)!2q2)!2k)#1

l,2 mod 4

Case 6

p"2 14s4
2k(ql#1)

(k!1) (ql@2~1(q2#1)!2q)
ks~1

2
((k!1)s(ql@2~1(q2#1)!2q)!2k)#1

l,0 mod 4
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TABLE III

Case Condition on r [n, k, d]ql

Case 1 r(n4ksql

p'2
ks~1

2
((k!1)s(q(l~1)@2 (q#1)!2)!2k) k5r!

ks~1

2
((k!1)s(q(l~1)@2(q#1)!2)!2k)

v: odd (r(k4ql d5n!r

Case 2 r(n4ksql

p'2
ks~1

2
((k!1)s(ql@2~1 (q2#1)!2)!2k) k5r!

ks~1

2
((k!1)s(ql@2~1(q2#1)!2)!2k)

v,2 mod 4 (r(k4ql d5n!r

Case 3 r(n4ksql

p'2
ks~1

2
((k!1)s(ql@2~1 (q2#1)!2q)!2k) k5r!

ks~1

2
((k!1)s(ql@2~1(q2#1)!2q)!2k)

v,0 mod 4 (r(k4ql d5n!r

Case 4 r(n4ksql

p"2
ks~1

2
((k!1)s(q(l~1)@2 (q#1)!2q)!2k) k5r!

ks~1

2
((k!1)s(q(l~1)@2(q#1)!2q)!2k)

v: odd (r(k4ql d5n!r

Case 5 r(n4ksql

p"2
ks~1

2
((k!1)s(ql@2~1 (q2#1)!2q2)!2k) k5r!

ks~1

2
((k!1)s(ql@2~1(q2#1)!2q2)!2k)

v,2 mod 4 (r(k4ql d5n!r

Case 6 r(n4ksql

p"2
ks~1

2
((k!1)s(ql@2~1 (q2#1)!2q)!2k) k5r!

ks~1

2
((k!1)s(ql@2~1(q2#1)!2q)!2k)

l,0 mod 4 (r(ksql d5n!r
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If ql"pl{, where p is the characteristic of the field and l@ is even, there exist
better codes in some respects, for instance, Hermitian codes (see, for example,
[12, Ex. 6.4.2]), which are maximal codes. Moreover the codes of Stepanov
[1] are also better in this case if pO2 and longer than Hermitian codes.
However, the codes of Theorem 2 are even longer than the codes of [1] if
k'2 and also include the case p"2.

If ql"pl{, where l@ is odd, there are no maximal codes as Hermitian codes
of the case l@ even. Van der Geer and van der Vlugt found independently good
codes by fibre products of Artin—Schreier curves [14]. The results of Theorem
2 are compatible with their results. Moreover we have one more parameter k,
and our codes are much longer than their codes while near to Singleton
bound as close as their codes.

Theorem 2 also extends the results of [2] since k"2 was fixed in that case.
Moreover in this way we get similar results also for characteristic p"2 fields.



TABLE IV

Case J(n, s, k, q)

Case 1

p'2
ks~1((k!1)s (q(l~1)@2(q#1)!2)!2k)

2n
l: odd

Case 2

p'2
ks~1((k!1)s (ql@2~1(q2#1)!2)!2k)

2n
l,2 mod 4

Case 3

p'2
ks~1((k!1)s (ql@2~1(q2#1)!2q)!2k)

2n
l,0 mod 4

Case 4

p"2
ks~1((k!1)s (q(l~1)@2(q#1)!2q)!2k)

2n
l: odd

Case 5

p"2
ks~1((k!1)s (ql@2~1(q2#1)!2q2)!2k)

2n
l,2 mod 4

Case 6

p"2
ks~1((k!1)s (ql@2~1(q2#1)!2q)!2k)

2n
l,0 mod 4
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It is known that by fibre products of Kummer coverings of the affine line,
one cannot get asymptotically good curves (see [13]). This explains why s and
therefore the length of the codes in Theorem 2 and the codes given by van der
Geer and van der Vlugt are bounded. Recently Garcia and Stichtenoth gave
a sequence of curves of arbitrarily large genera with good parameters over
square finite fields using Artin—Schreier coverings [15].

2. NOTATION AND THE CALCULATION OF THE GENUS

Let FM
ql

be an algebraic closure of the field F
ql

and As`1 be (s#1)-
dimensional affine space over FM

ql
.
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Let h : F
ql
PF

ql
be the Frobenius automorphism of F

ql
over F

q
: h (x)"xq.

The multiplicative homomorphism

norml(x)"x ) h(x) ) h2(x)2hl~1(x)"x )xq2xql~1

of the field F
ql

onto F
q
is the relative norm of x3F

ql
with respect to F

q
. Let sk

be a non-trivial multiplicative character of F
q

of exponent k, so k'1. We
denote by sl,k the multiplicative character of F

ql
induced by sk :

sl,k (x)"sk (norml(x)).

For f (x)3F
ql
[x] we denote by Sl,k ( f ) the sum

Sl,k ( f )" +
x3F

q
l

sl,k ( f (x)).

LEMMA 1. ¸et f
1,i

, f
2,i

,2, f
s,i
3F

q
[x] be square-free monic polynomials of

the same degree m
i
for i"1, 2. ¸et k

1
, k

2
be positive integers, k52 a positive

integer with k Dq!1, gcd(k, k
1
)"1, and m

1
k
1
#m

2
k
2
5k#1. Assume f

i,j
,

i"1, 2,2, s, j"1, 2 are pairwise coprime polynomials in F
q
[x]. ¸et ½ be the

fibre product in As`1 given over F
q
[x] via

zk
1
"( f

1,1
(x))k1 ( f

1,2
(x))k2,

½ : zk
2
"( f

2,1
(x))k1 ( f

2,2
(x))k2,

F

zk
s
"( f

s,1
(x))k1 ( f

s,2
(x))k2.

Moreover let m"m
1
k
1
#m

2
k
2

and assume (m, k)"1 or (m, k)"k. ¹hen the
genus g"g (½) of the curve ½ is

g"G
ks~1

2
((k!1)s(m

1
#m

2
)!(k#1))#1

ks~1

2
((k!1)s(m

1
#m

2
)!(2k))#1

if (m, k)"1

if (m, k)"k.

Proof. The plan of the proof is as follows. First we consider the curve with
k
1
"k

2
"1:

½ :
zk
1
"f

1,1
(x) f

1,2
(x),

F
zk
s
"f

s,1
(x) f

s,2
(x).
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Note the affine curve ½ is non-singular and we compute the genus using the
same methods of Lemma 1 [2]. Then we consider for general k

1
, k

2
. In this

case the affine curve is singular in general. We add contributions of these
singularities to the genus using Riemann—Hurwitz formula.

Now let k
1
"k

2
"1. Let I be the ideal of the curve ½ over FM

q
and ½M be the

projective closure of ½ in Ps`1. The homogeneous ideal of ½M in
FM
q
[x

0
,x, z

1
,2, z

s
] has the form I

h
"M f (x/x

0
, z

1
/x

0
,2, z

s
/x

0
)x$%'f

0
D f3IN.

Thus ½M "½XM[0 : 0 :m
1
:2 :m

s
]N, where mk"1 for i"1,2, s and the curve

½M is singular at ks~1 points P
i
3M[0 :0 :m

1
:2 :m

s
]N in general.

Let X be normalization of ½M . There exists a finite regular morphism
/
1
:XP½M . Let /

2
:½M PP1 be the projection [x

0
,x :z

1
:2 :z

s
]P[x

0
:x].

Then / :XPP1 is a finite regular surjective morphism of degree ks, where
/"/

2 °/
1
. Since ½M has already ks~1 points, P

i
, 14i4ks~1 at the hyper-

surface x
0
"0, /~1([0 : 1]) consists of ks or ks~1l, 1(l, l D k points call

MQ
i
NLX, by symmetry.

Let )[½] be the FM
q
[x, z

1
,2, z

s
] module of regular differential forms

generated by dx and dz
i
, 14i4s. Since zk

i
"f

i
(x) for i"1, 2,2, s we have

)[½]"T
dx

zn
iÇi
1
2zn

ipip
K14i

1
(i

2
2(ip4s, 04n

ij
4k!1, j"1,2,pUFM

q
[x]

since the affine curve ½ is non-singular. Therefore )[X] is an FM
q
[x] sub-

module of )[½] since / is regular. Hence any differential form u3)[X] has
the form

u"F(i
1
, n

iÇ
),2, (ip, nip

) (x)
dx

zn
iÇi
1
2zn

ipip

,

where F(i
1
, n

iÇ
),2, (ip, nip)

(x)3FM
q
[x]. Note that any differential form u3)[X] is

non-singular at any point of X except Q3/~1M[0 : 1]N.
Let x be the coordinate on P1; then u"x~1 is a local parameter at

the infinity point [0 :1]3P1. Since x is a rational function on P1, it defines

the divisor (x)3Div(P1). Denoting /~1(x)3Fql(X) a rational
function on X by x and its divisor by (x) again, we get the pullback divisor
(x)3Div(X).

If DMQ
i
ND"D/~1([0:1]) D"ks, then vQ

i
(u)"1. If DMQ

i
ND"ks~1l, then

vQ
i
(u)"d and d D k since ks"dks~1l using the formula deg / ) v[0 : 1] (u)"

+Q
i
vQ

i
(u). Now there are two cases to consider in our lemma: (k, m)"1 and

k Dm. Let Q3MQ
i
N.

Case (k, m)"1. If v
Q
(u)"1, then v

Q
(x)"!1, v

Q
(zk

i
)"!m, and

v
Q
(z

i
)"!m/k NZ, a contradiction. Thus v

Q
(u)"d and d Dk. Hence
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v
Q
(z

i
)"!md/k and kDd, so k"d. In short we have

(1) v
Q
(x)"!k,

(2) v
Q
(z

i
)"!m for i"1,2, s,

(3) v
Q
(dx)"!(k#1).

In this case

u"F(i
1
, n

iÇ
),2, (ip, nip

) (x)
dx

zn
iÇi
1
2zn

ipip

3)[X]

if and only if v
Q
(u)50. This means

deg F(i
1
, n

iÇ
),2, (ip, nip

) (x)4
m(n

1
#2#n

ip
)!(k#1)

k
.

If m(n
i1
#2#n

ip
)!1,k mod k, where k"0, 1,2, k!1, then

C
m(ni

1
#2#n

ip
)!(k#1)

k D"
m(ni

1
#2#n

ip
)!(k#1)!k

k
,

where [ ) ] is the greatest integer function. Therefore we have

dim
F
ql GF (i

1
, n

iÇ
),2, (ip, nip)

(x)
dx

zn
iÇi
1
2zn

ipip
Km(ni

1
#2#n

ip
),k#1 mod kH

"

m(ni
1
#2#n

ip
)!(k#1)

k
.

To calculate genus we use a generating function for partitions. Let

u(x)"(1#x#2#xk~1)s"1#c
1
x#c

2
x2#2#c

(k~1)s
x(k~1)s

"1#x (c
1
#ck`1

xk#2)#x2 (c
2
#ck`2

xk#2)

#2#xk(ck#c
2kxk#2).

Let

¸
1
"c

1
#ck`1

#2,

¸
2
"c

2
#ck`2

#2,

F

¸k"ck#c
2k#2.
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Let h"e2ni@k. Then we have

u(1)!1 "¸
1
#¸

2
#2#¸k ,

u(h)!1 "¸
1
h#¸

2
h2#2#¸khk,

F

u(hk~1)!1"¸
1
h(k~1)#¸

2
h2(k~1)#2#¸khk(k~1).

In matrix form

1 1 2 1

h h2 2 hk
h2 h4 2 h2k
F F F

h(k~1) h2(k~1) 2 hk(k~1)

¸
1

¸
2

¸
3
F

¸k

"

ks!1

!1

!1

F

!1

.

hggggggiggggggj
A

Note that A"[A
ij
]k]k"[h(i~1)j]. Then ¸

i
"*

i
/*, where *"det A,

*
i
"detA

i
, and A

i
is the matrix whose ith column is interchanged with

[ks!1, !1,2,!1]T. We have ¸
1
"¸

2
"2"¸k~1

"ks~1 and
¸k"ks~1!1. Similarly let

v(x)"
d

dx
u (x)

"s(1#x#2#xk~1)s~1(1#2x#3x2#2#(k!1)xk~2),

"c
1
#2c

2
x#3c

3
x2#2,

"(c
1
#(k#1)ck`1

xk#2)#x (2c
2
#(k#2)ck`2

xk#2)#2,

and

3̧
1
"c

1
#(k#1)ck`1

#2,

3̧
2
"2c

2
#(k#2)ck`2

#2,

F

3̧ k"kck#(2k)c
2k#2.
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Then we have

3̧
1
# 3̧

2
#2# 3̧ k"v(1)"sks~1

k(k!1)

2
.

Note that

¸
k
"

s
+

p/1

+
14i

1
(i

2
(2(ip4s

+
04n

iÇ
4k!1

04n
iÈ
4k!1
F

04n
ip
4k!1

d
k
(n

i1
,2, nip

)

and

3̧
k
"

s
+
p/1

+
14i

1
(i

2
(2(ip4s

+
04n

iÇ
4k!1

04n
iÈ
4k!1
F

04n
ip
4k!1

(ni
1
#2#nip

)d
k
(ni

1
,2, nip

),

where

d
k
(ni

1
,2, nip

)"G
1

0

if ni
1
#2#nip

,k mod k,

else.

Therefore the genus of ½ g"g (½ ) is

g"
m

k
k~1
+
k/1

3̧
k
!

1

k
k~1
+
k/1

k¸
k
#

m

k
3̧ k!

k
k
¸k

"

m

k
sks

k!1

2
!

1

k
k~1
+
k/1

kks~1!
k
k

(ks~1!1)

"

msks~1(k!1)

2
!

1

k
k
+
k/1

kks~1#1

"

msks~1(k!1)

2
!

1

k
ks~1

k (k#1)

2
#1

"

ks~1

2
(ms(k!1)!(k#1))#1.
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Case k Dm. In this case we have

(1) v
Q
(x)"

!k
l

,

(2) v
Q
(z

i
)"

!m

l
for i"1, 2,2, s,

(3) v
Q
(dx)"!A

k
l
#1B,

where l"k/d. Therefore

F(i
1
, n

iÇ
),2, (ip, nip)

(x)
dx

zn
iÇi
1
2zn

ipip

3)[X]

if and only if

degF(i
1
, n

iÇ
),2, (ip, nip

) (x)4
m

k
(ni

1
#2#nip

)!2.

Thus

dim
F
ql GF(i

1
, n

iÇ
),2, (ip, nip

) (x)
dx

zn
iÇi
1
2zn

ipip

3)[x]H"
m

k
(ni

1
#2#nip

)!1

Therefore the genus g"g (½ ) is

g"
m

k
k
+
k/1

3̧
k
!

k
+
k/1

¸
k

"

m

k As
ks (k!1)

2 B!(kks~1!1)

"

ks~1

2
(ms(k!1)!2k)#1.

Now we can compute the genus for general (k
1
, k

2
) using the Riemann—

Hurwitz formula. Recall that if / :XPP1 is a finite regular morphism of
projective irreducible curves, then

g (X)"1#
1

2
+

P3XC/~1([0 :1])

(e
P
!1)#

1

2
+

Q3/~1([0 :1])

(e
Q
!1)!deg/,
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where e
P

and e
Q

are ramification indices of / at P and Q, respectively. Let

½
1
:

zk
1
"f

1,1
(x)k1f

1,2
(x)k2

F

zk
s
"f

s,1
(x)k1f

s,2
(x)k2

be the general form of the curve whose genus we want to calculate. Let

½
2
:

zk
1
"f

1
F

zk
s
"f

s

be the curve where k
1
"k

2
"1 and m"deg f

i
for i"1,2, s, f

i
are pairwise

coprime. If X
i
is the normalization of the projectivization of ½

i
and /

i
PP1

the corresponding maps, then deg /
i
"ks, i"1, 2. Moreover

+
Q3/

1
~1 ([0 :1])

(e
Q
!1)" +

Q3/
2
~1 ([0 : 1])

(e
Q
!1)

since m"deg f
i
, i"1,2, s. Consider the curve ½

1
. If /

1
(P)"[1, t], t3FM ql ,

and ( f
1,1

(t) f
1,2

(t))2( f
s,1

(t) f
s,2

(t))O0, then D/~1
1

([1, t]) D"ks and e
P
"1

for each P3/~1
1

([1 : t]). If /
1
(P)"[1, t] and f

1,1
(t)"0, then

( f
1,2

(t)) ( f
2,1

(t) f
2,2

(t))2( f
s,1

(t) f
s,2

(t))O0 since they are relatively prime
polynomials. Therefore D/~1

1
([1 : t]) D"ks~1 and e

P
"k for each

P3/~1([1 : t]). This holds for other polynomials also. Therefore

+
P3X

1
C/

1
~1([0 : 1])

(e
P
!1)"s (m

1
#m

2
) (k!1)ks~1.

Similarly for ½
2

we have

+
P3X

2
C/

2
~1 ([0 : 1])

(e
P
!1)"sm(k!1)ks~1.

Therefore if we denote the genus of ½
i
by g

i
, i"1, 2, we have

g
1
"g

2
#

s(m
1
#m

2
) (k!1)ks~1

2
!

sm(k!1)ks~1

2
.
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But we know

g
2
"G

ks~1

2
((k!1)sm!(k#1))#1

ks~1

2
((k!1)sm!2k)#1

if (m, k)"1,

if (m, k)"k.

Adding the difference we prove the lemma. j

Remark 3. One of the anonymous referees remarked that there exists
a different method to calculate the genus given by Xing [16]. Our method,
which is a generalization of that of Stepanov, allows us to find explicitly
a basis for regular differential forms on the curve. Moreover this provides
a fast decoding algorithm following the arguments of the proof of Lemma 1
after the resolution of affine singularities.

3. THE CALCULATION OF THE NUMBER OF
Fql-RATIONAL POINTS

LEMMA 2. ¸et l'1 be an integer, Fql a finite field of characteristic p, k52
an integer, k D (q!1), k

1
, k

2
positive integers with k

1
#k

2
"k, and

gcd(k, k
1
)"1. ¹hen there exist A

j
LFql for the cases j"1,2, 6 correspond-

ing to ¹able I such that the curve ½ defined by

½ : zk
i
"f

1
(x#c

i
), 14i4s,

where f
1

is defined in ¹able I, and s4DA
j
D is absolutely irreducible and it has

ksql many Fql-rational affine points in As`1F
ql

. Moreover DA
j
D"ql for j"1, 2,

DA
4
D"ql~1, and DA

j
D"ql~2 for j"3, 5, 6.

Proof. The proofs are similar for all six cases. We give the proof for the
Case 3, i.e., p'2, l,0 mod 4:

f
1
(x)"A

1#xql@2~1~1

1#xq~1 B
k
1

A
1#xql@2`1~1

1#xq~1 B
k
2

in this case.
Let g

1
(x)"(xql@2~1

#x) and H
1
"Mc3Fql Dcql@2~1

#c"0N. Observe that
H

1
is an additive subgroup of Fql with H

1
"M0NXMg((2s`1)@2)(q`1) D04s4

q!2, g is a generator of F*q2N and gcd(g
1
(x), g

1
(x#c))"1 for c3FqlCH

1
.

Let g
2
(x)"(xql@2`1

#x). Then gcd(g
2
(x), g

2
(x#c))"1 for c3FqlCH

1
sim-

ilarly.
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Let d"l
2
!1 and I be the ideal of Fql[x] defined by I"(g

2
(x#c), g

1
(x)),

where c3Fql. Using the Euclidean algorithm we get I"(xqd
#x,

!xq2
#x#cqd`2

#c) (see the proof of Lemma 2 in [2]. Moreover if
J"(xqd

#x, !xqd`2
#xqd

#cqd`2

1
#c

1
), where c

1
"cqd, then

IMJ"(xqd
#x, xqd`2

#x!cqd`2

1
!c

1
).

Since g
2
(x#c)3I, if

cqd`2
#c#cqd`2

1
#c

1
O0, (2)

then I"(1). But (2) holds iff

(cqd`2
#c#cqd`2

1
#c

1
)qd
"(cqd

#c)qd
#(cqd

#c)O0. (3)

Let q be the additive homomorphism defined by

q :FqlPFql , q (c)"cqd
#c.

The ker q"H
1
. Let H

2
"q~1(H

1
) be the inverse image of H

1
. H

2
is again an

additive subgroup of Fql and DH
2
D"DH

1
D Dker qD"q2. Inequality (3) is satis-

fied when c N FqlCH
2
. Then A

3
is a complete set of representatives of Fql/H2

.
Therefore gcd( f

1
(x#c), f

1
(x))"1 over Fql[x] in this case and ½ is absolute-

ly irreducible.
By similar arguments we find A

1
"A

2
"F*ql, A

4
as a complete set of

representatives of Fql/F
q
, and A

5
"A

6
as a complete set of representatives of

Fql/Fq2 .
Let s be any non-trivial multiplicative character of Fql of exponent k and

sl,k be the multiplicative character of Fql induced by s. It follows that

sl,k ( f
1
(a))"1, for all a3Fql

in each case (see [7]). Moreover the number of Fql-rational affine points of the
curve ½ (see for example [10, 11]) is

Nql" +
x3F

ql

s
<
i/1
A1# +

s : non-trivial multiplicative
character of exponent k

sl,k ( f (x#c
i
))B

" +
x3F

ql

s
<
i/1

k

"ksql. j
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4. PROOF OF THEOREM 2

Note that f
1

satisfies the conditions of Lemma 1 in the respective cases.
Therefore the genera of the curves g

j
are as given in Table II. By Lemma 2 it

has ksql many Fql-rational affine points. By normalization of the curve ½ we
get a non-singular model ½I without losing Fql-rationality of these points (see
for example [17, Sect. 5.3]). Let S be the corresponding set of Fql-rational
points of ½I and S

1
LS, be a subset of S. Applying Goppa’s construction to

D
0
" +

P3S
1

P

and

D"rP
=

,

where r(degD
0
"DS

1
D and P

=
is a point of non-singular model correspond-

ing to a point at infinity of the projectivization of the affine model ½, we get
r(n4ksql, k5r#1!g, d5n!r. Moreover if 2g!2(r"degD(n,
then k"r#1!g.
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